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Beyond Levels and Growth
Estimating Teacher Value-Added and its
Persistence

Josh Kinsler

A B S T R A C T

The levels and growth achievement functions make extreme and diametri-
cally opposed assumptions about the rate at which teacher inputs persist. I
first show that if these assumptions are incorrect, teacher value-added esti-
mates can be significantly biased. I then develop a tractable, cumulative
model of student achievement that allows for the joint estimation of unob-
served teacher quality and its persistence. The model can accommodate
varying persistence rates, student heterogeneity, and time-varying teacher
attributes. I implement the proposed methodology using schooling data
from North Carolina, and find that only a third of the contemporaneous
teacher effect survives into the next grade.

I. Introduction

Teacher quality is widely believed to be the most important school-
level input into the production of student achievement. However, quantifying the
amount of variation in student test scores that can be attributed to differing teacher
assignments is difficult since teacher ability is largely unobservable.1 To overcome
this hurdle, researchers often treat teacher quality as an unobserved parameter to be
estimated directly using student test-score variation across classrooms and over
time.2 This approach, widely known as value-added modeling, has two primary
benefits. First, value-added models provide an objective, teacher-specific measure of

1. Observable teacher characteristics, such as education, experience, and licensure, have been shown to
have limited predictive power for student outcomes. See Hanushek and Rivkin (2006) for a review of this
literature.
2. Sanders, Saxton, and Horn (1997) were the first to develop and employ a value-added framework.
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effectiveness that many favor over subjective measures such as principal or peer
evaluations. Second, value-added models allow researchers to trace out the entire
distribution of teacher quality, which is useful for determining how much of the
gaps in student outcomes can be attributed to variable school inputs. Although the
benefits of the value-added approach are clear, considerable debate remains about
whether these models can consistently estimate teacher effectiveness.

The controversy surrounding the use of value-added models is in part related to
the fact that there is no benchmark methodology. Value-added modeling is a broad
term that encompasses a variety of approaches that share one common feature, mea-
suring the effectiveness of individual teachers using student test scores.3 However,
the various approaches within the broader value-added framework often make con-
flicting assumptions regarding the underlying achievement production function. In
particular, assumptions about how teacher inputs persist over time are often dia-
metrically opposed. As an example, three of the most widely cited papers that es-
timate the distribution of teacher quality make drastically different assumptions re-
garding the persistence of teacher inputs. Rockoff (2004) assumes that teacher inputs
do not persist at all, identifying teacher effectiveness using variation in the level of
student test scores. Hanushek, Kain, and Rivkin (2005) make the exact opposite
assumption, perfect persistence from one year to the next, when they use variation
in test-score growth to estimate contemporaneous teacher effectiveness. Finally, Aa-
ronson, Barrow, and Sander (2007) take a middle ground and assume that teacher
inputs, along with all other inputs including student ability, persist at a constant
geometric rate.

Despite the significant differences in approach, the basic findings across all three
aforementioned studies are quite similar. A one standard deviation increase in teacher
quality yields approximately 10 percent of a standard deviation increase in math test
scores and slightly smaller effects in reading. The obvious question given the sim-
ilarity in results across the various specifications is whether the assumptions about
teacher persistence actually matter. Using theoretical and empirical examples I show
that incorrect persistence assumptions can lead to significant biases in estimates of
individual teacher value-added and dispersion in teacher value-added. The magnitude
of the biases depend on how students and teachers are sorted across schools and
classrooms and how poor the initial persistence assumptions are. In particular, the
bias in estimates of teacher value-added tend be large when the true teacher value-
added experienced by each student is highly correlated across grades, either posi-
tively or negatively. Additionally, the growth model will tend to perform well when
the true persistence rate is close to one, while the levels model will tend to perform
well when the true persistence rate is close to zero.

Uncertainty about the actual rate at which teacher inputs persist has led to a
number of recent papers that estimate the depreciation rate directly. In a lag score
model, Jacob, Lefgren, and Sims (2010) and Kane and Staiger (2008) show that
using either an indicator or the actual measure of the lagged teacher quality as an
instrument for the lagged test score yields an estimate of teacher persistence. Across
the two papers, estimates of teacher persistence range between 0.15 and 0.5. How-

3. Throughout the paper I will use the terms teacher value-added, teacher effectiveness, and teacher quality
interchangeably.
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ever, neither paper estimates the decay rate jointly with teacher quality, which can
lead to potential biases in both parameters. Lockwood et al. (2007) jointly estimate
teacher quality and the rate of persistence using Bayesian MCMC techniques. Es-
timated decay rates are quite small; however, the model does not account for any
observed or unobserved variation in student quality. Finally, Rothstein (2010) esti-
mates a cumulative model that allows teachers to have separate contemporaneous
and future effects.4 The rate of persistence, estimated between 0.3 and 0.5, can be
recovered in a second step by comparing the average relationship between the con-
temporaneous and future effect for each teacher. However, computational challenges
severely limit both the estimation sample and production technology employed.

In this paper, I add to the above literature by developing and estimating a simple,
but comprehensive, cumulative production technology that jointly estimates teacher
quality and persistence. The proposed achievement model is flexible along many
dimensions. Individual teacher quality is treated as a time-invariant unobserved pa-
rameter to be estimated; however, teacher effectiveness can vary over time as teach-
ers accumulate experience and additional schooling. The rate at which teacher inputs
persist can be geometric, or can vary across grades or over time in a more flexible
fashion. The model can be estimated in either achievement levels or growth and can
accommodate unobserved student heterogeneity in ability in either context. Contem-
poraneous and lagged observable student and classroom attributes also can be in-
corporated.

Despite the potentially large number of teacher and student parameters, the model
can be computed in a timely manner. Rather than estimate all the parameters in one
step, I take an iterative approach that toggles between estimating teacher persistence,
teacher heterogeneity, student heterogeneity, and any remaining parameters.5 Each
iteration is extremely fast since I use the first-order conditions generated from min-
imizing the sum of the squared prediction errors to estimate the teacher and student
heterogeneity directly. The iterative procedure continues until the parameters con-
verge, at which point the minimum of the least squares problem has been achieved.
With a sample of over 600,000 students and 30,000 teachers I can estimate the
baseline model in less than 15 minutes.

