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ABSTRACT

This paper’s origin is to reach for a way for automatic initiation of shape hypothesis for Model Based Image Analysis
(MBIA) in the specific case of agricultural fields. A solution is to start with local (topological) hypotheses. The topological
data are integrated from local topology to the level of real 2-dimensional objects. The method requires radiometric model
to generate the normalized class membership probabilities (likelihood vectors) and a minimum-size-of-object parameter.

The paper gives a detailed description of the analysis approach for initiating the shape hypothesis for MBIA and
besides resolves problems related to classical approaches such as per pixel maximum likelihood classification. An
experiment is presented about its application in a case of RGB-CCD image of agricultural fields’ model. We obtained an
overall accuracy of 97% in comparison with 83% in improved maximum likelihood classification.

Key words: Likelihood-based classification, Maximum likelihood classification, Geo-information systems, Remote
sensing, Agriculture, Shape hypothesis, Model-based image analysis.

1 INTRODUCTION

The application context that is addressed in this paper is
to monitor large agricultural areas for land use, crop type
and acreage, using remotely sensed data. Therefore, in
this context the objects of interest are agricultural fields
in the domain of 2-dimensional objects. An agricultural
field is defined as a connected area with a single crop
type. Objects are described by their geometric and
radiometric properties. The geometric properties include
the position, size, orientation, shape, and topology. The
radiometric properties include the reflection properties of
the objects and (radiometric) class membership of objects
such as agricultural land cover classes (see Figure 1).
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Figure 1: The object description

Object topology is defined by a basic data structure

Region Adjacency Graph (RAG). RAG is defined as the

graph of Nodes and Arcs (N, A), where N is the set of

nodes and A is the set of arcs of the graph [1] and

Node: represents an object with its geometric and
radiometric properties,

Arc: represents the (4, 8) adjacency to neighbouring
objects.

The above description is valid for static objects only. If
the object is dynamic, the description of objects
becomes time dependent (temporal property).

Reliable estimates of areas planted with certain crops
and of (anticipated) crop production are needed for
proper planning, monitoring and improving the
development process and policy decisions. Therefore,
the classification of agricultural fields in an image of an
agricultural area is a key step in this application, which is
a good example of the need for integration of Remote
Sensing (RS) and geo-information system (GIS).

For detection and classification of agricultural fields
using remotely sensed data, the classical classification
techniques often fail when only the radiometric
properties of the satellite images are used for the
classification. In these methods such as Maximum
Likelihood (ML) classification, each sample (pixell) is
labelled according to its own radiometric properties alone,
with no account taken of topological information [2].
Knowledge of neighborhood relationships is a rich
source of information that is not exploited in the ML
classifiers. For example, in an image of agriculture,
adjacent samples are related or correlated, both
because imaging sensors acquired significant portions of
energy from adjacent samples2 and because ground
cover types generally occur over a region that is large
compared with the size of a sample.

In addition, a ML classifier selects the class with the
maximum likelihood and it assumes that the other
likelihoods for (other) class memberships are zero or
negligible. There is often a radiometric overlap between

! pixel: image data sample
% This is referred to as the point spread function effect
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classes. Some samples in one class may be similar to
some (other) samples in another class. Therefore, if we
select the maximum likelihood class to which such a
sample belongs, it is likely that this may be a wrong
decision. Anyway, a choice is made in the case of ML
classification, which consequently, is sometimes wrong.

Therefore, in ML classification, the average local error
(per pixel) is greater than the average per object error. This
approach relies on local error minimisation -- a label is
assigned to a sample that is the most probable label
based on local evidence.

Mis classification can be partly resolved in several
ways. A successful way of reducing mis-classification
errors is object based classification using vector and
raster mapping, which reduces the error by at least 75%,
a figure that is confirmed in many experiments. In fact,
accuracies of greater than 95% are achieved in areas of
a particularly difficult test case [3][4]. Object based
classification integrates gridded or raster images from
RS, with agricultural field boundaries or vectors from a
GIS, resulting in improved land cover classification. The
class label of each object is determined based on the
membership of their majority land cover class within the
object boundary, assuming that first a per pixel
classification is applied. For object based classification
the existence of current object boundary data (contained
in a GIS) is necessary [3][4].

Here we propose a method where we assume that the
object boundaries are not available. In order to
overcome the limitations of classical approaches such as
per pixel ML classification, we consider in this paper the
importance of topological information applied in the set
of all likelihood vectors (hypothesis domain).

