
Using semidirect product
of (semi)groups in public key cryptography

Delaram Kahrobaei1 and Vladimir Shpilrain2

1 CUNY Graduate Center and City Tech, City University of New York
dkahrobaei@gc.cuny.edu ⋆

2 The City College of New York and CUNY Graduate Center
shpil@groups.sci.ccny.cuny.edu ⋆⋆

Abstract. In this survey, we describe a general key exchange proto-
col based on semidirect product of (semi)groups (more specifically, on
extensions of (semi)groups by automorphisms), and then focus on prac-
tical instances of this general idea. This protocol can be based on any
group or semigroup, in particular on any non-commutative group. One
of its special cases is the standard Diffie-Hellman protocol, which is
based on a cyclic group. However, when this protocol is used with a non-
commutative (semi)group, it acquires several useful features that make it
compare favorably to the Diffie-Hellman protocol. The focus then shifts
to selecting an optimal platform (semi)group, in terms of security and
efficiency. We show, in particular, that one can get a variety of new se-
curity assumptions by varying an automorphism used for a (semi)group
extension.

1 Introduction

The area of public key cryptography started with the seminal paper [2] intro-
ducing what is now known as the Diffie-Hellman key exchange protocol.

The simplest, and original, implementation of the protocol uses the multi-
plicative group of integers modulo p, where p is prime and g is primitive mod p.
A more general description of the protocol uses an arbitrary finite cyclic group.

1. Alice and Bob agree on a finite cyclic group G and a generating element g
in G. We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.
3. Bob picks a random natural number b and sends gb to Alice.
4. Alice computes KA = (gb)a = gba.
5. Bob computes KB = (ga)b = gab.

⋆ Research of Delaram Kahrobaei was partially supported by a PSC-CUNY grant
from the CUNY research foundation, as well as the City Tech foundation. Research
of Delaram Kahrobaei and Vladimir Shpilrain was also supported by the ONR (Office
of Naval Research) grant N000141512164.

⋆⋆ Research of Vladimir Shpilrain was partially supported by the NSF grant CNS-
1117675.

Since ab = ba, both Alice and Bob are now in possession of the same group
element K = KA = KB which can serve as the shared secret key.

The protocol is considered secure against eavesdroppers if G and g are chosen
properly. The eavesdropper must solve the Diffie-Hellman problem (recover gab

from g, ga and gb) to obtain the shared secret key. This is currently considered
difficult for a “good” choice of parameters (see e.g. [8] for details).

There is an ongoing search for other platforms where the Diffie-Hellman
or similar key exchange could be carried out more efficiently or where security
would be based on different assumptions. This search already gave rise to several
interesting directions, including a whole area of elliptic curve cryptography [17].
We also refer the reader to [10] or [11] for a survey of proposed cryptographic
primitives based on non-abelian (= non-commutative) groups. A survey of these
efforts is outside of the scope of the present paper; our goal here is to describe
a new key exchange protocol from [4] based on extension of a (semi)group by
automorphisms (or more generally, by self-homomorphisms) and discuss possible
platforms that would make this protocol secure and efficient. This protocol can
be based on any group, in particular on any non-commutative group. It has
some resemblance to the classical Diffie-Hellman protocol, but there are several
distinctive features that, we believe, give the new protocol important advantages.
In particular, even though the parties do compute a large power of a public
element (as in the classical Diffie-Hellman protocol), they do not transmit the
whole result, but rather just part of it.

We then describe in this survey some particular instantiations of this general
protocol. We start with a non-commutative semigroup of matrices as the plat-
form, consider an extension of this semigroup by a conjugating automorphism
and show that security of the relevant instantiation is based on a quite different
security assumption compared to that of the standard Diffie-Hellman protocol.
However, due to the nature of this security assumption, the protocol turns out
to be vulnerable to a “linear algebra attack”, similar to an attack on Stickel’s
protocol [16] offered in [15], albeit more sophisticated, see [9], [14]. A composi-
tion of conjugating automorphism with a field automorphism was employed in
[7], but this automorphism still turned out to be not complex enough to make
the protocol withstand a linear algebra attack, see [3], [14].