Using student data from North Carolina’s elementary schools I implement the
proposed cumulative model and find that teacher value-added decays quickly, at rates
approximately equal to 0.35 for both math and reading. A one standard deviation
increase in teacher quality is equivalent to 24 percent of a standard deviation in
math test scores and 14 percent of a standard deviation in reading test score. These
results are consistent with previous evidence regarding the magnitude of teacher
value-added and the persistence of teacher inputs. Using the levels or growth frame-
works instead results in biases in the variance of teacher value-added on the order
of 4 percent and 7 percent respectively for math test-score outcomes, and smaller
biases in reading outcomes. However, the somewhat small biases in the variance of
overall teacher value-added masks larger within-grade biases that are on the order

4. Carrell and West (2010) take a similar approach when measuring the short- and long-term effectiveness
of professors at the college level. In contrast to the findings from Rothstein (2010) and Jacob, Lefgren,
and Sims (2010) at the elementary school levels, they find that the short- and long-term effects are actually
negatively correlated.
5. This approach is similar in spirit to the methodology outlined in Arcidiacono et al. (Forthcoming).
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of 15 percent. The individual estimates of teacher quality from the cumulative model
and the levels model are very highly correlated, while the growth model estimates
individual teacher value-added less accurately. In general, the similarities in teacher
value-added across the cumulative, levels, and growth models in the North Carolina
sample reflect the fact that for the average student, teacher value-added is only
marginally correlated across grades.

The remainder of the paper is as follows. The pitfalls of the levels and growth
frameworks are illustrated in Section II. Section III outlines a cumulative production
function that allows for flexible persistence patterns, discusses identification of the
key parameters, and provides an estimation methodology. Section IV introduces the
North Carolina student data used to estimate the cumulative production function.
Section V contains analysis of the model results and Section VI concludes.

II. Persistence Assumptions and Estimates of Teacher
Quality

The most common value-added models of teacher quality assume
that teacher effects either persist forever or not at all. The motivation for making
these extreme assumptions is typically model tractability. Consider the following
two achievement equations:

A = α + ∑ I T + ε(1) ijg i ijg jg ijg
∈j Jg

A −A = ∑ I T + e(2) ijg ij ′g ′ ijg jg ijg
∈j Jg

where is the achievement outcome for student matched with teacher in gradeA i jijg

. is the set of all grade teachers and is an indicator function that takes ong J g Ig ijg

the value of one if student is matched with teacher in grade . is the value-i j g Tjg

added of teacher in grade and is the grade-invariant ability level of studentj g αi

.i
Both Equations 1 and 2 allow for unobserved student ability to affect the level of

individual test scores. Equation 1 is a simplified version of the levels specification
employed in Rockoff (2004), which implicitly assumes that grade ’s outcome isg
entirely unaffected by teachers in previous grades. Equation 2 is a growth equation
that can be generated by first differencing two levels scores. However, in order for
only the contemporaneous teacher to enter in the equation, past teacher inputs must
persist perfectly. The key benefit to either of the extreme assumptions about teacher
persistence is that only one set of teacher effects enters into Equations (1) and (2),
making estimation relatively straightforward. However, as I show below, these ex-
treme assumptions can have significant consequences for both and .2ˆ ˆT σjg T

I start with a simple theoretical example that illustrates the types of biases that
arise in the levels and growth models when in fact teacher inputs persist at a par-
ticular rate . I follow this up with some simple Monte Carlo exercises to demon-δ
strate the size of the bias under various teacher and student sorting scenarios. In the
following sections, I do not separately investigate the lag-score model applied by
Aaronson, Barrow, and Sander (2007) since I view it as a special case of either the
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growth or levels framework. However, because the lag-score model is typically im-
plemented without controls for unobserved student heterogeneity, the coefficient on
the lag score is typically quite high, on the order of 0.8. This implies that past
teacher inputs also decay at a rate equal to 0.8. Thus, I suspect that the pattern of
biases in the lag-score framework are best approximated by the biases in the growth
model.

A. Theoretical Example

Assume that we observe three test-score outcomes for each of three different stu-
dents, denoted where indexes students and indexes grade or time. The threeA i gig

students are all members of the same school. The first test-score observation for
each student is not associated with any teacher and can be considered an unbiased
measure of a student’s unobserved ability. This assumption is useful since it ensures
that all the student and teacher parameters will be separately identified and is also
consistent with the data to be used in the empirical analysis. In the remaining two
grades, students are assigned to one of two teachers that are unique to each grade,
where is the th teacher in grade . Thus, there are four teachers in the school:T j gjg

, , , and . As an example, the set of outcomes for student 1 takes theT T T T12 22 13 23

following form:

A = α(3) 11 1

A = α + T(4) 12 1 12

A = α + T + δT(5) 13 1 13 12

In order for to be identified, students must switch classmates in Grade 3, gen-δ
erating variation in for one of the Grade 3 teachers. I assume that students 2 andTj2

3 are assigned teacher in Grade 2 and students 1 and 2 are assigned teacherT22

in Grade 3. The singleton student classes are matched with teachers andT T13 12

. All of the unobserved parameters, , , and are identified in this simpleT α δ T23 i jg

system. Since I have written the achievement outcomes without any measurement
error, it is possible to pin down exactly each of the unobserved parameters. The
question is what happens to the estimates of and when we assume that2ˆ ˆT σ δjg jg

equals either 0 or 1.
To derive the least squares solutions for when is assumed to equal 0, IT̂ δjg

simply differentiate the squared deviations and solve for the parameters as a function
of , the only observables in the model. I then substitute back in the true dataAig

generating process for to illustrate how the estimates differ from the true un-Aig

derlying parameters. In the levels case, , the least squares estimates of the fourδ = 0
teacher effects is given by

4δLT̂ = T − (T −T )12 12 12 2215

2δLT̂ = T + (T −T )22 22 12 2215

δLT̂ = T + (7T + 8T )13 13 12 2215
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δLT̂ = T + (T + 14T )23 23 12 2215

The first thing to notice is that unless equals zero all of the estimates of teacherδ
quality will be biased, even the Grade 2 teacher effects. The bias in the Grade 2
teacher effects arises because the unobserved student abilities adjust to account for
the unexplained variance in the third grade outcome. This in turn leads to bias in
all the teacher effect estimates. The teacher effects in second grade are always biased
toward the average effect, while the bias in the third grade teacher effects depend
on whether or not and are greater than zero. If the second grade teachersT T12 22

are “good,” then the estimated effects of the Grade 3 teachers will be biased upward
since they receive some credit for the lingering effects of the previous grade’s
teacher. The opposite result is true if the second grade teachers are “bad.” Thus,
teachers following excellent teachers will be unjustly rewarded while teachers fol-
lowing a string of poor teachers are unjustly penalized in a model that incorrectly
assumes no persistence.