With the contribution of this research an important
step in model based image analysis of remotely sensed
data is taken. In the field of remote sensing 3-
dimensional CAD models of natural objects are not
available. In order to fit geometric models to agricultural
fields we develop a method of shape hypothesis
generation from local topological models applied in the
hypothesis domain. Then, topological data are integrated
from local topology to the level of real 2-dimensional GIS
objects.

2 PROBLEM DESCRIPTION

The importance of this work is defined by the
breakthrough of model based image analysis in remote
sensing. The prevailing method of image analysis in
remote sensing is visual or bottom up. In the previous
work by [5][6] that they assumed the field shape
hypotheses were generated from an earlier state of the
system as recorded in a geo-information system plus
rules for changes in crop fields. This is not always
possible and the agricultural field boundaries are
changing through time because of agricultural practice.
Therefore, the problem is that that of automatic initiation
of field shape hypothesis generation. Now the scientific
guestion is:

Is it possible to use image data to generate shape
hypotheses constrained by minimal prior knowledge
about the shape of agricultural fields?

In fact, by posing this problem we delay the shape
hypothesis generation till we can generate them using
the radiometric and topological models applied to the
data sets. Therefore, there is a need for intermediate-

level processing for shape hypothesis generation, which
is the answer to the above question. Once the shape
hypotheses are generated we can apply methods of
geometric parameter estimation for a typical agricultural
field.

A crucial issue in the problem domain, are the
constraints provided by the application and requirements
of users for development of operational techniques. For
an example, Figure 2 illustrates two possible
segmentation results of the same wheat field. The
segmentation (a), although less coherent, indicates
radiometric variation in the southwestern corner which
may be due to a change in soil or wind damage. Such
information is vital for assessing the possible crop yield
from the field. However, in cadastral applications in
which the aim is to estimate geometric parameters of
single crop units, variations within a field are of no
interest and the segmentation in (b) is more appropriate.
In this paper the segmentation in Figure 2(b) is of
interest.

(a) (b) |
Figure 2: Two segmentations of the same crop fields
(after [Flack 1995])

3 METHOD

As described in our earlier research work [5][7], we
generate and calibrate radiometric statistical crop
reflection models, which allow us to map M-spectral
band data into N-class likelihood vectors, one vector
element per class; this is described in the next section.
In fitting a shape hypothesis to an actual image field we
use the Bayes relationship over combined probability
densities of hypotheses. The image data provides the
evidence. The hypothesis generator and shape
parameters provide the local priors.

Figure 3 illustrates our image analysis method and the

relationships between the main components of the
analysis process. The essential processing task is the
transformation of remotely sensed data into likelihood
vectors (evidence). In order to generate likelihood
vectors from the remotely sensed imagery relevant
training samples are required. Therefore, eight types of
land cover classes were selected as training data in the
test area: two forest types, one road class, and five crop
classes.
A key process within the network is the generation of the
initial  field shape hypothesis (likelihood-based
classification) module. This module generates a
sequence of feasible solutions, combining both local
topological models and radiometric (information stored
as likelihood vectors) constraints to evaluate the
relevance of each solution (hypothesis).

Another key process is geometric parameter
estimation, the results of which may be directly stored in
a GIS as the object parameters.
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Figure 3: Schematic diagram of the image analysis
method

An experiment is presented about image analysis
application in a case of RGB-CCD image of agricultural
fields’ model from our Lab. One reason for using the
indoor scenes is to concentrate on research rather than
on fieldwork; normally our data are from satellite remote
sensing sensors. Each processing step is explained in
detail below.

The method implemented using Unix-based Khoros
2.2.0 system (http://www.khoral.com).

3.1 Generation of likelihood vectors

Radiometric domain is photon counts in several spectral
bands at image sample position (i,j) convolved by the
sensor point spread function scaled to 0..255; i.e.

Radiometric (Class, Band, {position index (i,j)})

Hereafter abbreviated to R, which is the vector of sample
values in several spectral bands. We shall denote
vectors in boldface type (for instance, R, x, and Prob).

In practice the class probability densities for
radiometry are unknown, but for pragmatic reasons we
assume that they are normal (Gaussian) with radiometric
parameters p (class mean) and o (covariance matrix) [8].

We will calculate and store the complete set of
likelihood vectors (Prob (C: | R),..., Prob(Cy| R)) i.e. this
calculation is a mapping from R to the likelihood
Prob(Classk|R) under the assumption of equal priors
P(Class) in the region of interest.

R = Prob (C« | R)

where Cx = ground cover Class k, k=1,2,...,N with N the
total number of classes and R is the measured
radiometry at image sample position (i,j); we also call
Prob (Ck | R) as evidence for class k.

