增效剂 NIA 16388 对溴氰菊酯增效机理的研究

何运转1 李 梅2 何凤琴2 冯国蕾2 王荫长3

(1 河北农业大学昆虫化保系, 保定 071001;

- 2 中国科学院动物研究所, 北京 100080;
- 3南京农业大学植保系,南京 210095)

摘 要 以抗溴氰菊酯品系家蝇(Del-R)为试材,测定了NA 对溴氰菊酯的增效作用,结果表明:NA 对溴氰菊酯有极显著的增效作用。此后对NA 的增效机理进行了研究,实验证明:NA 可抑制家蝇体内羧酸酯酶的活性, $_{10}$ 值分别为 $_{2.14}(\pm 0.22) \times 10^{-7}$ mol·L⁻¹(α NA)和 $_{1.09}(\pm 0.39) \times 10^{-9}$ mol·L⁻¹(β -NA),NA 为 $_{4.20} \times 10^{-4}$ mol·L⁻¹时,其对多功能氧化酶的抑制率达 $_{7.63}$ 63(± 0.13)%;此外,NA 对神经靶标部位的AChE 也有抑制作用, $_{10}$ 值为 $_{2.37}(\pm 0.69) \times 10^{-5}$ mol·L⁻¹。几方面综合作用的结果,使其表现出明显的增效效果。

关键词 NA 16388; 增效机制; 溴氰菊酯

拟除虫菊酯类杀虫剂以其高效、低毒、低残留等特点倍受人们的青睐。 世界各地已广泛将 其应用于农、林、牧及卫生害虫的防治,且取得了极好的防治效果,达到预防疾病、确保增产的 目的,但随之而来的是,许多害虫已对其产生了抗药性,导致防治的失败。增效剂的使用是克服 抗性,延长现有农药使用寿命的重要手段之一。

NA 16388 (简称NA), 是一种不对称的有机磷酸酯类化合物, 国内外许多学者曾报道, NA 对各种类型的杀虫剂均有明显的增效作用[1~6], 但对其增效机制却说法不一。N ishimura 等[5,6]认为, NA 主要通过抑制水解代谢而起到增效作用; Pap^[7]、N icholson^[8]、M iyamoto^[9]则认为, NA 可能是通过对酯酶及氧化酶的抑制而增效的。这些结果都是通过生测比较间接推测而来, 并没有直接验证NA 对体内各种酶系的抑制作用。为确定NA 的使用范围, 更好地发挥其增效作用, 对NA 的增效机制有必要进行深入研究, 作者以Del-R 品系家蝇为试材, 对NA 的增效机理进行了探讨。

1 材料和方法

1.1 供试昆虫

家蝇敏感品系(SP), 引自美国 Texas A &M 大学昆虫系 Plapp 教授实验室, 未接触过任何杀虫剂; 抗溴氰菊酯品系(Del-R), 1983 年采自使用法国罗索·优克福(Roussel-uclaf Group)公司产品 Kothrin 的养鸭场, 室内用溴氰菊酯进行筛选培育, 现抗性已达 10 万倍左右。

1.2 药剂

N A 16388, 纯度为 90% (中国科学院上海昆虫所泰兴实验厂提供); 增效磷(SV $_1$), 室内进行重蒸, 含量大于 95% (山东乐陵农药厂提供); 溴氰菊酯(deltam ethrin), 纯度为 99% (法国罗索·优克福公司产品)。

1.3 试剂

α-和 β -乙酸萘酯 (α·NA, β -NA) (北京试剂厂出品); α-和 β -萘酚,分析纯 (北京试剂厂出品); 对硝基苯甲醚 (N TAN),室内进行重蒸 (北京化工厂产品); 对硝基苯酚 (N TPH),重结晶 (北京理工大学宏宇化工公司产品); 碘化硫代乙酰胆碱 (A TCh),含量 99% (ROTH 公司产品); 5, 5 -二硫基-2, 2-二硝基苯甲酸 (D TNB) (Fluka 公司产品); 辅酶 II (NADPH),含量大于98% (Sigma 公司产品); 固兰 RR 盐(Fluka 公司产品); 十二烷基硫酸钠 (SDS) (M erck 公司产品); 水杨酸毒扁豆碱 (eserine) (W ellcome Foundation L td 产品); 三氯甲烷 N aOH、N a2H PO 4, N aH 2PO 4 等试剂均为市售分析纯。