Not only are the individual estimates of teacher quality biased, but the overall
distribution of teacher quality is also affected. Because the Grade 2 teacher effects
are always biased toward the average effect, will be biased toward zero. The2σ̂j2

bias in the estimated dispersion of the Grade 3 teacher effects is given by

24δ2 2 2σ̂ −σ = (T −T ) + 20δ(T −T )(T −T )(6) j3 j3 12 22 13 23 12 2250

The first term on the right hand side of the above expression is positive for any rate
of persistence. However, the second term can be either positive or negative depend-
ing on the correlation in teacher quality across time periods. In this simple example
the cross-grade correlations in teacher quality are weighted equally. However, with
more students and teachers, the weight given to each cross-grade correlation will
depend on how many students are associated with each teacher pair. Thus, depending
on how students are tracked through classes, the bias in could be either positive2σ̂j3

or negative. If the bias in the the variance of the third grade teacher effects is large
enough, it could swamp the bias in the estimate of teacher dispersion in second
grade, leading to an inconclusive overall bias in the variance of teacher quality.

Rather than assume , we could instead assume that and estimate aδ = 0 δ = 1
simple growth score model with two observations per student. In this case the biases
work quite differently. Because the student fixed effects are differenced out of the
model, there is nothing to cause bias in the Grade 2 teacher effects. As a result,

.6 However, the estimated Grade 3 teacher effects will be biased as a resultGT̂ = Tj2 j2

of the incorrect assumptions about the persistence of the Grade 2 teachers. In par-
ticular,

1GT̂ = T + (δ−1)(T + T )13 13 12 222

6. If we allowed for unobserved student heterogeneity in the growth of student test scores this result would
no longer hold.
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GT̂ = T + (δ−1)T23 23 22

Clearly if neither teacher effect is biased. Otherwise, both Grade 3 teacherδ = 1
effects will be biased in a direction that again depends on the quality of the Grade
2 teacher. In contrast to the levels model, following an excellent Grade 2 teacher
will bias downward the Grade 3 teacher effect since excess credit is given to the
previous teacher. Thus, the teachers that get unjustly rewarded in the levels model
are the same teachers who get unjustly punished in the growth framework.

The bias in the estimates of the Grade 3 teacher effects bleeds into the estimate
of the overall dispersion of teacher quality. The bias in the estimated variance of
Grade 3 teacher quality is given by

12 2 2 2σ̂ −σ = ((δ−1) (T −T ) + 4(δ−1)(T −T )(T −T ))(7) j3 j3 12 22 13 23 12 228

The first term inside the parentheses is always positive while the sign of the second
term will depend on the cross-grade covariances in teacher quality. Again, in a model
with more students and teachers, the weight given to the cross-grade teacher covar-
iance terms will depend on the number of students associated with each teacher pair.
If teacher ability is correlated across grades at the student level, the dispersion in
teacher quality in the growth framework will be understated since is negative.(δ−1)
This is the opposite of the bias in the levels framework.

The simple example above highlights a number of important issues regarding the
standard levels and growth models employed to evaluate teachers. First, when
teacher effects persist, the levels model yields biased estimates of all teacher effects,
including the initial teacher. Second, the bias in the estimated dispersion in teacher
quality varies significantly across grades, particularly in the levels framework. Fi-
nally, the bias in the individual estimates of teacher quality and overall dispersion
in teacher quality depend critically on how students and teachers are tracked across
grades. The next section illustrates this final point by examining empirically the
magnitude of the biases under various sorting scenarios.

B. Empirical Exercise

The purpose of this section is to illustrate the magnitude of the biases in the dis-
persion of teacher quality under various teacher and student sorting scenarios. I
expand the simple model from the previous section and generate a data set that is
representative of the type of schooling data available to researchers. I assume that
there are 25 schools in the sample and 5,000 students. For each student, a baseline
test-score measure is available, followed by three classroom test-score observations
associated with a particular grade, say Grades 3, 4, and 5. Within each school, there
are four teachers per grade, and each teacher is observed with 50 students. I continue
to assume that the achievement tests are perfect measures of student knowledge,
primarily to illustrate that any biases that emerge are strictly a result of model
misspecification.

Consistent with the previous section, I assume that the true underlying achieve-
ment production function is cumulative in teacher inputs. Past teacher inputs are
assumed to persist at a rate equal to 0.5. Moving the persistence rate closer to 0 or
1 will improve either the levels or growth model at the expense of the other. I
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assume that student ability is distributed and that teacher quality is distributedN(0,1)
.7 The distribution of teacher quality is identical across the three grades.N(0,0.0625)

The final and most important decision when generating the data is how to dis-
tribute students and teachers to schools and classrooms. As the previous section
highlights, the bias in the dispersion of teacher quality will depend to a large extent
on the cross-grade correlations in teacher quality at the student level. There are two
methods for generating cross-grade correlations in teacher quality: sorting of students
to teachers within schools, and sorting of teachers across schools. Within schools,
if individual students are consistently matched with either relatively high- or low-
ability teachers, then teacher quality will be positively correlated across grades. A
negative correlation would result if principals, in an attempt at fairness, assign a
relatively high-ability teacher one year followed by a relatively low-ability teacher
the next. Even if there exists no sorting within schools, teacher ability will correlated
across grades if teachers sort across schools based on ability. Regardless of the
source of the cross-grade correlation in teacher quality, the previous section suggests
that the estimated dispersion in teacher quality will be significantly impacted.8

Table 1 illustrates how the estimated dispersion in teacher quality from both the
levels and growth models are affected by varying amounts of cross-grade correlation
in teacher ability.9 Within each model type, levels, or growth, the first row contains
the estimates of teacher dispersion when there is no cross-grade correlation in teacher
quality, followed by three levels of positive and negative sorting.10 The results are
averages over 500 simulations where the underlying population of students and
teachers is held fixed, and only the sorting of students to teachers within schools
changes with each iteration.

