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INTRODUCTION 
 
Since the advent of molecular markers, novel statistical 

techniques to detect and map individual genes affecting 
quantitative traits have been developed and subsequently 
refined. Most methods of QTL mapping are based on the 
interval mapping method, using either least squares 
regression or maximum likelihood (Haley et al., 1992; 
Grignola et al., 1996; Weller, 2001; Feingold et al., 2002; 
Liu et al., 2004; Tae-Hun Kim et al., 2004), in which a 
putative QTL is fitted at every possible position along a 
chromosome and the best fitting position is taken as the 
estimate of QTL position. In maximum likelihood (ML), the 
likelihood function of the observed data is maximized with 
respect to all parameters in the model postulated, and 
hypothesis testing is based on the likelihood ratio statistic. 

Many important traits in livestock are binary or 
categorical traits (observed as two or more discrete 
categories) with a multifactorial polygenic mode of 
inheritance. Examples are mastitis, calving ease and 
insemination success or failure in cattle. Such traits vary in 
a discontinuous manner but are not inherited in a simple 
Mendelian fashion. Genetic analyses for categorical traits 
are difficult because the observed phenotype cannot be 
described by a linear function of genetic and environmental 
effect. For such traits threshold models are more 
appropriate than linear models, which assumes that there is 
a continuous underlying variable which determines the 
expression of discrete trait. The link between the observable 

discrete variable and the underlying variable is generated by 
a set of fixed thresholds, and the underlying variable is then 
described by the usual linear quantitative genetic model 
(Gianola et al., 1982; Falconer and Mackay, 1996). 
Threshold models have been used to estimate genetic 
parameters and breeding values for categorical traits in 
livestock population (Kadarmideen et al., 2000). Interval 
mapping for QTL affecting a binary polygenic trait in 
crossbred and outbred populations has also been developed 
based on threshold model concepts (Yi and Xu, 1999). This 
method will henceforth be referred to as generalized 
interval mapping or GIM. The GIM method is computer 
intensive because the likelihood has to be maximized 
through an iterative procedure for each putative QTL 
position. Yi and Xu (1999) reported that GIM had more 
power than linear model method to detect QTL for 
categorical traits, which strengthens the need for threshold 
models in mapping QTL for categorical traits. The 
advantages of the threshold model over the linear model 
could increase as complexity increases (e.g. multiple 
families in outbred populations). Combining data from 
multiple families is deemed to be more useful in outbred 
populations. For example, animal and plant breeders usually 
combine data from many half- or full-sib families. The main 
advantages of QTL mapping using multiple families are the 
increased power of QTL detection. However, systematic 
investigation of QTL mapping for discrete traits under the 
threshold model has been lacking. Here, we applied 
maximum likelihood methodology to analyze the efficiency 
of interval mapping under the threshold model, and analyze 
the power of QTL mapping in different parameter case. 
Application of the method is illustrated using a set of 
simulated data. 
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MATERIALS AND METHODS 
 

Model and estimation 
A complex binary trait is assumed to be controlled by a 

latent variable, referred to as liability, which is considered 
to be continuous and normally distributed. It can be 
described by the usual linear model 

 
z = gQTL+gpoly+e                           (1) 
 
where z is the liability, gQTL is the QTL genotypic value , 

gpoly represents the polygenic effect with a distribution of 
N(0, σ2

poly), and e is the residual with a distribution of N(0, 
σ2

e). The discrete phenotypes are determined by some 
underlying thresholds. The device that translates liability 
into discrete phenotype is the physiological threshold model 
(Wright, 1934). For a discrete trait with two categories of 
phenotype, there is only one fixed threshold (v). When the 
value of the liability is above the threshold value, an 
individual shows one status of phenotype on the observed 
scale, otherwise, it shows the other status of phenotype. The 
translation can be summarized by 
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Mapping quantitative trait loci (QTL) for this complex 

binary traits is more challenging than for normally 
distributed traits due to the nonlinear relationship between 
the observed phenotype and unobservable genetic effects, 
especially when the mapping population contains multiple 
outbred families.  

Under a single locus model for the QTL is assumed with 
alleles Q and q coming from heterozygous sires and random 
dam population, the liability of daughters is three mixed 
distribution. The density can be described as follows 
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Where frei(k) = Pr(G=k⏐m), means the QTL genotype (k 
= QQ, Qq, qq) probabilities conditional on marker 
genotype. The conditional probabilities are summarized in 
Table 1. f(k)(zi) represent the normal distribution density of 
each QTL genotype, assuming with same variance and 
different mean (a, d, -a). Where a and d means additive and 
dominance effect of the putative QTL respectively.  