1.4 增效试验

用 $0.93~\mu$ L 的点滴管,将一定浓度的增效剂(用丙酮稀释)点于羽化后 4~5d 的雌蝇腹部,待 1~h 后,再进行杀虫剂的毒力测定。24~h 后,检查死亡率,在计算机上用 polo 程序 1.01 求出 1.01 1.

SR = LD 50 (杀虫剂) /LD 50 (杀虫剂+ 增效剂)

1.5 NA 对羧酸酯酶的抑制作用

- 1.5.1 酶源制备 取羽化后 4 d 的雌蝇 30 头, 加入 $30\,\mathrm{mL}$ (0. $04\,\mathrm{mol}\cdot\mathrm{L}^{-1}$, pH 7. 0) 磷酸缓冲液, 在电动匀浆器上匀浆($800\,\mathrm{r}\cdot\mathrm{m}\,\mathrm{in}^{-1}$, $8\,\mathrm{red}$)。匀浆液用 2 层尼龙纱过滤, 将滤液在 $4000\,\mathrm{r}\cdot\mathrm{m}\,\mathrm{in}^{-1}$ 转速下, 离心 $20\,\mathrm{m}\,\mathrm{in}$,取上清液, 稀释 $10\,\mathrm{G}$ 作为酶源。以上操作均在冰浴上进行。
- 1.5.2 测定方法 参照 A speren[11] 方法并加以改进, 详细描述见文献[12]。

1.6 NIA 对乙酰胆碱酯酶(AChE)活性的抑制作用

- 1.6.1 酶源制备 取羽化后 $4\sim5$ d 雌蝇若干头, 放入特制的铁笼中, 于- 20 低温冰柜中, 速冻 $30\,\mathrm{m}$ in, 取出用力摇动, 使头部与体躯分离, 然后取 25 个蝇头, 加入 $5\,\mathrm{mL}$ ($0.1\,\mathrm{mol}\cdot\mathrm{L}^{-1}$, pH 8 0) 磷酸缓冲液, 匀浆, 在 $4000\,\mathrm{r}\cdot\mathrm{m}$ in $^{-1}$ 速度下, 离心 $20\,\mathrm{m}$ in, 取上清液作为酶源。
- 1.6.2 测定方法 参照 Ellm an [13] 方法, 但用 96 孔微量滴板测定, 详细描述见文献[12]。

1.7 NIA 对多功能氧化酶(MFO)的抑制作用

- 1.7.1 酶源制备 取羽化后 5d 雌蝇 600° 800 头, 放入特制铁笼中, 于- 20 低温冰柜中冷冻 3 h。取出用力摇晃, 使腹部与体躯分离。挑出 390 头雌蝇腹部, 用 $0.15 \,\mathrm{mol} \cdot \mathrm{L}^{-1} \,\mathrm{KC1}$ 清洗,以便将腹部内含物排除出去, 然后加入 $26 \,\mathrm{mL} \,\mathrm{Tris}$ +HC1 缓冲液 $(0.1 \,\mathrm{mol} \cdot \mathrm{L}^{-1}, \mathrm{pH}7.8)$,在玻璃电动匀浆器上匀浆 $(800 \,\mathrm{r} \cdot \mathrm{min}^{-1}, 8 \,\mathrm{neck})$ 。用尼龙纱过滤, 将滤液在 $10000 \,\mathrm{r} \cdot \mathrm{min}^{-1}$ 速度下, 离心 $20 \,\mathrm{min}$,取上清液做为酶源, 以上操作均在冰浴上进行。
- 1.7.2 测定方法 参照袁家硅[14]方法,略有改进,详细描述见文献[12]。