The pattern of results is quite consistent with the predictions from the simple
theoretical exercise. The bias in the estimated variance of teacher quality varies
significantly across grades for all types of sorting, particularly in the levels frame-
work. In the growth model, the variance of third grade teacher quality is always
perfectly identified, regardless of how students and teachers are sorted. The direc-
tions of the bias in the levels and growth models is as expected. With no cross grade
correlation in teacher quality, the overall variance in teacher value-added is biased
downward in the levels framework and upward in the growth framework. These
biases are generated by the fact that past teachers are an omitted variable in the
contemporaneous outcomes. With negative sorting these patterns are exaggerated,
and with significant positive sorting these biases are flipped. With extreme levels of
positive (negative) sorting, the estimated variance of teacher value-added is biased
upward in the levels (growth) model by 72 percent (43 percent).

7. The dispersion in student ability and teacher quality is similar to those estimated using data from North
Carolina.
8. If an unbiased measure of student ability were unavailable, only within-school variation in teacher
quality would be identified. In this case the source of the cross-grade correlation in teacher quality would
matter since if it was generated all by teacher sorting across schools, the within-school estimates of dis-
persion would be unaffected.
9. I chose the cross-grade correlations in an effort to illustrate the performance of the levels and growth
models across a spectrum of potential realizations. For the North Carolina data, it turns out that the cross-
grade correlation in teacher quality is approximately 0.11.
10. Note that I relied solely on within school sorting to generate these correlations. The results would be
unchanged if I also used teacher sorting across schools to generate similar levels of cross-grade correlation
in teacher quality.
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Table 1
Estimating Variance in Teacher Ability using Misspecified Levels and Growth
Models

True Persistence of Teacher Ability: δ = 0.5

Model Type ( )ρ T ,Tjg j,g + 1
2σT

2σTj3

2σTj4

2σTj5

0.063 0.062 0.063 0.063

Levels—( )δ = 0 0.00 0.054 0.042 0.052 0.068
0.12 0.057 0.040 0.057 0.075
0.25 0.063 0.040 0.064 0.085
0.58 0.107 0.062 0.115 0.146

−0.12 0.052 0.045 0.049 0.062
−0.25 0.050 0.047 0.045 0.057
−0.58 0.053 0.062 0.042 0.055

Growth—( )δ = 1 0.00 0.066 0.062 0.067 0.068
0.12 0.060 0.062 0.059 0.058
0.25 0.055 0.062 0.053 0.049
0.58 0.048 0.062 0.042 0.038

−0.12 0.070 0.062 0.075 0.072
−0.25 0.075 0.062 0.085 0.077
−0.58 0.090 0.062 0.115 0.092

Note: Results are averages over 500 simulations. Generated sample contains 25 schools, 3 grades per
school, and 4 teachers per grade. Each teacher is observed with 50 students. Student and teacher ability
are unobserved. Grades are generated according to a cumulative achievement equation where teacher inputs
persist at a constant geometric rate equal to 0.5. Students are observed four times, first without any
associated teacher, and then once in each grade. There is no additional measurement error in the model so
that any biases stem entirely from model misspecification. Teacher and student populations are held fixed
across the simulations, with only the within school sorting of students to teachers changing. is theTjg

ability of teacher in grade . ( ) is the correlation in teacher quality across grades. is the2j g ρ T ,T σjg j,g + 1 T

true variance of teacher ability across all grades, while is the true variance of ability for third grade2σTj3
teachers only. The levels model implicitly assumes a persistence rate of 0 while the growth model implicitly
assumes a persistence rate of 1. Bold-faced numbers reflect true underlying distributions.

Not only are the estimates of the dispersion in teacher quality affected by the
strong persistence assumptions inherent in the growth and levels framework, the
individual estimates of teacher quality are also affected. For each of the simulations,
I also calculated the proportion of schools that were able to successfully identify the
best teacher within each grade. Under random assignment, both models actually
perform well, identifying the best teacher in all grades more than 95 percent of the
time. When the cross-grade correlation in teacher quality is equal to 0.25, the levels
model continues to perform quite well, however the growth model identifies the best
fourth and fifth grade only 83 percent and 74 percent of the time respectively. When
the cross-grade correlation in teacher quality is equal to −0.25 performance is
flipped, with the growth model almost always identifying the best teacher in each
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grade, while the levels model only identifies the best teacher in fourth and fifth grade
87 percent of the time.

The intuition for the difference in the ability of the levels and growth models to
identify the best teacher in each grade is the following. With positive sorting, the
best (worst) fourth grade teacher tends to follow the best (worst) third grade teacher.
Because the levels model assumes that the third grade teacher has no effect in fourth
grade, the impact of the best (worst) fourth grade teacher will be biased upward
(downward). This tends to increase the estimated dispersion in teacher quality, while
maintaining the relative rank of each teacher. As a result, the correlation between
the estimated teacher value-added and the truth is high. In the growth framework,
if teacher quality is positively correlated across grades, the effect of the best (worst)
fourth grade teacher is biased downward (upward). The best fourth grade teacher
follows the best third grade teacher, who continues to get significant credit for fourth
grade performance since it is assumed that teacher effects persist forever. The esti-
mated dispersion in teacher quality will be reduced and the ranking of teachers
becomes significantly more jumbled. The stronger the positive correlation and the
closer is to zero the more jumbled the ranking would become. If the true corre-δ
lation in teacher value-added across grades were negative, the opposite would hold.
The estimated teacher value-added from the growth (levels) framework would be
highly (lowly) correlated with the truth.

Overall the results from this simple empirical exercise illustrate that both the levels
and growth models are likely to be biased, though the direction and the severity will
depend on how teachers and students are sorted across schools and classrooms.11

The concern is that the extent of sorting on unobserved teacher and student ability
is unknown a priori, thus leaving researchers with little guidance about which model
will work best in particular situations. Rather than make strong and potentially in-
correct assumptions about the persistence of teacher quality, I develop a straightfor-
ward method of estimating both teacher value-added and the rate at which teacher
inputs persist.