In this section the multispectral images are mapped
into the likelihood of class labels per sample. As a result,
we generate N channels of probabilities that associates
Prob (Class: | R), ..., Prob (Cn | R)) with samples.
Therefore, for each sample, a set of probabilities is
available that describes the likelihood that the sample
belongs to each of the defined ground cover classes
under consideration. Consequently, we will not look only

for the class with the maximum likelihood, but also
maintain all likelihoods and use them later in the process
of image analysis.

The calculation of Prob(Ck | R) for the multivariate
case is based on Bayes formula.

The conditional probability for radiometry Prob(R | Cy)
for each class Cy, is estimated on the basis of training
samples provided by the user. Indeed this is a model for
spectral variability of classes in the image. A global
estimation of radiometric parameters (class mean and
covariance matrix) for specific ground cover classes will
influence final classification results negatively. Still, the
spectral variability within each class in the image (due to
soil differences, moisture content of crop, and crop
growing stage, etc.) must be considered. Therefore,
radiometric parameters for specific ground cover classes
should be constrained in their application to areas and
times under which such variables are constant. In many
cases this means that radiometric parameters must be
defined for each ground cover class locally (spectrally
relative homogeneous) in order to minimize radiometric
confusion with other classes. In this case the cluster
analysis gives an idea about the spectral variability of
classes in the image.

Accordingly, to have a better estimation of radiometric
parameters of forest class (locally homogenous) in the
study area, we have selected two classes for forest
namely forest A and B. Latter on in the process of
likelihood-based classification the two forests classes
were merged to one (global) forest class.

3.2 Pixel-based Maximum Likelihood (ML)
classification

The local maximum likelihood method (or the maximum
a posteriori probability) for image classification aims at
assigning a most likely class label Cy, from a set of N
classes to any sample in the image. It means that we will
be looking only for the class with the maximum likelihood
and all the other likelihoods are of no interest.

In this experiment, the a priori (global) probabilities
were assumed to be the same for all classes.

The ML classification is generally reported to give the
highest classification accuracy from remotely sensed
data, so we adopted it as our per pixel classifier (see Fig.
7). In this experiment, the threshold for reject fraction-the
portion of samples that will remain unclassified due to
lowest likelihood of correct classification, was set to
10%. The ML classification is a pixel-based classification
(local) in that it labels a pixel on the basis of its
radiometric properties alone, with no account taken of
geometric or topological information [2][9][10].

3.3 Likelihood-Based (LB) classification

Alternatively to the ML classification, the second (third,
and N-th) likelihood result were generated, which forms
the probability space. In this section, starting at the pixel
level in a hypothesis domain (probability space), the
local topological hypothesis is initiated. Then topological
data are integrated from local topology to the level of real
2-dimensional objects. The process is parallel and
iterative. Parallel in the sense that we are dealing with
one ground cover class in each step. lterative in the
sense of generating the Boolean field shape hypothesis
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from local topology to the level of 2-dimensional
segments (see Fig. 8). These segments are then used to
initiate the field shape hypothesis for geometric
parameter estimation. After the geometric parameter
estimation the results would be the real 2-dimensional
objects of interest with the best-estimated parameters
given the minimum cost of error. Generation of 2-
dimensional segments is of interest for this paper and
the geometric parameter estimation is beyond its scope
for this paper.

The detailed analysis of the steps involved are
described below:

3.3.1 Thresholding

Goal is to control the expansion of seed objects.

Here, the estimated Prob(Ck | R) for given class Cy
was used for which Prob(Ck | R) < 0.5 was ignored and
put to zero, otherwise put to 1. Therefore, in order to
control the expansion of a region (explained in the next
section), an image (maximum) likelihood threshold was
applied to each likelihood image. The spectral overlap
between classes is indeed used as a criterion for
selection of the threshold. In fact, by selection of the
threshold equal to 0.5 (fixed parameter), we selected the
local ML class labels for controlling the expansion
process only.

3.3.2 Topological operator (structuring element for
shrink and expansion)

Goal is removing enclosed small segments.

Including the topological information into the
classification process can be done by using a simple
adjacency surrounding sample (i,j). This can be of any
size but, in principle, should be large enough to ensure
that all the samples considered to have any spatial
correlation with (i,j) are included. For high-resolution
imagery of the agricultural environment this is practical
and simple 3x3 adjacencies such as shown in Figure 4
can be adopted.

Sample (i,i) —_|

~ | —

(a) \ Neighbor n/ (b)

Figure 4: Definition of a simple adjacency about
sample (i,j)

(a) 4-connected
(b) 8-connected

3.3.3 Local min operator (shrinking with size
constraint)

Goal is seed generation.