We therefore offer here another platform group that we believe should make
the protocol invulnerable to the attacks of [3], [9], [14]. The group is a free
nilpotent p-group, for a sufficiently large prime p. We give a formal definition of
this group in Section 8; here we just say that this is a finite group all of whose
elements have order dividing pn for some fixed n ≥ 1. As any finite group, this
group is linear, but Janusz [5] showed that a faithful representation of a finite
p-group, with at least one element of order pn, as a group of matrices over a
finite field of characteristic p is of dimension at least 1+pn−1, which is too large
to launch a linear algebra attack provided p itself is large enough. At the same
time, to keep computation in the platform group efficient, the nilpotency class
of the group has to be fairly small. We note that, in contrast, the dimension of
the classical representations of finitely generated torsion-free nilpotent groups

in a matrix group UT (Z) can be rather small (cf. [12]), but for torsion groups
with elements of large order the situation is really different. Still, there is the
usual trade-off between security and efficiency, so the following parameters have
to be chosen carefully to provide for both security and efficiency: (1) the size of
p; (2) the nilpotency class of the platform group; (3) the rank (i.e., the number
of generators) of the platform group. We discuss this in our Section 8.

We mention here another, rather different, proposal [13] of a cryptosystem
based on the semidirect product of two groups and yet another, more complex,
proposal of a key agreement based on the semidirect product of two monoids [1].
Both these proposals are very different from that of [4]. In particular, the crucial
idea of transmitting just part of the result of an exponentiation appears only in
[4].

Finally, we note that the basic construction (semidirect product) described
in this survey can be adopted, with some simple modifications, in other algebraic
systems, e.g. associative rings or Lie rings, and key exchange protocols similar
to ours can be built on those.

2 Semidirect products and extensions by automorphisms

We include this section to make the exposition more comprehensive. The reader
who is uncomfortable with group-theoretic constructions can skip to subsection
2.1.

We now recall the definition of a semidirect product:

Definition 1. Let G,H be two groups, let Aut(G) be the group of automor-
phisms of G, and let ρ : H → Aut(G) be a homomorphism. Then the semidirect
product of G and H is the set

Γ = Goρ H = {(g, h) : g ∈ G, h ∈ H}

with the group operation given by
(g, h)(g′, h′) = (gρ(h

′) · g′, h · h′).
Here gρ(h

′) denotes the image of g under the automorphism ρ(h′), and when we
write a product h · h′ of two morphisms, this means that h is applied first.

In this paper, we focus on a special case of this construction, where the
group H is just a subgroup of the group Aut(G). If H = Aut(G), then the
corresponding semidirect product is called the holomorph of the group G. We
give some more details about the holomorph in our Section 2.1, and in Section
3 we describe a key exchange protocol that uses (as the platform) an extension
of a group G by a cyclic group of automorphisms.

2.1 Extensions by automorphisms

A particularly simple special case of the semidirect product construction is where
the group H is just a subgroup of the group Aut(G). If H = Aut(G), then the

corresponding semidirect product is called the holomorph of the group G. Thus,
the holomorph of G, usually denoted by Hol(G), is the set of all pairs (g, ϕ),
where g ∈ G, ϕ ∈ Aut(G), with the group operation given by (g, ϕ) · (g′, ϕ′) =
(ϕ′(g) · g′, ϕ · ϕ′).

It is often more practical to use a subgroup of Aut(G) in this construction,
and this is exactly what we do in Section 3, where we describe a key exchange
protocol that uses (as the platform) an extension of a group G by a cyclic group
of automorphisms.

Remark 1. One can also use this construction if G is not necessarily a group, but
just a semigroup, and/or consider endomorphisms (i.e., self-homomorphisms) of
G, not necessarily automorphisms. Then the result will be a semigroup; this is
what we use in our Section 6.

3 Key exchange protocol

In the simplest implementation of the construction described in our Section 2.1,
one can use just a cyclic subgroup (or a cyclic subsemigroup) of the group Aut(G)
(respectively, of the semigroup End(G) of endomorphisms) instead of the whole
group of automorphisms of G.

Thus, let G be a (semi)group. An element g ∈ G is chosen and made public as
well as an arbitrary automorphism ϕ ∈ Aut(G) (or an arbitrary endomorphism
ϕ ∈ End(G)). Bob chooses a private n ∈ N, while Alice chooses a private m ∈ N.
Both Alice and Bob are going to work with elements of the form (g, ϕr), where
g ∈ G, r ∈ N. Note that two elements of this form are multiplied as follows:
(g, ϕr) · (h, ϕs) = (ϕs(g) · h, ϕr+s).