III. Estimating Persistence

In the following sections, I lay out a methodology for estimating a
cumulative production function for student achievement that yields estimates of
teacher quality and the rate at which teacher inputs persist. I start with a baseline
model that contains only unobserved student ability, teacher effects, and the persis-

11. It is important to point out that the biases illustrated in Table 1 stem from a particular underlying
production technology and assumption about the types of data available. If, for example, an initial baseline
test score is unavailable, only variation in teacher quality within schools is identified. Similar identification
restrictions occur if heterogeneity in the growth of student test scores is included in the model. In these
cases, the biases stemming from the sorting of teachers across schools would not be present. However, the
population dispersion in teacher quality would be significantly understated if the within-school variation
in teacher quality is used as a proxy.
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tence parameter.12 Within this simple framework I discuss identification, estimation,
consistency, and important assumptions regarding the assignment of students to
teachers. I then extend the basic model to allow for heterogenous decay rates and
time-varying teacher quality. Finally, I provide some Monte Carlo evidence that
illustrates the accuracy of the proposed estimation methodology.

A. Baseline Model

The biases in the teacher-specific measures of effectiveness and the overall disper-
sion in teacher quality stemming from incorrect assumptions about input persistence
can be avoided by instead jointly estimating teacher quality and the persistence of
teacher inputs. Expanding on the simple cumulative specification outlined in Equa-
tions 3–5, assume that the true achievement production function is given by

g−1
g−g ′A = α + ∑ I T + ∑ δ ( ∑ I T ) + ε(8) ijg i ijg jg ijg ′ jg ′ ijg

∈ ∈j J g ′ = 1 j Jg g ′

where is an indicator function that equals one when student is assigned teacherI iijg

in grade , and is the set of all grade teachers. represents measurementj g J g εg ijg

error in the test’s ability to reveal a student’s true underlying knowledge, and is
uncorrelated with unobserved student ability and teacher assignments in all periods.
I return to the issue of exogeneity at the conclusion of this section.

The first summation in achievement equation is the effect of the contemporaneous
teacher, while the second summation accounts for the discounted cumulative impact
of all the teachers in grades . For simplicity, I assume here that the teacherg ′ < g
inputs persist at a constant geometric rate , though I will relax this assumptionδ
later. The lingering impact of past teachers is assumed to be proportional to their
contemporaneous impact. In practice, I could allow teachers to have separate con-
temporaneous and long-term effects rather than estimate a mean persistence rate,
similar to Rothstein (2010). However, I choose to measure teacher effectiveness with
one parameter that captures a mixture of both effects.

Prior to discussing estimation, it is useful to briefly describe the variation in the
data that identifies . As long as students are not perfectly tracked from one gradeδ
to the next, conditional on the current teacher assignment there will be variation in
the lagged teacher. In practice, perfect tracking is rarely employed, and thus iden-
tification is obtained.

Estimation, on the other hand, is complicated by both the multiple sets of high-
dimensional teacher fixed effects and the inherent nonlinearity stemming from the
interaction between the persistence parameter and the teacher effects. To deal with
these issues, I pursue an iterative estimation strategy similar in spirit to the one out-
lined in Arcidiacono et al. (Forthcoming). Define the least squares estimation problem
as,

12. Throughout the paper, I exclude school effects from the achievement model. School effects can easily
be incorporated, however, interpretation is much simpler without them since no additional normalizations
are necessary. By attributing all cross-school variation in test scores to teachers I likely overstate the true
variation in teacher quality. However, attributing all the cross-school variation in test scores to the schools
themselves would likely understate the variance of teacher quality. Estimates including school fixed effects
indicate that the persistence parameter is largely unaffected by their inclusion.
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N ḡ g−1
g−g ′ 2min ∑ ∑ (A −α − ∑ I T − ∑ δ ( ∑ I T ))(9) ijg i ijg jg ijg ′ jg ′

α,T,δ ∈ ∈i = 1 g = g j J g ′ = 1 j Jg g ′
¯

where , , and are the parameters of interest, and g
¯

and are the minimum andα T δ ḡ
maximum grades for which test score are available. The iterative estimation method
toggles between estimating (or updating) each parameter vector taking the other sets
of parameters as given. At each step in the process the sum of squared errors is
decreased, eventually leading to the least squares solution.13

In practice, estimation proceeds according to the steps listed below. The algorithm
begins with an initial guess for and and then iterates on three steps, with theα T

th iteration given by:14q

• Step 1: Conditional on and , estimate by nonlinear least squares.q−1 q−1 qα T δ

• Step 2: Conditional on and , update .q q−1 qδ T α

• Step 3: Conditional on and , update .q q qα δ T

The first step is rather self-explanatory, however the second and third steps require
some explanation since it is not clear what updating means. To avoid having to
“estimate” all of the fixed effects, I use the solutions to the first-order conditions
with respect to and to update these parameters.α T

The derivative of the least squares problem with respect for all is given byα ii

the following

ḡ g−1
g−g ′∑ (A −α − ∑ I T − ∑ δ ( ∑ I T ))(10) ijg i ijg jg ijg ′ jg ′

∈ ∈g = g j J g ′ = 1 j Jg g ′
¯

Setting this equal to zero and solving for yieldsαi

ḡ g−1
g−g ′∑ (A − ∑ I T − ∑ δ ( ∑ I T ))ijg ijg jg ijg ′ jg ′

∈ ∈g = g j J g ′ = 1 j Jg g ′
¯α =(11) i ḡ−g

¯

which is essentially the average of the test-score residuals purged of individual
ability. To update the full vector of abilities in Step 2, simply plug the th estimateq
of and the step estimate of into the ability updating equations.δ q−1 T N

The strategy for updating the estimates of teacher quality in Step 3 is essentially
identical to the one outlined for updating . The key difference is that the first-orderα
condition for is significantly more complicated. Teachers in grades willT g < ḡjg

13. Matlab code for the baseline accumulation model and a simple data generating program can be down-
loaded at http://www.econ.rochester.edu/Faculty/Kinsler.html
14. My initial guess for is the average student test score across all periods, and my initial guess forα T
is the average test score residual for each teacher after controlling for student ability. When guessing , IT
use only the contemporaneous student outcomes. Note that as long as the initial guesses aren’t all skewed
in one direction (either too large or too small) the results are not sensitive to the starting values.
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have not only a contemporaneous effect on achievement outcomes, but also an effect
on student outcomes going forward. Thus, test-score variation in future grades aids
in identifying the quality of each teacher. The first-order condition of the least
squares problem in Equation 9 with respect to , for

