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ABSTRACT: 
 
The MODIS (or Moderate Resolution Imaging Spectroradiometer) 250 m EVI dataset provides a valuable ongoing means of characterising 
and monitoring changes in land use and resource condition. However the multiple factors that influence a time series of greenness data 
make the data difficult to analyse and interpret. Without prior knowledge, underlying models for time series in a given remote sensing 
image are often heterogeneous. So while conventional time series analysis methods such as wavelet transform and Fourier analysis may 
work well for part of the image, these models are either invalid or require to be substantially re-parameterised for other parts of the image. 
To overcome these challenges we propose a new approach to distil information from earth observation time series. The characteristic of a 
remote sensing time series are represented by a set of statistics (which we call coefficients) selected to correspond to the dynamics of a 
natural system. To ensure the coefficients are robust and generic, statistics are calculated independently by applying statistical models with 
less complexity on shorter segments within the time series. An International Standards Organization (ISO) Land Cover classification was 
generated for cropping regions in the Gwydir and Namoi catchments, in Australia. Areas identified in the classification as irrigated and rain 
fed cropping were analysed using a tailored time series analysis tool. The crop analysis tool identifies time series features such as the 
number and duration of fallow periods, crop timing, presence/absence of a crop during a year and the area under the curve (cumulative 
green biomass) for a specific growing season. This information is combined with paddock boundaries derived from Landsat imagery to 
provide detailed year-by-year insight into cropping practices in the Gwydir and Namoi catchments. 
 
 

0. INTRODUCTION 

1.1 Analysing Time Series of Remotely Sensed Imagery 

Many current time series analysis methods used in remote sensing 
imagery analysis reconstruct a time series with one or a set of 
functions from a particular function class. Such methods often 
come with strong model assumptions and arbitrary parameters 
which must be manually specified. For example, autoregressive-
moving average (ARMA) model assumes targeted time series are 
stationary (Emanuel 1982; Hamilton 1994), i.e., the behaviour 
(estimated parameters) of the time series do not shift dramatically 
along the time line. In many cases, such assumptions do not hold. 
In order to apply analysis methods such as wavelet transform 
(Percival and Walden 2006) and harmonic (Fourier) analysis 
(Roerink et al. 2000), a noisy and non-stationary remote sensing 
time series must be divided into a series of sub-time series in which 
model pre-requisites are satisfied. However, even with correctly 
pre-specified parameters, the temporal resolution of these sub-time 
series is often too limited for most conventional time series 
analysis. 

The proposed remote sensing time series analysis method adopts a 
new strategy, which is inspired by following observations: a time 
series can be divided into a sequence of sub-time series with 
shorter lengths. Characteristics of a time series can be represented 
by a set of generic statistics extracted from these sub-time series. 
More sophisticated statistical methods with these generic statistics 
as input variables are more appropriate and less restricted to solve 
target problems. The method does not attempt to solve specific 
problems directly through tailored time series analysis algorithms. 

Instead, solutions for specific remote sensing applications are 
obtained in two stages. In the first stage, a set of statistics are 
extracted from many shorter sub-time series within the original 
time series. These statistics are generic, i.e., they are independent of 
model assumptions. No parameters need to be specified, therefore 
no prior knowledge has been assumed in the process. Then in the 
second stage, remote sensing scientists pursuing more specific 
targets are able to use these statistics as input features for 
sophisticated statistical analysis. 

Advantages of the proposed method are: new types of statistics can 
be added to the record when new demands arise; statistics can be 
added to the record when new remote sensing imagery arrives; 
records can be stored in standard relational databases and relevant 
statistics can be retrieved using queries by various end users via 
web interfaces; relevant features for user specified targets can be 
obtained directly from the pre-calculated statistics or derived from 
them, re-usability and flexibility of the statistics are high; and 
statistics can be used as input features for sophisticated machine 
learning and statistical modelling of specific targets. The algorithm 
can be implemented in multi-threaded frameworks and be executed 
on high performance super computers or clustered servers. When 
the feature extraction procedure finishes, real-world problems can 
be solved by the proposed method, for example: clustering pixels 
in remote sensing imagery into homogeneous land cover classes, 
using various subsets of the coefficients; identifying bush fire 
events and the associated recovery period. 
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1.2 Time Series Analysis of Cropping Behaviour 