1.8 蛋白质含量测定

按Bradford^[15]方法进行。

2 结果与分析

2.1 增效实验

增效剂对溴氰菊酯的增效作用见表 1。

表 1 N A、SV 1 对溴氰菊酯的增效作用

Table 1 Synergism of N A and SV 1 to daltemethrin in su sceptible and resistant houseflies

	+前 たた 文川	传田冲 麻(w.).*	溴氰菊酯 deltam ethrin			
品系	增效剂	使用浓度(%)*	LD 50 值/µg .头- 1	R/S	增效比	
Strains	Synergist	Concentration (%)	LD 50 阻/ μg・大	К/З	SR	
SP	-	-	2.14×10^{-4}	-	-	
SP	NΑ	1. 00×10^{-4}	1. 13×10^{-4}	-	1. 81	
	SV 1	1. 00×10^{-3}	$3\ 23 \times 10^{-5}$	-	6 63	
	-	-	21. 46	100280.00	-	
Del- R	NΑ	1. 00×10^{-3}	0 10	467. 29	214 60	
	SV 1	0 05	0 52	2429.90	41. 27	

注: * 所使用浓度, 均不引起家蝇死亡。

Note: *The concentration of synergists didn't lead to death of houseflies

2.2 NIA 对家蝇羧酸酯酶活性的抑制

在离体条件下, 家蝇羧酸酯酶活性及N A 对该酶的影响见表 2、图 1。

表 2 家蝇羧酸酯酶活性及NA 的抑制中浓度

Table 2 CarE activities and Iso of N A to CarE in Del-R houseflies

☆ ₩π	SP	Del - R			
底物 Substrate	酶活/ nmol·mg ⁻¹ ·min ⁻¹	酶活/ nmol·mg ⁻¹ ·min ⁻¹	R/S	Ŀo∕mol·L¹¹	
αNA	46.96(±2 20)	113 14(±3 26)	2.41	2 14(±0 22) × 10 ⁻⁷	
βNA	27.73(±1.91)	57. 44(±0 37)	2.07	1. $09(\pm 0.39) \times 10^{-9}$	

由表 2 可知, 在Del-R 品系家蝇中, 羧酸酯酶活性明显高于敏感品系, 分别为敏感系的 2.41 倍(α NA)和 2.07 倍(β NA), 这是该品系对溴氰菊酯产生抗性的原因之一; 图 1 表明 N A 对Del-R 品系家蝇的羧酸酯酶有明显的抑制作用, 且底物不同, 酶对N A 的敏感程度 也存在很大差异。当以 β NA 做底物时, N A 对酶活的抑制作用更为明显。

2.3 NIA 对家蝇 AChE 活性的抑制

在离体条件下,N A 对Del- R 品系家蝇头部 A ChE 的抑制作用十分显著(见图 2), 其抑制中浓度为 $2.37(\pm 0.69) \times 10^{-5} \text{mol} \cdot \text{L}^{-1}$ 。

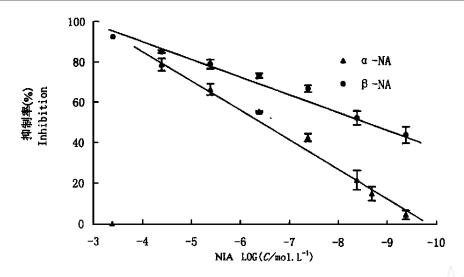


图 1 N A 对家蝇羧酸酯酶活性的抑制作用

Fig. 1 Effect of N A on carboxylesterase activity

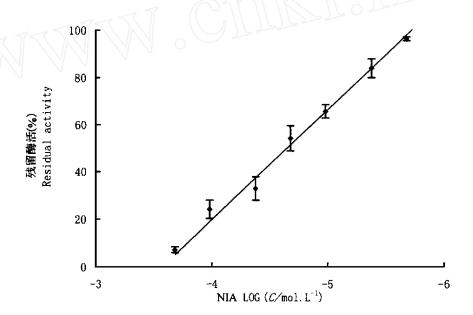


图 2 N A 对家蝇乙酰胆碱酯酶活性的影响(离体)