¯
, isT g < g < ḡjg

g−1

∑ [(A −α −T − ∑ I T )(12) ijg i jg ijg ′ jg ′
∈i N g ′ = 1ijg

ḡ g ′−1
g ′−g g ′−g ″+ ∑ δ (A −α − ∑ I T − ∑ δ I T )]ijg ′ i ijg ′ jg ′ ijg ″ jg ″

∈g ′ = g + 1 j J g ″ = 1g ′

where are the set of all students who are assigned teacher in grade . TheN j gijg

first term inside the summation over comes from the contemporaneous effect ofi
. The second term inside the summation accounts for the effect of in allT Tjg jg

subsequent grades. Notice that appears in the final summation of Equation 12Tjg

since at some point will equal .g ″ g
Setting the first-order condition with respect to equal to zero and solving forTjg

yieldsTjg

g−1

∑ [A −α − ∑ I T ]ijg i ijg ′ jg ′
∈i N g ′ = 1ijgT =(13) ḡjg

2(g ′−g)∑ (1 + ∑ δ )
∈i N g ′ = g + 1ijg

ḡ g ′−1
g ′−g g ′−g ″∑ [ ∑ δ (A −α − ∑ I T − ∑ δ I T )]ijg ′ i ijg ′ jg ′ ijg ″ jg ″

∈ ∈i N g ′ = g + 1 j J g ″ = 1,g ″� gijg g ′+ ḡ
2(g ′−g)∑ (1 + ∑ δ )

∈i N g ′ = g + 1ijg

where I split the term into two pieces for ease of presentation even though they
share a common denominator. Again, the first term uses information from grade g
to identify , while the second term uses information from grades . NoticeT g ′ > gjg

that the equation for includes for . Thus, updating in Step 3T T g ′� g Tjg jg ′ jg

requires substituting in the th iteration estimates of and , as well as theq α δ q−1
step estimates of into Equation 13.15Tjg ′

Iterating on Steps 1–3 until the parameters converge will yield the , , andˆ ˆα̂ T δ
that solve the least squares problem outlined in Equation 9. At this point it is useful
to step back and consider whether these are consistent estimators of the underlying
parameters of interest. Because each student is observed at most

¯
times, the ˆḡ−g α

will be unbiased, but inconsistent. This is a standard result in panel data models
with large fixed , where refers to the number of students and refers to theN T N T
number of observations per student. The estimates of teacher effectiveness, , areT̂
consistent estimators of if the number of student test-score observations perT
teacher goes to infinity as . This would be achieved, for example, if eachNr�

15. In principle I could update the teacher effects grade by grade, eliminating the issue that the same
teacher will appear in both the left and right hand side of Equation 13. However, in practice I have never
had convergence issues when updating in one step.
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entering cohort of students experienced the same teacher population. In this case,
consistency of would then imply consistency of . In practice, however, teachersˆ ˆT δ
move in and out of the profession, making it likely that as the number of students
increases, so do the number of teachers. As a result, the teacher effects themselves
will be inconsistent, as will . However, the Monte Carlo exercises in Section IIICδ̂
illustrate that the bias in the estimate of teacher persistence is negligible when the
median number of student observations per teacher is only twenty.

The fact that provides a noisy measure of true teacher value added has importantT̂
implications for the estimate of dispersion in teacher quality. Simply using the var-
iance of as an estimate of will lead to an overstatement of the variance in2ˆ ˆT σT

teacher quality since contains sampling error, as shown belowT̂

T̂ = T + ν(14) jg jg jg

where is the sampling error for the th teacher in grade . Assuming that isν j g νjg jg

uncorrelated with , the Var is equal to . A crude way to correct for2 2ˆT (T) σ + σjg T ν

the sampling bias is to subtract the average sampling variance across all the teacher
estimates from the overall variance of the estimated teacher effects.16 To do this
requires estimating the standard errors for all of the individual teacher effects. I
accomplish this by bootstrapping the student sample with replacement and reesti-
mating the model. The standard deviation of a teacher effect across the bootstrap
samples provides an estimate of the teacher effectiveness standard error. The Monte
Carlo exercises to follow show that this approach for recovering the dispersion in
teacher quality works quite well.

The final issue I want to address in terms of the baseline model is the issue of
exogeneity. At the start of this section I assumed that was uncorrelated withεijg

unobserved student ability and teacher assignments in all grades, not just grade .g
One obvious concern with this assumption is if there exist time-varying student and
classroom characteristics that happen to be related to the teacher assignment. In the
expanded version of the model, I address this issue by allowing for observable time-
varying classroom and student characteristics.17 Similar to the other models in the
literature, one issue I cannot address is the extent to which parents substitute for
teacher quality. In other words, if a student is assigned an ineffective teacher, the
parents of that student may compensate by substituting their own time.18 To the
extent that this occurs I will understate the overall variation in teacher quality.

Although sorting on observable, time-varying classroom or student attributes is
simple to address, more problematic is sorting on lagged test-score outcomes. The

16. In contrast, Kane and Staiger (2008) treat each teacher effect as a random effect. The dispersion in
teacher quality is estimated using the correlation in the average classroom residual across classes taught
by the same teacher. The authors note that fixed effects and OLS yield very similar estimates of teacher
value added in their sample.
17. Unobserved classroom-year level shocks, such as a dog barking on the day of the test, are ruled out
in this framework. However, there existence would likely bias the persistence effect downward and the
dispersion in teacher quality upward. The biases will depend on the variance of the classroom-year level
shocks and on the extent to which teachers are observed across multiple years.
18. Todd and Wolpin (2007), using data from the National Longitudinal Survey of Youth 1979 Child
Sample (NLSY79-CS), consistently reject exogeneity of family input measures at a 90 percent confidence
level, but not at a 95 percent confidence level. However, they have very limited measures of school inputs
and the coefficients on these inputs are statistically insignificant whether home inputs are exogenous or
endogenous. Thus it is difficult to gauge how parents might respond to individual teacher assignments.
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assumption that is uncorrelated with all teacher assignments in grade rulesε g ′ > gijg

out any sorting directly on . In other words, all the sorting into classrooms hasAijg

to be based strictly on .19 This is a critical assumption in all value-added papersα
that employ student and teacher fixed effects in either a levels or growth framework.
For the remainder of the paper I also maintain the assumption of conditional random
assignment.20