MODIS Vegetation Index (VI) products are designed to provide 
consistent spatial temporal comparisons of vegetation conditions 
that can be used to monitor photosynthetic activity (Heute et al, 
2002). Wardlow and Egbert (2005) demonstrated a scheme that 
uses MODIS 250m time series data to generate regional-scale crop 
mapping in the U.S. Central Great Plains. They concluded that the 
MODIS time series based approach was a cost and time-efficient 
means for large scale mapping. Jakubauskas et al (2001) applied 
harmonic analysis to VI time-series data to characterise seasonal 
changes to agricultural land use in southwest Kansas. They 
demonstrated the benefits of applying harmonic analysis to time-
series remote sensing data for identification of crop types and 
reducing data volumes. Potgeiter et al (2007) investigated 
multivariate methods to estimate crop area for wheat, barley, 
chickpea, and total winter cropped area for a cropping region in 
northeast Australia. They reported that all multi-temporal methods 
showed significant overall capability to estimate total winter crop 
area. Thankappan et al (2008) demonstrated the feasibility of using 
time-series MODIS VI data for determining winter crop area in 
north-western Victoria, Australia, and highlighted the broader 
applicability of harmonic analysis to monitor landscape change. 
Xiao et al (2005) developed a paddy rice mapping algorithm that 
uses a time series of three vegetation indices derived from MODIS 
data to map paddy rice fields in 13 provinces of southern China. 
Their results showed that the MODIS-based paddy rice mapping 
algorithm could be applied at large spatial scales to monitor paddy 
rice. MODIS VI time series data was used for this work based on 
results from studies reported above. 

0. METHODOLOGY 

MODIS Enhanced Vegetation Index (EVI) time-series data from 
2000 to 2007 was used for our methodology. The time series 
analysis scheme is proposed as a generic toolkit for remote sensing 
time series analysis. The aim is to provide a quantitative 
assessment of various aspects of ground phenomenon through a 
robust and generic modelling process, which in turn captures 
statistics related to characters of corresponding ground 
phenomenon. The proposed scheme consists of two stages. In the 
first stage, the time series data are passed through two filters to 
remove noisy elements in the MODIS time series. In the second 
stage, a set of 12 coefficients are calculated. 

2.1 Noise Removal 

The noise removal process consists of two stages. In the first step, 
time series data pass through a spectral filter which removes data 
points with abnormal values. Such points are defined as points 
which satisfy both the following conditions. 

 Have a very high or very low 
value , where u is the 
mean of the time series and σ is the standard deviation of 
the time series. 

 In the middle of a sudden rise (rate of rise above 95th 
percentile) and a sudden drop (rate of rise below 5th 
percentile) in the time series or vice versa 

After the first step, most of the noisy data points are filtered out. 
However, consecutive noisy data points presented in some time 

series could not be detected by the spectral filter. Studies (Green et 
al 1988) have found that the distribution of noise in remote sensing 
imagery display strong local patterns. Hence, a spatial filter is 
designed to detect noisy elements missed by the spectral filter. The 
spatial filter detect points satisfying one of following conditions 

 A large amount of noisy points (>75%) present among 
the neighbours 

 Have exceptional high (or low) values ( ) 
compared to those of neighbours. 

The values of thresholds are based on experimental results on 
training samples provided by remote sensing scientists. 

2.2 Time Series Coefficients 

Twelve time series coefficients were developed in collaboration 
with remote sensing scientists. The goal was to capture different 
aspects of the characteristics of a remote sensing time series in the 
coefficient set. Therefore, as shown in subsequent sections of this 
paper, the set provided sufficient information to distinguish most 
land cover and land use features in earth observation imagery. 

 
2.2.1 Mean: 

 

It is defined as the statistical mean of the time series, where  are 
the values of time series and N is the size of the time series. It 
measures the average level of the time series signals over the long 
term. 

2.2.2 Standard Deviation: 

 

It is defined as the statistical standard deviation of the time series. It 
measures the standard deviation of the time series signals over the 
long term. 

2.2.3 Flatness: 

Step 1: Sort the time series in ascending order such that 
 

Step 2: Conduct a one-dimensional nearest neighbour clustering on 
the sorted time series, i.e., find the index C to separate two clusters, 
such that 

 

 

Step 3: Define the threshold  where 
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and k is a predefined constant. 

Step 4: Find the set of sub-time series  satisfying 

 

Where  is a predefined minimum length. 

Step 5: Calculate the coefficients defined as the ratio of the sum of 
the lengths of such sub-series against the length of the whole time 
series 

 

2.2.4 Rate of Rise: 

Step 1: Define a set of sub time series 

 

Step 2: Calculate the rate of change . Let 
 are the first and the last elements in the 

sub time series respectively, then 

 

Step 3: Find the non-overlapping subset  with the 
maximum sum of  

 

Step 4: Calculate the coefficient by averaging the rate of change 
 in set P 

 

2.2.5 Rate of Drop: 

The procedure to calculate the coefficient rate of drop is similar to 
the procedure described in the above section. However, this time 
we are interested in the low end of the distribution of . 