1. Alice computes (g, ϕ)m = (ϕm−1(g) · · ·ϕ2(g) · ϕ(g) · g, ϕm) and sends only
the first component of this pair to Bob. Thus, she sends to Bob only the
element a = ϕm−1(g) · · ·ϕ2(g) · ϕ(g) · g of the (semi)group G.

2. Bob computes (g, ϕ)n = (ϕn−1(g) · · ·ϕ2(g) ·ϕ(g) ·g, ϕn) and sends only the
first component of this pair to Alice. Thus, he sends to Alice only the
element b = ϕn−1(g) · · ·ϕ2(g) · ϕ(g) · g of the (semi)group G.

3. Alice computes (b, x) · (a, ϕm) = (ϕm(b) · a, x · ϕm). Her key is now KA =
ϕm(b) ·a. Note that she does not actually “compute” x ·ϕm because she does
not know the automorphism x = ϕn; recall that it was not transmitted to
her. But she does not need it to compute KA.

4. Bob computes (a, y)·(b, ϕn) = (ϕn(a)·b, y·ϕn). His key is nowKB = ϕn(a)·b.
Again, Bob does not actually “compute” y · ϕn because he does not know
the automorphism y = ϕm.

5. Since (b, x) · (a, ϕm) = (a, y) · (b, ϕn) = (g, ϕ)m+n, we should have KA =
KB = K, the shared secret key.

Remark 2. Note that, in contrast with the “standard” Diffie-Hellman key ex-
change, correctness here is based on the equality hm · hn = hn · hm = hm+n

rather than on the equality (hm)n = (hn)m = hmn. In the “standard” Diffie-
Hellman set up, our trick would not work because, if the shared key K was just
the product of two openly transmitted elements, then anybody, including the
eavesdropper, could compute K.

4 Computational cost

From the look of transmitted elements in the protocol in Section 3, it may seem
that the parties have to compute a product of m (respectively, n) elements of
the (semi)group G. However, since the parties actually compute powers of an
element of G, they can use the “square-and-multiply” method, as in the standard
Diffie-Hellman protocol. Then there is a cost of applying an automorphism ϕ to
an element of G, and also of computing powers of ϕ. These costs depend, of
course, on a specific platform (semi)group that is used with our protocol and
on a specific automorphism that is used for a (semi)group extension. In our
first, “toy” example (Section 5 below), both applying an automorphism ϕ and
computing its powers amount to exponentiation of elements of G, which can be
done again by the “square-and-multiply” method. In our example in Section 6,
ϕ is a conjugation, so applying ϕ amounts to just two multiplications of elements
in G, while computing powers of ϕ amounts to exponentiation of two elements
of G (namely, of the conjugating element and of its inverse).

Thus, in either instantiation of our protocol considered in this paper, the cost
of computing (g, ϕ)n is O(log n), just as in the standard Diffie-Hellman protocol.
Computational cost analysis for the platform group suggested in Section 8 is
somewhat more delicate; we refer to Section 8.1 for more details.

5 “Toy example”: multiplicative Z∗
p

As one of the simplest instantiations of our protocol, we use here the multiplica-
tive group Z∗

p as the platform group G to illustrate what is going on. In selecting
a prime p, as well as private exponents m,n, one can follow the same guidelines
as in the “standard” Diffie-Hellman.

Selecting the (public) endomorphism ϕ of the group Z∗
p amounts to selecting

yet another integer k, so that for every h ∈ Z∗
p, one has ϕ(h) = hk. If k is

relatively prime to p− 1, then ϕ is actually an automorphism. Below we assume
that k > 1.

Then, for an element g ∈ Z∗
p, we have:

(g, ϕ)m = (ϕm−1(g) · · ·ϕ(g) · ϕ2(g) · g, ϕm).

We focus on the first component of the element on the right; easy computation

shows that it is equal to gk
m−1+...+k+1 = g

km−1
k−1 . Thus, if the adversary chooses

a “direct” attack, by trying to recover the private exponent m, he will have to

solve the discrete log problem twice: first to recover km−1
k−1 from g

km−1
k−1 , and then

to recover m from km. (Note that k is public since ϕ is public.)
On the other hand, the analog of what is called “the Diffie-Hellman problem”

would be to recover the shared keyK = g
km+n−1

k−1 from the triple (g, g
km−1
k−1 , g

kn−1
k−1).