The likelihood of population is: 
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where Pr(yi = k⏐m) is the conditional probability of 
phenotypic status (k = 0, 1) with given marker genotype (m) 
of the ith individual.  
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where Pr(yi =1⏐G = k) stands for the conditional probability 
of phenotypic status 1 with given QTL genotype (k). 
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where Φ(ξ) stands for the standardized cumulative normal 

distribution function and ξ is the argument. 
22
epoly σσσ ε += , 

it stands for the residual of the liability model, and efQTL(k) is 
three genotypic effects. Analysis involving Φ(ξ) is referred 
to as probit analysis. However, the probit model is difficult 

Table 1. The conditional probabilities of a QTL genotype with given marker genotype (Pr(G = k⏐m) 
QTL genotype Sire genotype Progeny  

marker type QQ Qq qq 
M1QM2/m1qm2 M1M1M2M2 

M1M1M2m2 
M1M1m2m2 
M1m1M2M2 
M1m1M2m2 
M1m1m2m2 
m1m1M2M2 
m1m1M2m2 
m1m1m2m2 

[(1-r1)(1-r2)/(1-r)]p 
(1-r1)p 

[r2(1-r1)/r]p 
(1-r2)p 

0.5p 
r2p 

[r1(1-r2)/r]p 
r1p 

[r1r2/(1-r)]p 

r1r2/(1-r))(1-p)+[r1r2/(1-r)]p 
r1)(1-p)+r1p 

[r2(1-r1)/r](1-p)+[r1(1-r2)/r]p 
(1-r2)(1-p)+r2p 

0.5 
r2(1-p)+(1-r2)p 

[r1(1-r2)/r](1-p)+[r2(1-r1)/r]p 
r1(1-p)+(1-r1)p 

[r1r2/(1-r)](1-p)+[1-r1r2/(1-r)]p 

(r1r2/(1-r))(1-p) 
r1(1-p) 

[r1(1-r2)/r](1-p) 
r2(1-p) 
0.5(1-p) 

(1-r2)(1-p) 
[r2(1-r1)/r](1-p) 

(1-r1)(1-p) 
[1- r1r2/(1-r)](1-p) 

r is the recombination fraction between the two markers; r1 and r2 is the recombination fraction between the putative QTL and each marker, respectively; 
p is the frequency of alleles in dam population. 
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to manipulate because numerical integration is required. So, 
a logistic model is employed to approximate Φ(ξ) for 
estimation purpose. Logistic regressions have been used by 
human geneticists in segregation analysis (e.g. Bonney, 

1986). The logistic model is expressed by )exp(1
)exp()(
x

xx
+

=ψ
. 

The approximate relationship between a probit model and a 

logistic model is Φ(x) ≈ ψ(cx), where 3/π=c . Therefore,  
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The maximum likelihood estimation (MLE) for 

parameters can be derived by computing the derivative of 
the log of the likelihood with respect to the a, d, v, and 
setting this function equal to zero. We can obtain a set of 
equations as follow 
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The MLE of P(k) can obtain from (5), (6) and (7) using 

iterative methods, and can obtain the maximum log 
likelihood value (lnLmax). A statistical test for H0 is carried 
out by the likelihood ratio (LRT) approximation. The 
likelihood ratio test involves calculation of log likelihood 
under the full model (lnLmax), and under the restricted 
model (lnL0). The likelihood ratio is 2(lnLmax-lnL0), which 
asymptotically follows a chi-square distribution with two 
degree of freedom under the null hypothesis. The additive 
and dominance effect of QTL can obtain the following 
formula 
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Experimental design 
Half-sib design is applied in our study, and half-sib 

population was used for linkage analysis of putative QTL 
and genetic markers. There are 10 sires each of which mate 
50 dams, and produce 50 half-sib progeny. So, the size of 
segregating population is 500 with ten half-sib families. The 
unrelated individuals in base population are mated 
randomly. The phenotype for a binary trait is determined by 
many genes of small effect and by a relatively major QTL 
with two alleles, Q and q, at population frequencies of p and 
1-p, respectively. The putative QTL is situated between two 
flanking markers, M1 and M2, at a recombination distance 
of r. The notation will assume only two alleles at each 
genetic marker, Mi and mi. The linkage phase of QTL and 
markers is assumed to be known or estimated with a high 
degree of accuracy. The frequencies of all alleles in the dam 
population are assumed equal, setting to 0.5, and the 
population is assumed to be at Hardy-Weinberg equilibrium 
with respect to the QTL and marker locus. 