Step 1: Define a set of sub time series 

 

Step 2: Calculate the rate of change . Let 
 are the first and the last elements in the 

sub time series respectably, then 

 

Step 3: Find the non-overlapping subset  with the minimum 
sum of (negative)  

 

Step 4: Calculate the coefficient by averaging the rate of change 
 in set P 

 

2.2.6 Global minimum: Step 1: Sort the time series in ascending 
order so that  

Step 2: Calculate the coefficient by averaging the first M elements 
of the sorted time series, M is a predefined constant (in our 
implementation, M takes the value of the number of calendar year 
in the time series) 

 

2.2.7 Average length of cycle: Step 1: Define a set of sub time 
series 

 

that satisfy the following conditions 

 

where  is the maximum,  is the first and  is the last 
element in sub time series .  is the threshold obtained from step 
3 for calculating Flatness. 

Step 2: Calculate the coefficient by averaging the length of the sub 
time series  in the set P 

 

2.2.8 Global maximum: Step 1: Sort the time series in ascending 
order so that  

Step 2: Calculate the coefficient by averaging the last M elements 
of the sorted time series, M is a predefined constant (in our 
implementation, M is the value of the number of calendar year in 
the time series) 

 

2.2.9 Ratio of the Global Maximum to the Annual Maximum 

The Annual maximum is calculated as the mean of the maximum 
in each calendar year of the time series. Then the coefficient is the 
ratio of annual maximum against the Global maximum. 

2.2.10 Mean timing of the maximum: Assuming that time series 
is observed in a regular base, calculate the coefficient by averaging 
the timing (index) of the maximum element in each calendar year 
of the time series 

2.2.11 Standard deviation in the timing of the maximum: 
Assuming that time series is observed in a regular base, calculate 
the coefficient as the standard deviation of the timing (index) of the 
maximum element in each calendar year of the time series 

2.2.12 Annual minimum: The Annual minimum is calculated as 
the mean of the minimum in each calendar year of the time series. 
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2.3 Study area: The study area covers the Gwydir and Namoi 
catchments in north western New South Wales, Australia. There is 
a mix of land uses including irrigated agriculture (predominantly 
cotton), broadacre agriculture (mixture of oil-seed, hard wheat, 
durum wheat, sorghum and pulses), grazing of native and improved 
pastures (beef, wool and lambs), and reserves of native vegetation 
(Scott et al. 2004). The native vegetation ranges for open woodland 
towards the western edge of study area, and becomes increasingly 
dense towards the eastern edge, with pockets of closed forest on the 
slopes of Mt Kaputar. Irrigation flows are supplied from dams on 
the Gwydir and Namoi rivers. There is also a strong rainfall 
gradient from east to west, with areas in the east receiving more, 
and more consistent rainfall (~700mm per annum), whereas areas 
in the west receive less rainfall and the rainfall is less reliable 
(~450mm per annum) (Scott et al. 2004). 

 

2.4 Generating a Classification using the Time Series 
Coefficients 

A combination of aerial survey data and field survey data were 
used to identify different land cover types within the Gwydir 
catchment. Over 1000 polygons were identified and assigned a 
land cover type. This dataset was then divided at random on a 2/3rd 
1/3rd basis into separate datasets. The 2/3rd portion was used to 
seed the classification algorithm and the 1/3rd was used as an 
independent dataset to evaluate the classification accuracy. The 
time series coefficients were classified using Definiens Developer 7 
™. The error assessment matrix for the classification is detailed in 
Error! Reference source not found.. The critical feature of 
Error! Reference source not found. is that the classification is 
effective in separating the cropping from the non cropping regions, 
with some limited confusion with improved pasture. The overall 
accuracy of classification was 69%. The irrigated and dry land crop 
classes were used to identify pixels that were dominated by these 
land cover types, and the time series of these pixels were 
interrogated using a tailored time series analysis module as 
described below. 
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Irrigated 
Crop 

138 2 0 0 0 0 0 0 0 0 140 99% 

Dryland 
Crop 

18 73 0 4 0 0 0 0 0 0 95 77% 

Improved 
Pasture 

0 4 81 30 0 0 0 0 0 0 115 70% 

Native 
Pasture 

0 0 0 65 0 0 0 45 0 0 110 59% 

Closed 
Forest 

0 0 0 0 3 2 0 0 0 0 5 60% 

Open 
Forest 

0 0 0 0 1 4 5 2 0 0 12 33% 

Woodlan
d 

0 3 0 10 0 1 5 20 0 0 39 13% 

Open 
Woodland 

0 1 3 25 0 0 3 20 0 2 54 37% 

Dam 0 0 0 0 0 0 0 0 15 0 15 100% 
Wetland 0 0 1 1 0 0 0 0 0 5 7  
Total 156 83 85 135 4 7 13 87 15 7 592  

Producers 
Accuracy 

88% 88% 95% 48% 75% 0% 38% 23% 100
% 

71%   

 Overall Accuracy 69%         

Table 1: Error Assessment Matrix for the MODIS Time Series Classification

2.5 Tailored Time Series Analysis Tools 

2.5.1 Number of peaks: We use an approach similar to the one 
proposed in section 2.2.3 to find the number of peaks in the time 
series. The time series is sorted and then a one-dimensional nearest 
neighbour clustering is conducted. We define a ‘growth period’ as 
a sub-time series containing points from the cluster with higher 
mean and the start and the end point below the flatness threshold. 
The number of such growth periods is the number of peaks. 