B. Model Extensions

1. Heterogenous Persistence

The discussion in the previous section relied on the assumption of a constant geo-
metric rate of persistence. In reality, the knowledge imparted at a certain age may
matter more for future performance than inputs in other years. If this is true, it would
suggest that some grades may be more critical than others and that the assignment
of teachers should account for this. The baseline production function can easily
accommodate this by simply indexing by grade, as seen below.δ

g−1

A = α + ∑ I T + ∑ δ ( ∑ I T ) + ε(15) ijg i ijg jg g ′ ijg ′ jg ′ ijg
∈ ∈j J g ′ = 1 j Jg g ′

The identification argument is the same, except now it is critical that students do
not return to their same class configurations two or three years into the future. The
steps necessary for estimation remain largely the same, except that in Step 1, I
estimate multiple ’s by nonlinear least squares. Also, in the first-order conditionsδ
for and , the ’s will be indexed by grade.α T δi jg

In addition to relaxing the homogeneity of , it is also possible to relax theδ
assumption that inputs persist at a geometric rate. Teacher inputs may decay very
quickly after one year, but then reach a steady state where the effects no longer
decline. This would imply that teachers early in the education process have a sig-
nificant long term effect on achievement growth. Schools could use this information
to find the optimal teacher allocation. The production function would now take the
following form

g−1

A = α + ∑ I T + ∑ δ ( ∑ I T ) + ε(16) ijg i ijg jg g−g ′ ijg ′ jg ′ ijg
∈ ∈j J g ′ = 1 j Jg g ′

19. Rothstein (2010) develops a test for whether classroom assignments are random conditional on un-
observed student ability and finds that for a cohort of North Carolina fifth graders, classroom assignments
are not conditionally random. Using a different sample, Koedel and Betts (2010) show that when multiple
cohorts of student test scores are utilized, conditional random assignment cannot be rejected. In addition,
Kinsler (Forthcoming) shows that the proposed test in Rothstein (2010) is incorrectly sized for samples
similar in size to the one he employs.
20. Sorting on lag test scores combined with persistence in will certainly lead to biased estimates ofεijg

teacher quality in the proposed model. However, it is possible to obtain unbiased estimates of teacher
quality in this scenario if students are sorted based on lag test scores and there is no permanent unobserved
student heterogeneity. A lag-score model that includes not only the contemporaneous teacher but also
controls for the lagged teacher will yield unbiased estimates of the contemporaneous teacher’s value-added.
Additional details available upon request.
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where is indexed according to how many periods have passed since the input wasδ
applied. Again, the estimation procedure is altered to account for the multiple dis-
count rates.

The two extensions discussed in this section also help differentiate this approach
for estimating teacher-value added from previous approaches that rely on lag scores,
such as Aaronson, Barrow, and Sander (2007). In a lag score framework, not only
is it critical that all inputs persist at the same rate, including teacher, school, and
student ability, but that the persistence rate be homogenous and geometric. If this is
not the case, then the standard simplification in which all past inputs drop out of
the levels equation no longer holds, essentially invalidating this approach.21

2. Time-Varying Teacher Quality

With one cohort of students, it is logical to assume that a teacher’s effectiveness is
fixed. However, if the model is to be estimated using multiple cohorts of students,
assuming that teacher effectiveness is constant over multiple years conflicts with
previous research. Teacher experience is one of the few observable characteristics
that appears to influence student performance. Thus, we would expect teacher ef-
fectiveness to improve across multiple cohorts, at least for the teachers with the
fewest years of experience. Other examples of time-varying teacher characteristics
include attainment of a graduate degree or licensure status.

The achievement production function can easily accommodate changes to teacher
effectiveness that result from variation in observable teacher characteristics over
time. Consider the following production function for student achievement

g−1
g−g ′A = α + ∑ I (T + β X ) + ∑ (δ ( ∑ I (T + β X ))) + ε(17) ′ijgt i ijgt jg 2 T ijgt jg ′ 2 T ijgtjgt jg ′t ′∈ ∈j J g ′ = 1 j Jg g ′

where are the observable characteristics of teacher at time , and the indi-X T tT jgjgt

cator function is now also indexed by time. Notice that the effect of the observable
teacher components enters contemporaneously and in the measure of lagged teacher
effectiveness. This allows, for example, the long-run effect of a teacher to vary
according to when a student is matched with that teacher. The interpretation of the
unobserved teacher value-added estimates is now the expected long-term teacher
effectiveness once sufficient experience, education, or licensure is obtained.

Estimation of the model with time-varying teacher characteristics continues to
follow the same three steps outlined for the baseline framework. Step 1 needs to be
expanded to include not just estimation of , but also estimation of . The first-δ β
order conditions required for updating the student and teacher effects in Steps 2 and
3 are altered slightly to account for the time-varying teacher characteristics.

Similar to teachers, students and classrooms will vary over time in observable
ways. For example, students may switch schools or repeat a grade. Both of these
are likely to impact performance in a particular year. Also, class size and composition
will likely vary over time for each student. Incorporating these observable attributes
into the above framework follows in the same fashion as the time-varying teacher
attributes. Lagged observable student or classroom characteristics can be included
in the production function with their own rates of persistence.

21. See Harris and Sass (2008) and Todd and Wolpin (2007) for further discussion of the lag score model.
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C. Monte Carlo Evidence

As noted in Section III.A, the persistence and teacher value-added parameters are
only consistent under the assumption that as the number of students grow, the popu-
lation of teachers is held fixed. In reality this is unlikely to hold, as teachers tend
to move in and out of the profession often. To provide some small sample evidence
regarding the performance of the baseline estimator and the simple extensions out-
lined in the previous sections I conduct some Monte Carlo experiments. The struc-
ture of the data used for the Monte Carlo exercises is chosen to mimic as closely
as possible the North Carolina primary school data that will eventually be used to
estimate the model. For each model specification, baseline, heterogenous persistence,
and time-varying teacher quality, I assume that the methodology for assigning stu-
dents and teachers to schools and classrooms is identical. Differences only emerge
when generating student outcomes since this will depend on the particular specifi-
cation employed.