 
Data simulation 

The QTL additive variance (σ2
q) can derive from total 

genetic variance (σ2
g) and QTL effect (a ratio of QTL 

variance to the total genetic variance, ∆q = σ2
q/σ2

g). We can 
educe these variance component giving heritability (h2), ∆q 
and phenotypic variance (σ2

p).  
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The genotypic values are derived from Falconer’s 

model, σ2
q = 2pqa2 (where σ2

q is QTL additive variance, p 
and q are the allele frequencies at the QTL, a is the average 
effect of gene substitution), assuming that p is equal to q 
and QTL has no dominance effect in the base population, 

for a given QTL variance σ2
q, 

22 qa σ= , and the genotypic 
values of the three QTL genotypes QQ, Qq and qq are a, 0 
and -a, respectively.  

The genotypes of the offspring are generated according 
to the haplotypes produced by their parents, the polygenic 
effect of offspring i with sire s and dam d is simulated by gi 
= 0.5gs

i+0.5gd
i+mi, where gs

i and gd
i represent the polygenic 

value of its sire and dam, respectively, and mi represents the 
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Mendelian sampling effect, which follow a normal 
distribution with mean 0 and variance σ2

m (σ2
m = 0.25[(1-

fs)+(1-fd)] σ2
a, where fs and fd are inbreeding coefficients of 

the sire and dam). The liability is generated in the same way 
as for the individuals in the base population, assuming σ2

e is 
constant across generations.  

 
Parameter case 

The recombination rate (r) between two markers is set 
to be 0.40. The recombination rate (r1) between the putative 
QTL and left marker is set to be 0.20. The QTL effect is set 
to be 0.1, 0.3, and 0.50, respectively. The proportion of type 
1 animals (incidence, π) is set to be 0.1 and 0.40, 
respectively. The phenotypic variance is set to be 1, and 
heritability is 0.1, 0.2, and 0.4, respectively. Therefore, the 
number of parameter combinations is 18. For each 
parameter combination we simulate 100 replicates.  

 
RESULTS 

 
Parameters estimation 

Average parameter estimates obtained from analyses of 
data sets simulated under the threshold model are presented 
in Table 2. The efficiency and accuracy of QTL mapping 
are affected by heritability directly, and with the increase of 
heritability, the accuracy of parameter estimates improved 
correspondingly. The bias between parameter estimates and 
true value is the lowest under the high heritability and QTL 
effect. As the usual linear methods, the power of QTL 
mapping is affected by the putative QTL effect under the 

threshold model. The efficiency of the interval mapping 
largely depends on the incidence of categories (π). The 
maximum efficiency occurs when π is 0.40 in our study. 
Consider that statistical power is a monotonically increasing 
function of the heritability of the putative. Then, this 
heritability has a maximum value when the incidence is 
0.50. As the incidence of categories deviates from 50%, 
more information will be lost, therefore, the efficiency and 
statistical power of QTL mapping is decreasing. 

 
Statistical power 

The power is defined as the proportion of the replicate 
that the value of the test statistic (LRT) larger than 5.991 
(significance level is 0.05). When r = 0.5, the null 
hypothesis of no linkage is true, and the corresponding 
power of test is the type I error. As shown in Table 2, the 
type I error of threshold model under all the parameter case 
is close to the pre-specified type I error rate of 0.05. This is 
a robust method even when the incidence of categories is 
low (π = 0.1).  

The values of likelihood ratio (LRT) are affected by 
heritability and QTL effect level directly. With the increase 
of QTL effect and heritability, the value of LRT and the 
power improved correspondingly. The values of LRT are 
also affected by incidence of categories (π). When π is low, 
the genotypic information which can be used is less. As a 
result, it is difficult to detect QTL. The upper and lower 
limit values of LRT in different replicate and different 
location are shown in Figure 1. In the true location of the 
putative QTL, the range and interval of LRT is the widest. 

Table 2. Efficiency of QTL detection computed by threshold model (In parentheses are the standard errors (n = 500, r1 = 0.2, 100 
replicate)) 
Parameter case Power and type I error 
h2 ∆ π 

a 
true value 

a 
estimate 

r1 
estimate LRT Power Type I error

0.1 
 

0.1 
0.1 
0.3 
0.3 
0.5 
0.5 

0.1 
0.4 
0.1 
0.4 
0.1 
0.4 

0.1414 
0.1414 
0.2449 
0.2449 
0.3162 
0.3162 

0.0948(0.0726) 
0.1226(0.0835) 
0.2015(0.1024) 
0.2136(0.0972) 
0.3021(0.1152) 
0.2956(0.1123) 

0.1063(0.024) 
0.1235(0.031) 
0.1312(0.027) 
0.1526(0.022) 
0.1213(0.028) 
0.1678(0.025) 

3.31 
3.78 
3.92 
5.03 
5.52 
6.26 

0.20 
0.35 
0.36 
0.42 
0.51 
0.63 

0.07 
0.09 
0.05 
0.10 
0.06 
0.08 

0.2 
 

0.1 
0.1 
0.3 
0.3 
0.5 
0.5 

0.1 
0.4 
0.1 
0.4 
0.1 
0.4 

0.2000 
0.2000 
0.3464 
0.3464 
0.4472 
0.4472 

0.1674(0.0864) 
0.1723(0.0761) 
0.2872(0.1082) 
0.3125(0.0943) 
0.4052(0.1257) 
0.4236(0.1162) 