The object-size-hypothesis and shape of structuring
element are used as parameters.

Now assume that a neighborhood function can be
defined which allows the samples in the prescribed
neighborhood to influence the possible likelihood of
sample (i,j). For example, if a likelihood component is
examined in 3 x 3 windows as described above, a label
at the center of the window might be changed to the
smallest likelihood represented in the window. Clearly
this must be done carefully, with the user having some

control over the minimum size region of a given cover
type that is acceptable. Such a modification is made to
the set of likelihoods for all samples by moving over the
image from its top left hand to bottom right hand corners.
This process is applied as many times as necessary to
ensure that the seed objects have been generated.

In this experiment, the local min operator was used as
a variable parameter with two possibilities 6 or 7 (the
number of iterations) to generate the seed objects. Seed
object generation is done for each class separately using
the likelihood component of that class. Estimation of the
right parameter value for the local min is very important
especially in case we have overlap in radiometry,
because we may come up with false objects or destroy
the topology of the existing objects. These types of
errors sometimes cannot be corrected in the later
process.

As a result, local min operation will remove the mixed
pixels/enclosed small segments (a major source of mis-
classification error), which will enable a purer selection of
pixels (geometry knowledge) and hence radiometric
properties to be used for determining the shape and land
cover type for the object.

3.3.4 N-conditional dilation on Boolean

Controlled expand operation by maximum likelihood
threshold in the hypothesis domain.

In this phase we grow the seed objects generated in
the previous phase. N-conditional dilation will do N
successive conditional expansion of the seed object by
defined the 3 x 3 structuring element, using the
thresholded likelihood image as a conditional image for
expansion. This means that a region cannot grow further
than in the thresholded likelihood image. The number of
successive expansions can be fixed if we set N to a high
number e.g. 100. It does not depend on any other
parameters such as the number of iterations for local
min. The reason for this is the control of expansion by
the maximum likelihood threshold in the hypothesis
domain. After a certain number of successive expansion
and removing/filling the enclosed small segments, this
parameter is no longer sensitive and will change nothing.

3.4  Geometric (shape) parameter estimation

This stage is beyond the scope of this paper and would
be the next challenge. We generate a hypothesis
boundary without giving a parametric description at this
stage.

4 EXPERIMENTAL DATA AND RESULTS

Image format: one color CCD video camera image, i.e.
three bands R/G/B (see Fig. 5);

Image size: 576 x 768 (rows/cols);

Ground truth: different GIS-layers: roads, farm houses,
forests and five different crop fields for
evaluation of the results (see Fig. 6);

Selected

classes: two classes of forest, five classes of
crops, and one class of road, making in
total eight radiometric classes;

Aim: classification of forests and crop classes.

The RGB image has been digitized for use as a
ground truth for generation of radiometric parameters
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(class signatures) and quality assessment (see Fig. 6).
The radiometric parameters in terms of means and
covariance matrices were estimated for all the eight
classes from the training samples. These parameters
were used to generate the likelihood vectors Prob(CyR)
as discussed in the previous sections. In the process of
likelihood-based classification the two forests classes
were merged to one (global) forest class (see Fig.6 and
Fig.7).

Figure 5: Shows RGB-CCD image (image size: 576
rows x 768 cols)

Figure 6: Land use map of the test area including
one class of forest, five classes of crops, two classes
of roads, and one class of farm houses (obtained by
hand segmentation).

Figure 7: Shows the maximum likelihood
classification per sample (7 classes)

The image was also classified on per pixel basis by
the ML classifier, for comparison with the result of the
likelihood-based classification applied in the hypothesis
domain described in the last section.

Ty

Figure 8: Shows the final result of likelihood-based
classification. This Figure shows the result of local
hypotheses testing resulting in a segmented image.
Small segments have been removed and shape
hypotheses initiated.

B Road
[ Forest
- Crop-1
|:| Crop-2
- Crop-3
- Crop-4
|:| Crop-5

Legend for Fig. 7 and Fig.8

5 EVALUATION

There are a number of observations that can be made
about these results. The most obvious of these are about
uncertainty in final classification. Uncertainty in the final
classification is caused by the following uncertainties
[11][22][13][14][15]:

(&) Source image e.g. due to image acquisition, sensor,
platform, atmospheric conditions, etc.

(b) Spectral variability within each class in the image
due to soil differences, moisture content of crop, and
crop growing stage (definition of crop radiometry),
etc.