Since g and k are public, this is equivalent to recovering gk
m+n

from the triple
(g, gk

m

, gk
n

), i.e., this is exactly the standard Diffie-Hellman problem.
Thus, the bottom line of this example is that the instantiation of our protocol

where the group G is Z∗
p, is not really different from the standard Diffie-Hellman

protocol. In the next section, we describe a more interesting instantiation, where
the (semi)group G is non-commutative.

6 Matrices over group rings and extensions by inner
automorphisms

Our exposition here follows [4]. To begin with, we note that the general protocol
in Section 3 can be used with any non-commutative group G if ϕ is selected to
be a non-trivial inner automorphism, i.e., conjugation by an element which is
not in the center of G. Furthermore, it can be used with any non-commutative
semigroup G as well, as long as G has some invertible elements; these can be
used to produce inner automorphisms. A typical example of such a semigroup
would be a semigroup of matrices over some ring.

In the paper [6], the authors have employed matrices over group rings of a
(small) symmetric group as platforms for the (standard) Diffie-Hellman-like key
exchange. In this section, we use these matrix semigroups again and consider
an extension of such a semigroup by an inner automorphism to get a platform
semigroup for the general protocol in Section 3.

Recall that a (semi)group ring R[S] of a (semi)group S over a commutative
ring R is the set of all formal sums

∑
gi∈S rigi, where ri ∈ R, and all but a finite

number of ri are zero.
The sum of two elements in R[G] is defined by∑

gi∈S

aigi

+

∑
gi∈S

bigi

 =
∑
gi∈S

(ai + bi)gi.

The multiplication of two elements in R[G] is defined by using distributivity.
As we have already pointed out, if a (semi)group G is non-commutative

and has non-central invertible elements, then it always has a non-identical inner
automorphism, i.e., conjugation by an element g ∈ G such that g−1hg ̸= h for
at least some h ∈ G.

Now let G be the semigroup of 3 × 3 matrices over the group ring Z7[A5],
where A5 is the alternating group on 5 elements. Here we use an extension of the
semigroup G by an inner automorphism φ

H
, which is conjugation by a matrix

H ∈ GL3(Z7[A5]). Thus, for any matrix M ∈ G and for any integer k ≥ 1, we
have

φ
H
(M) = H−1MH; φk

H
(M) = H−kMHk.

Now the general protocol from Section 3 is specialized in this case as follows.

1. Alice and Bob agree on public matrices M ∈ G and H ∈ GL3(Z7[A5]). Alice
selects a private positive integer m, and Bob selects a private positive integer
n.

2. Alice computes (M,φH)m = (H−m+1MHm−1 · · ·H−2MH2·H−1MH·M, φm
H
)

and sends only the first component of this pair to Bob. Thus, she sends
to Bob only the matrix

A = H−m+1MHm−1 · · ·H−2MH2 ·H−1MH ·M = H−m(HM)m.

3. Bob computes (M,φ
H
)n = (H−n+1MHn−1 · · ·H−2MH2 ·H−1MH ·M, φn

H
)

and sends only the first component of this pair to Alice. Thus, he sends
to Alice only the matrix

B = H−n+1MHn−1 · · ·H−2MH2 ·H−1MH ·M = H−n(HM)n.

4. Alice computes (B, x) · (A, φm
H
) = (φm

H
(B) · A, x · φm

H
). Her key is now

KAlice = φm
H
(B) ·A = H−(m+n)(HM)m+n. Note that she does not actually

“compute” x · φm
H

because she does not know the automorphism x = φn
H
;

recall that it was not transmitted to her. But she does not need it to compute
KAlice.

5. Bob computes (A, y) · (B, φn
H
) = (φn

H
(A) ·B, y ·φn

H
). His key is now KBob =

φn
H
(A) ·B. Again, Bob does not actually “compute” y · φn

H
because he does

not know the automorphism y = φm
H
.

6. Since (B, x) · (A, φm
H
) = (A, y) · (B, φn

H
) = (M, φ

H
)m+n, we should have

KAlice = KBob = K, the shared secret key.

7 Security assumptions

In this section, we address the question of security of the protocol described in
Section 6.

Recall that the shared secret key in the protocol of Section 6 is

K = φm
H
(B) ·A = φn

H
(A) ·B = H−(m+n)(HM)m+n.

Therefore, our security assumption here is that it is computationally hard to
retrieve the key K = H−(m+n)(HM)m+n from the quadruple
(H, M, H−m(HM)m, H−n(HM)n).