2.5.2 Length of fallow periods: The length of the fallow periods 
was calculated by applying the same algorithm to obtain the 
flatness coefficient (section 2.2.3). 

2.5.3 Number of fallow periods: We count the number of fallow 
periods using a modified version of the algorithm described in 
section 2.2.3. Instead of summing up the length of the identified 
sub-time series, the number of such sub-time series was counted. 
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2.5.4 Area under the curve: The area under the curve is 
approximated by the sum of the time series. The start point of 
growth period is corresponding to the end point of a previous 
fallow period. The end point of a growth period is the start point of 
the next fallow period. 

0. RESULTS 

Figure 1 illustrates how the tailored time-series analysis parameters 
can be used to visualise changes across the landscape. There are a 
number of key features shown in Figure 1, the most obvious is the 
difference in cumulative greenness between the irrigated 
(predominantly red) and non irrigated (greens and purples) portions 
of the two catchments.  The other feature is the gradient in 
cumulative greenness from east (right hand side) to west (left hand 
side) this gradient reflects the rainfall gradient across this region. 

 

Figure 1. Cumulative area under the Curve 

0 1
kilometre

Irrigated Cropping 
Cropped in 2001, 02, 04, 05 and 06 
Harvested in January-February 
Fallow for 50% of the time 
5 fallow events 

Rain fed Cropping 
Cropped in 2001, 03 04 and 06 
Double cropped in 2003 
Harvested in October-November 
Fallow for 60% of the time 
4 fallow events 

 

Figure 2. Cropping Practices Identified Using the Time Series 

Similarly other features such as the number of crop cycles, crop 
cycles have been double cropped or the percentage of fallow can be 
represented. Comparisons between these features provide an 
understanding of long-term changes in the cropping practices. 

0. DISCUSSION 

One of the main advantages of this approach is that it provides 
consistent nationwide data that can be used to characterise cropping 
practices. This enables within-catchment and between region 
comparisons of cropping practices, and, when combined with 
appropriate ancillary data could be used to compare productivity 
and water use patterns within and between regions. The data 
generated by the crop analysis module also provides a framework 
for extrapolating existing crop monitoring programs. The capacity 
to apply this module to archival data means that it can be used to 
provide a range of input parameters for assessing relationship 
between large scale shifts in climate and the response of cropping 
regions to existing and emerging climate variability. The cropping 
practices information generated by the crop analysis module can be 
combined with rainfall surfaces and evapotranspiration models to 
identify and characterise regions that are being subject to irrigation, 
and therefore be used to assess changes in irrigation practices as a 
response to altered water availability. This information could 
potentially be combined with the right ancillary data to monitor 
land use practices such as the use of green manure crops. The data 
can also be combined with object oriented analysis of 25 metre 
data to provide a field-by-field assessment of crop practices in 
areas where the fields are large enough to contain multiple MODIS 
pixels as shown in Figure 2. 

The 250 m resolution limits the application to large scale dry land 
cropping, not suitable in areas where fields are 300 m x 300 m or 
smaller, although there is some research into applications at this 
resolution (Xiao et al. 2007). An alternate solution is to characterise 
areas with small paddock sizes using Landsat. Another limitation is 
that because EVI only characterises greenness it does not capture 
non-green-fraction dynamics i.e. it does not measure and is not 
sensitive to the Non-Photosynthetic Vegetation (NPV) and bare 
soil fractions. To address this issue it is necessary to use multi-
spectral data that includes short wave infra red bands to 
characterise the bare soil-NPV fractions, both MODIS (500 m 
resolution) and Landsat (25 m resolution) can be used for this 
purpose. 

CONCLUSION 

We have proposed a novel statistical method for remote sensing 
time series analysis. Compared to conventional approaches, the 
proposed methods contain no assumptions about the nature of the 
time series. Therefore they provide a more robust basis for 
modelling remote sensing time series at national scale. The time 
series coefficients generated using this new technique proved 
suitable for generating a land cover classification of acceptable 
accuracy (69% over all accuracy). To show case the effectiveness 
of the new method, a toolkit tailored for mapping broadacre 
cropping practices was developed. This technique provided results 
that are consistent with rainfall gradients and irrigation regimes that 
are known to exist within the study area, and provide valuable 
insight into the cropping practices within the study area on a year 
by year basis. These results can also be combined with higher 
resolution GIS data to provide a field-by-field assessment of crop 
cycles, provided that the fields are of an appropriate size. 
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