0.1634(0.033) 
0.1765(0.026) 
0.1582(0.029) 
0.1656(0.030) 
0.1247(0.024) 
0.1823(0.022) 

3.28 
4.72 
6.26 
8.03 
8.47 
9.75 

0.24 
0.44 
0.75 
0.85 
0.82 
0.90 

0.07 
0.06 
0.10 
0.05 
0.04 
0.05 

0.4 
 

0.1 
0.1 
0.3 
0.3 
0.5 
0.5 

0.1 
0.4 
0.1 
0.4 
0.1 
0.4 

0.2828 
0.2828 
0.4899 
0.4899 
0.6325 
0.6325 

0.2461(0.1056) 
0.2523(0.1052) 
0.4126(0.1327) 
0.4583(0.1255) 
0.5235(0.1376) 
0.5927(0.1330) 

0.1762(0.032) 
0.1884(0.030) 
0.1858(0.035) 
0.1912(0.028) 
0.1735(0.026) 
0.1908(0.033) 

5.34 
6.25 
6.12 
9.78 
9.63 

11.53 

0.65 
0.78 
0.76 
0.90 
0.80 
0.95 

0.08 
0.06 
0.09 
0.05 
0.05 
0.04 

n is the number of daughter; h2 is heritability; ∆ is the QTL effect (QTL variance contribution); π is the incidence of categories; a stands for the genotype 
value of QQ; r1 is the recombination fraction between the putative QTL and the left marker; level of significance is 0.05. 
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DISCUSSION 
 
Many quantitative traits of economical importance are 

discrete in nature. Although methods of mapping 
quantitative trait loci for continuous quantitative characters 
are well developed, such methods for discrete traits are 
generally lacking. Mapping QTL for this discrete trait is 
more challenging than for normally distributed traits due to 
the nonlinear relationship between the observed phenotype 
and unobservable genetic effects (Xu, 1996; Chen et al., 
2004), especially when the mapping population contains 
multiple outbred families. In this paper, A QTL mapping 
technique for binary traits in half-sib design is proposed. A 
binary trait is assumed to be controlled by an underlying 
liability with normal distribution. The liability is treated by 
the usual quantitative trait. Translation from the liability 
into the binary phenotype is through the threshold model. 
The conditional probability of discrete phenotype given 
QTL and marker genotypes is described by the probit model. 
The genotype of a putative QTL is uncertain, but it is 
inferred from the genotypes of two flanking markers. 
Therefore, a mixture of likelihood is used for the threshold 
model analysis.  

The interval mapping method for binary characters is 
usually less powerful than the well developed mapping 
methods for continuous traits. This is because some 
information will be lost during the translation from the 
underlying liability into the observed binary phenotype. The 
threshold value is the leading parameter that determines the 
amount of information loss. The threshold determines the 
incidence of categories in the population of interest. The 
efficiency of the interval mapping largely depends on the 
incidence. Although the threshold value cannot be 
controlled in natural populations, it can be manipulated in 
designed experiments. 

In this paper we only consider the single threshold trait, 
but for discrete trait with multiple phenotypes or multiple 
threshold value, threshold model can also be applied. The 

main difference is the likelihood function which be selected. 
Example, for litter size, we can apply a Poisson-based 
model. Here we propose a modified method. We can 
combine multiple observed phenotypic value into two 
categories, which transforming discrete trait with multiple 
thresholds into one with single threshold, e.g. for 
monotocous species, the litter size of, double and more can 
be grouped into one category.  

Although a series of experimental designs and analysis 
techniques for QTL mapping based on linkage analysis 
have been developed, and some QTLs with large effect had 
been located successfully (Zhang et al., 1998; Lee et al., 
2003), linkage analysis based on marker and QTL is still a 
coarse-scale QTL mapping. It usually maps QTL on a 
region of 10-20 cM, and for multiple linked QTLs, linkage 
analysis probably yield larger bias (Zeng et al., 1994). 
Recombination events are the key to QTL fine mapping. 
For linkage analysis, marker density and population size are 
two factors to increase the frequency of the recombination 
events. But higher marker density doesn’t simply imply a 
better QTL fine mapping (Darvasi et al., 1997), on the other 
hand, it is not always realistic to enlarge population size. 
Therefore, QTL fine mapping must look for new strategy, 
the main technique is to combine linkage analysis with 
some new methods, such as linkage disequilibrium (LD) 
analysis, transmission disequilibrium test (TDT) and 
identity-by-descent-based (IBD), and so on. 
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