In particular, we have to take care that the matrices H and HM do not com-
mute because otherwise, K is just a product of H−m(HM)m and H−n(HM)n.

A weaker security assumption arises if an eavesdropper tries to recover a
private exponent from a transmission, i.e., to recover, say, m from H−m(HM)m.
A special case of this problem, where H = I, is the “discrete log” problem for
matrices over Z7[A5], namely: recover m from M and Mm.

As we have mentioned in the Introduction, the protocol in this section was
attacked in [9] and [14] by a “linear algebra attack”. This was possible partly
because of the special “compact” form of the above security assumptions, and
partly because the dimension of a linear representation of the platform semi-
group happens to be small enough in this case for a linear algebra attack to be
computationally feasible. In the following Section 8, we offer another platform
that does not have these vulnerabilities.

8 Nilpotent groups and p-groups

First we recall that a free group Fr on x1, . . . , xr is the set of reduced words in the
alphabet {x1, . . . , xr, x

−1
1 , . . . , x−1

r }. A reduced word is a word without subwords
xix

−1
i or x−1

i xi. The multiplication on this set is concatenation of two words,
followed by canceling out all subwords xix

−1
i and x−1

i xi until the word becomes
reduced.

It is a fact that every group that can be generated by r elements is the factor
group of Fr by an appropriate normal subgroup. We are now going to define two
special normal subgroups of Fr.

The normal subgroup F p
r is generated (as a group) by all elements of the

form gp, g ∈ Fr. In the factor group Fr/F
p
r every nontrivial element therefore

has order p (if p is a prime). More generally, if n ≥ 2 is an arbitrary integer,
then the order of any element of Fr/F

n
r divides n.

The other normal subgroup that we need is somewhat less straightforward
to define. Let [a, b] denote a−1b−1ab. Then, inductively, let [y1, . . . , yc+1] denote
[[y1, . . . , yc], yc+1]. For a group G, denote by γc(G) the (normal) subgroup of G
generated (as a group) by all elements of the form [y1, . . . , yc]. If γc+1(G) = {1},
we say that the group G is nilpotent of nilpotency class c.

The factor group Fr/γc+1(Fr) is called the free nilpotent group of nilpotency
class c. This group is infinite; however, the group we define in the following
subsection is finite, and we are going to recommend it as the platform for the
cryptographic scheme based on a semidirect product.

8.1 Free nilpotent p-group

The group G = Fr/F
p2

r · γc+1(Fr) is what we suggest to use as the platform for
the key exchange protocol in Section 3.

This group, being a nilpotent p-group, is finite. Its order depends on p, c, and
r. For efficiency reasons, it seems better to keep c and r fairly small (in particular,
we suggest c = 2 or 3), while p should be large enough to make the dimension
of linear representations of G so large that a linear algebra attack would be
infeasible. As we have mentioned in the Introduction, a faithful representation

of a finite p-group, with at least one element of order pn, as a group of matrices
over a finite field of characteristic p is of dimension at least 1 + pn−1 [5], so in
our case it is of dimension at least 1 + p. Thus, if p is, say, a 100-bit number, a
linear algebra attack is already infeasible.

At the same time, we want computation in the group G to be efficient. Also,
we want transmitted elements to be in some kind of standard form, usually called
a normal form. Here is how a normal form looks like if nilpotency class c = 2:

xα1
1 · · ·xαi

i · · ·xαr
r [x1, x2]

β1,2 · · · [xi, xj]
βi,j · · · [xr−1, xr]

βr−1,r ,

where αi and βi,j are integers and in every [xi, xj] above one has i < j. Dif-
ferent collections of αi and βi,j produce different elements of G as long as

0 ≤ αi, βi,j < p2, so G in this case has at least p2r+r(r−1) = pr
2+r elements,

which is a large number even if r is fairly small. At the same time, group opera-
tions (i.e., multiplication and inversion) in G are quite efficient. Indeed, multiply-
ing two elements in the above form essentially amounts to re-writing a product

xα1
1 · · ·xαr

r ·xα′
1

1 · · ·xα′
r

r in the normal form. This is because commutators [xi, xj]
commute with any element of G (since c = 2), so collecting all [xi, xj] in the
right place takes (almost) linear time in the length of an input. Now re-writing
a product of powers of xi in the normal form is not too hard either because
[xa

i , x
b
j] = [xi, xj]

ab in the group G (again, since c = 2). Thus, re-writing will
take at most quadratic time in the length of an input.