(c) Spatial variability within each class due to complex
natural phenomena such as topology, geology, and
relief (definition of crop fields geometry/shapes)

(d) Image classification methodology due to training
samples, use of classification algorithms, non-
normal class distribution.

For an example about uncertainties in the source
images (a) see Figure 5 (bottom center of the image).

Classification uncertainties that arise due to spectral
variability within each class in the image and the
sampling procedure (b and d), for example, include:
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Q Local estimation of radiometric parameters:
Radiometric parameters for specific ground cover
classes should be constrained in their application to
areas and times under which such variables are
constant. In many cases this means that radiometric
parameters must be defined for each ground cover class
locally (spectrally relative homogeneous) in order to
minimize radiometric confusion with other classes.

Q The geometric accuracy of the source data:
Especially in spatially complex situations it may be
difficult to locate the training samples on an image.

Q The spatial resolution of the image:

If the sample size of the image is larger than the area in
which crop types occur, the sample will not contain a
homogeneous area.

Classification uncertainties that arise due to the
algorithm (d) include:
Q Gaussian (normal) class distribution
Assumption of normality for class probability distribution
of each ground cover class is the mathematical
simplification of the real world; this is not a correct
assumption.

5.1 Quantification of uncertainty

In order to assess the accuracy of the classified results,
the confusion (error) matrix was created. In this paper
the overall accuracy (the fraction of all ground truth
samples that are classified correctly) from the confusion
matrix is used to compare the results of likelihood-based
(LB) classification and Maximum Likelihood (ML)
classification (See Table 1). The two approaches (LB
and ML) are applied to a color CCD image and the
results are evaluated by comparison with ground truth
obtained by hand segmentation.

For comparing also our result with the improved ML
classification result, a 3x3 Zero-majority filter is applied
to the result of ML classification to classify some
unclassified samples. Afterward, a 3x3 Majority filter is
applied to the Zero-majority result to smooth the
classified result (See Table 1).

Table 1: Accuracy assessment of the developed
method as compared with the ML results

Methods Overall

accuracy
LB classification 97.53
ML classification 66.56
Filtering results 83.37

Although in this specific case filtering improved the
overall accuracy, in general, filtering may be considered
as area specific cosmetics. It may be applied to an area
if there is radiometric confusion, but, in general, it may
shift the original object boundary.

A further comparison of our result with the ML result
was done using the object boundaries of the ground
truth map obtained by hand segmentation for the
evaluation (see Fig. 6 and Fig. 9). For this comparison
first, a raster to vector conversion is done.

Figure 10 shows the extracted segments using the final
result of ML classification compared with the object
boundaries of the ground truth map. This Figure shows
the mixed (boundary) pixels and mixed pixels within
fields. Due to these mixed classified pixels, ML
classification often yields uncertain or erroneous results.
Figure 11 shows the extracted segments using the final
result of likelihood-based classification. This Figure
shows the result of local hypotheses testing resulting in a
segmented image. Small segments have been removed
and shape hypotheses initiated.

l i a0

Figure 9: The object boundaries of the ground truth
map obtained by hand segmentation (the ground
truth map is shown in Fig. 6)

T Wy

= — W -_
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Figure 10: shows the object boundaries of the
ground truth map (blue) superimposed to the
improved maximum likelihood results (red)

Figure 11: shows the object boundaries of the
ground truth map (blue) superimposed to the
likelihood-based classification results (red)
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6  CONCLUSION

Based on the proposed method for image classification
and automatic shape hypotheses generation, several
conclusions may be derived as follow:

a
a

6.1

it is simple, quick, and easily implemented,

it is efficient because it deals only with likelihood
vectors (classes) and not with spectral values in the
image,

it is relatively simple to include GIS data such as
infrastructure and topological information as
constraints on hypothesis generation and parameter
estimation,

an overall accuracy of 97% was obtained in
comparison with 83% in improved maximum
likelihood classification.
the algorithm can
segments, and
development of a hypothesis boundary generator for
model based image analysis.

create irregularly shaped

Future work

As a result of this study the followings are recommended
for further attention and studies:

a

Applying the local topology “local max” controlled by
threshold in the hypothesis domain and re-
normalization of the likelihoods.

Incorporating region adjacency graph (explicitly) into
the process of image analysis. From topology graph
we may derive how to remove the enclosed small
segments.

Parametric edge/shape hypothesis generation and
testing

It is recommended to define ground cover classes at
the highest possible hierarchical and detailed level
related to the aim of the research (local estimation
of radiometric parameters for each ground cover
class).

multisource data analysis in the hypothesis domain
instead of image domain (image fusion).
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