Fig. 2 Inhibition of N A on AChE activity (in vitro)

2.4 NIA 对家蝇多功能氧化酶的抑制

通过O-脱烷基反应, 测定了N IA 对多功能氧化酶的影响, 结果见表 3。

Table 5 WITO activities and minibilities of N P On WITO								
AL TER	SP	Del- R						
处理	酶活/	 酶活/	R/S	抑制率(%)				
T reatment	nmol·mg ⁻¹ ·min ⁻¹	nmol·mg ⁻¹ ·min ⁻¹		Inhibition (%)				
对照CK	$0.034(\pm 0.001)$	$0.117(\pm 0.025)$	3.44					
NA								
$4.20 \times 10^{-6} \text{mol} \cdot \text{L}^{-1}$		$0.091(\pm 0.017)$		22 22(±1.95)				
NA								
$4.20 \times 10^{-4} \text{mol} \cdot \text{L}^{-1}$		$0.025(\pm 0.005)$		$78.63(\pm 0.13)$				

表 3 多功能氧化酶(M FO)活性及N A 的抑制作用
Table 3 M FO activities and inhibition of N B on M FO

由表 3 可知在Del- R 品系家蝇中, 多功能氧化酶活性为敏感品系的 3.44 倍, 这也是产生抗性的因素之一; 另外Del- R 品系家蝇的多功能氧化酶对N A 也较为敏感, 当N A 浓度为 4.20×10^{-4} mol·L ¹时, 其抑制率达到 78.63%。

3 讨论

众所周知, 家蝇是一种世界性卫生害虫, 可传播多种病菌, 直接威胁着人类的健康及畜牧业的生产, 故对其进行控制已成为全球卫生领域的一项主题。由于家蝇对环境有高度的适应能力、繁殖力强、生活史短, 故用药频繁, 因而其对杀虫剂易产生抗性。到目前为止, 世界各地的家蝇对拟除虫菊酯的抗性已非常普遍, 如 1994 年匈牙利家蝇对生物苄呋菊酯 SK-80. 溴氰菊酯的抗性分别为 11904 倍、4317 倍和 1713 倍[16]。1985 年, 我国家蝇对溴氰菊酯的抗性有的高达 2265 倍[17]。为了寻找对抗性家蝇的治理方法, 我们用室内培育的Del-R品系家蝇为材料, 对NA进行了增效试验, 结果表明, NA对溴氰菊酯的增效比高达 214.60, 较 SV 1 的增效比值高 5.2 倍。另据 Pap [7]、N iocholson [8] 报道, 在拟除虫菊酯抗性品系家蝇中, NA对拟除虫菊酯的增效作用明显高于 PBO。由此可见, 在拟除虫菊酯抗性家蝇治理中, NA具有广阔的应用前景。

对抗性昆虫而言, 同一种昆虫对不同类型的杀虫剂 不同昆虫对同一种杀虫剂产生抗性的 机理各异, 同一种昆虫, 不同的发育阶段, 不同的抗性水平, 其抗性机制也各不相同, 故在用 N A 做增效实验时, 可导致人们在推测其增效机理时产生差异。例如: N A 对由于羧酸酯酶活性提高而引起抗性的昆虫增效时, 人们可能认为, N A 是羧酸酯酶的抑制剂 $^{[5,18]}$ 。依此类推, 有人则认为, N A 是多功能氧化酶的抑制剂, 或两者兼而有之 $^{[7,8]}$ 。我们通过实验证明: N A 对溴氰菊酯的增效作用是多靶标位点综合作用的结果, N A 可抑制体内解毒酶系的活性, 其对羧酸酯酶的抑制程度明显高于对多功能氧化酶的抑制, 即便对羧酸酯酶而言, 当底物不同时, 其抑制作用也存在明显的差异, 其中以 β N A 羧酸酯酶对 N A 更为敏感。另外 N A 还可作用于神经靶标部位的乙酰胆碱酯酶(A ChE)。几方面的综合作用, 使得 N A 在 Del-R 品系家蝇中, 对溴氰菊酯表现出极强的增效作用。另据侯能俊 $^{[19]}$ 报道, N A 还可通过加强杀虫剂在虫体表面的穿透能力而起到增效作用。由此我们认为, N A 是一个多功能的增效剂。