Applying an endomorphism (i.e., a self-homomorphism) ϕ given as a map
ϕ(xi) = yi on the generators is efficient, too. This is due to the fact that in
any group G of nilpotency class 2, one has: (1) ab = ba if either a or b (or
both) belong to γ2(G); (2) [ab, c] = [a, c][b, c] and [a, bc] = [a, b][a, c] for any

a, b, c ∈ G; (3) (ab)n = anbn[b, a]
n(n−1)

2 for any a, b ∈ G. Using these identities,
one can reduce ϕ(g) to the normal form in at most quadratic time in the length
of g ∈ G, provided g itself was in the normal form.

The group G has another property useful for our purposes. We note that the
subgroup F p2

r ·γc+1(Fr) of Fr is, in fact, fully invariant, i.e., is invariant under any
endomorphism of Fr. This implies that the group G has a lot of endomorphisms
because any map on the generators of G can be extended (by the homomorphic
property) to an endomorphism of G. Thus, if G has r generators and m elements
altogether, then it has mr endomorphisms. Even if r is very small (say, r = 3),

this number is huge because, as we have just seen, G has at least pr
2+r elements,

so with a 100-bit p, we are going to have at least 23600 endomorphisms. Of course,
we want our endomorphism ϕ not to have short cycles (i.e., if ϕm = ϕn, then
|m − n| has to be quite large). This is easier to guarantee if ϕ is actually an
automorphism because then we can sample from automorphisms having a large
order, and these correspond to matrices from GLr(Zp2) that have large order.
Sampling matrices of large order from that group is not completely trivial, but we
leave this outside of the scope of this survey. Here we just mention that for most
automorphisms of G, relevant security assumptions will not have a compact form
like that in Section 7 because a product of the form ϕm−1(g) · · ·ϕ2(g) · ϕ(g) · g
(see the general protocol in our Section 3) typically does not simplify much.

References

1. I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux, Key agreement, the Algebraic
Eraser, and lightweight cryptography, Algebraic methods in cryptography, Contemp.
Math. Amer. Math. Soc. 418 (2006), 1–34.

2. W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions
on Information Theory IT-22 (1976), 644–654.

3. J. Ding, A. D. Miasnikov, and A. Ushakov, A linear attack on a key exchange protocol
using extensions of matrix semigroups, preprint. http://eprint.iacr.org/2015/018

4. M. Habeeb, D. Kahrobaei and V. Shpilrain, Public key exchange using semidirect
product of (semi)groups, in: ACNS 2013, Lecture Notes Comp. Sc. 7954 (2013),
475–486.

5. G. J. Janusz, Faithful representations of p-groups at characteristic p, J. Algebra. 15
(1970), 335–351.

6. D. Kahrobaei, C. Koupparis, V. Shpilrain, Public key exchange using matrices over
group rings, Groups, Complexity, Cryptology 5 (2013), 97–115.

7. D. Kahrobaei, H. Lam, V. Shpilrain, Public key exchange using extensions by endo-
morphisms and matrices over a Galois field, preprint.

8. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC-Press 1996.

9. A. G. Myasnikov and V. Romankov, A linear decomposition attack, Groups, Com-
plexity, Cryptology 7 (2015), 81–94.

10. A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Group-based cryptography,
Birkhäuser 2008.

11. A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Non-commutative cryptography
and complexity of group-theoretic problems, Amer. Math. Soc. Surveys and Mono-
graphs, 2011.

12. W. Nickel, Matrix representations for torsion-free nilpotent groups by deep thought,
J. Algebra. 300 (2006), 376–383.

13. S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee and C. Park, New public key cryptosys-
tem using finite non-abelian groups, in: Crypto 2001, Lecture Notes Comp. Sc. 2139
(2001), 470–485.

14. V. Romankov, Linear decomposition attack on public key exchange protocols using
semidirect products of (semi)groups, preprint. http://arxiv.org/abs/1501.01152

15. V. Shpilrain, Cryptanalysis of Stickel’s key exchange scheme, in: Computer Science
in Russia 2008, Lecture Notes Comp. Sc. 5010 (2008), 283-288.

16. E. Stickel, A New Method for Exchanging Secret Keys, in: Proc. of the Third Intern.
Conf. on Information Technology and Applications (ICITA 05). Contemp. Math. 2
(2005), IEEE Computer Society, 426–430.

17. L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Chapman
and Hall/CRC, 2008.