参考文献

- 1 姜志宽, 郑剑, 钱万红等. 卫生杀虫药械, 1995, 1(1): 37~39
- 2 李国清, 王荫长 华东昆虫学报, 1997, 6(2): 90~95
- 3 王荫长, 李显春. 卫生杀虫药械, 1997, 3(1): 39~40
- 4 李国清, 李显春, 王荫长等. 南京农业大学学报, 1996, 19(增刊): 132~137
- 5 Nishimura K., Okajima N., Fujita T. et al. Pestic Biochem. Physiol., 1982, 18: 341~350
- 6 Nishimura K. Pestic Sci , 1992, 34: 249~ 255
- 7 Pap L., Toth A.. Pestic Sci, 1995, 45: 335~ 349
- 8 Nicholson R. A., Sawicki R. M.. Pestic Sci., 1982, 13: 357~ 366
- 9 Miyamoto J., Suzuki T. Pestic Biochem. Physiol, 1973, 3: 30~41
- 10 Russell N. E., Robertson J. L., Russell R. M., Bull Entomol Soc Am., 1977, 23: 257
- 11 A speren K. J. Ins Physiol, 1962, 8: 401~ 416
- 12 何运转, 李梅, 冯国蕾等. 南京农业大学学报, 1999, 22(2): 32~36
- 13 Ellman G. L., Courtney K. D., Andres V. et al. Biochem. Phamac, 1961, 7:88~95
- 14 袁家硅, 孙耘芹, 冯国蕾 害虫抗药性及其防治论文汇编, 陕西杨陵: 天则出版社, 1992: 20~24
- 15 Bradford M. M. . A nal B iochem. , 1976, 72: 248~ 254
- 16 Pap L. . Pestic Sci , 1994, 40: 245~ 258
- 17 唐振华. 昆虫抗药性及其治理, 北京: 农业出版社, 1993: 43
- 18 陈巧云, 侯能俊, 邓启荣等. 核农学报, 1991, 5(3): 173~ 177
- 19 侯能俊, 邓启荣, 林国芳等. 核农学报, 1990, 4(4): 243~ 246

Synergistic Mechan ism of NIA 16388 to Deltamethr in in Deltamethr in -Resistant Housefly (Musca domestica)

He Yunzhuan¹ LiMei² He Fengqin² Feng Guolei² Wang Yinchang³

(¹Department of Plant Protection, Agricultural University of Hebei, Baoding 071001;

² Institute of Zoology, Acadam ia Sinica, Beijing 100080; ³Department of Plant Protection,
Agricultural University of Nanjing, Nanjing 210095)

Abstract Synergism of N A 16388 (N A) to deltamethrin in housefly of Del-R strain was studied Result of bioassay showed that synergistic rate of N A to deltamethrin was 214 60. The synergistic mechanism of N A was also researched. The results suggested that: (1) N A inhibited Carboxylesterase (CarE) activities significantly and I_{50} value to CarE were 2. $14(\pm 0.22) \times 10^{-7} \, \text{mol} \cdot \text{L}^{-1}(\alpha \text{NA})$ and 1. $09(\pm 0.39) \times 10^{-9} \, \text{mol} \cdot \text{L}^{-1}(\beta \text{NA})$, respectively; (2) The inhibition of M FO activity by N A was 78. $63(\pm 0.13)\%$ when N A concentration was $4.20 \times 10^{-4} \, \text{mol} \cdot \text{L}^{-1}$; (3) N A could inhibit AChE activity and I_{50} value was $2.37(\pm 0.69) \times 10^{-5} \, \text{mol} \cdot \text{L}^{-1}$. A coordingly N A is considered a muti-target synergistic agent

Key words N A 16388; Synergistic mechanism; Deltamethrin