The basic structure of the data is as follows. I create seven cohorts of students,
each containing 1,500 students. Within each cohort, students are sorted into 25
schools according to their unobserved ability, which is distributed in the population

. The ratio of the average within school standard deviation in ability to the2N(0,.85 )
population standard deviation in ability is approximately 0.92. For each student, I
assume a pretest score is available, followed by third, fourth, and fifth grade out-
comes. The third through fifth grade classrooms contain 20 students each, and there
are three classrooms per grade per school.

Teachers are also sorted into schools based on their unobserved quality, which is
distributed in the population . The ratio of the average within school stan-2N(0,.25 )
dard deviation in teacher quality to the population standard deviation in teacher
quality is approximately 0.87. I assume that teachers and students are sorted inde-
pendently. In other words, while the best teachers tend to end up in the same school,
they do not necessarily end up in the school with the best students. With each new
cohort of students I assume that there is significant turnover in the teacher popula-
tion. Turnover is independent of teacher ability, but not experience. This allows me
to generate a skewed distribution for the number of observations per teacher, where
the mean number of observations per teacher is approximately equal to 35 and the
median is only 20. I maintain the sorting on teacher quality across schools even as
the teachers within each school change over time.

The final component that remains is how to assign students and teachers to class-
rooms within each school/grade combination. I assume that teachers and students
are negatively sorted on unobserved ability and quality such that the overall corre-
lation between student ability and teacher quality is approximately −0.05. I chose
this to match the results obtained with my estimation sample. Note that both the
negative correlation between student and teacher ability at the classroom level and
the sorting of teachers into schools tends to generate positive correlation in teacher
quality across grades. Recall that this is the source of the bias in teacher value-added
estimates generated by the levels and growth models.

Once all the matches between students and teachers have been created, I generate
test-score outcomes 250 times according to either the baseline accumulation function
or one of the extensions previously discussed. In the baseline model, I assume that
teacher inputs persist at a rate equal to 0.35. I assume that the test-score measurement
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error is independently and identically distributed across grades according to
. Finally, in an effort to mimic actual data conditions, I assume that some2N(0,.45 )

of the student test scores are missing. If a student’s fifth grade score is missing, for
example, then this student cannot help identify the effectiveness of the assigned fifth
grade teacher. However, if a student’s third grade score is missing, this student still
aids in identifying the third grade teacher effect since the third grade teacher con-
tinues to impact that student’s test-score outcomes in Grades 4 and 5.

Table 2 shows the results of the Monte Carlo experiments for the baseline model,
nongeometric decay, and time-varying teacher quality models. The first column of
results show that in the baseline model, the teacher persistence parameter and the
dispersion in teacher quality are estimated quite precisely. The remaining columns
of Table 2 provide evidence that the extensions to the baseline model, nongeometric
decay and time-varying teacher quality, do not inhibit the performance of the pro-
posed estimator. For the model with time-varying teacher quality I assume that
teacher experience falls into one of three categories, less than two years, between
two and five years, and more than five years of experience. I also allow for a time-
varying student attribute, whether the student has transferred schools. The point
estimates are generally close to the truth and precisely estimated. The Monte Carlo
evidence indicates that the proposed estimators work quite well when the median
number of student observations per teacher is equal to 20. I now proceed to discuss
the actual schooling data employed in my analysis.

IV. Data

I estimate the cumulative production function detailed in the previous
section using administrative data on public school students in North Carolina made
available by the North Carolina Education Research Data Center. The data contain
the universe of public school students, teachers, and schools across the state. I focus
on eight student cohorts who attended third grade between 1998 and 2005. The basic
information available for each cohort include observable attributes of the students,
including test scores, and observable attributes of teachers, such as experience. The
following paragraphs describe the steps taken to refine the data.

In order to isolate individual measures of teacher effectiveness, the ability to link
student outcomes with individual teachers is imperative. Therefore, I use only stu-
dent test-score observations from self-contained classrooms in Grades 3 through 5.22

Classrooms are identified by a unique teacher id, however, not all classrooms are
self-contained.23 Using the teacher identifiers, however, I am able to link to class
and teacher specific information that allows me to determine whether a class is self-
contained.

Each year, there are a significant number of teacher identifiers that cannot be
linked to further teacher and classroom information. In order to avoid eliminating a

22. Starting in sixth grade, most students begin to switch classrooms throughout the day. In Grades 6
through 8 students still take one math and reading exam at the end of the year, making it difficult to isolate
the impact of each teacher.
23. Student observations associated with charter schools are eliminated from the analysis since there is no
information available about teachers that would allow me to determine whether classrooms are self-con-
tained.
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Table 2
Monte Carlo Evidence for Various Accumulation Models

Baseline
Nongeometric

Persistence
Varying Teacher

Quality

Teacher Persistence 0.349 0.350
(0.024) (0.022)
[0.35] [0.35]

One-period persistence 0.351
(0.024)
[0.35]

Two-period persistence 0.039
(0.039)
[0.05]

Less than two years experience −0.251
(0.026)

[−0.25]
Between 3 and 5 years experience −0.101

(0.017)
[−0.1]

Lag student transfer 0.228
(0.158)
[0.25]

Student transfer 0.151
(0.016)
[0.15]

, Unadjusted2σT 0.076 0.080 0.077
, Adjusted2σT 0.062 0.065 0.062

[0.062] [0.065] [0.062]

R-square 0.86 0.85 0.85
Test-score observations 35,604 35,709 35,616
Students 10,500 10,500 10,500
Teachers 839 875 813

Note: Results are averages across 250 simulations. Standard deviations across the simulations are included
in parentheses. True parameter values are included in brackets. is the estimated variation in teacher2σT
quality across all grades. Data generation for the Monte Carlos is described in detail in Section IIIC. The
three panels of results reflect three different underlying data generating processes. All models include
unobserved student ability and unobserved teacher ability in addition to the parameters listed in the table.
Across all three models, the average, median, and minimum number of student observations per teacher
are approximately 31, 20, and 9. Estimation follows the procedures discussed in Section IIIB.

large chunk of the data, I assume that if the other classrooms in the same school
and grade are self-contained, then the classrooms that cannot be linked are also self-
contained. The teacher identifiers that cannot be linked within a particular year
cannot be linked across years. Thus, for these teachers I will have only one year of
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student observations. The fact that I cannot link these teachers to any observable
characteristics, such as experience or education, does not pose a problem for models
that allow for time-varying teacher quality since they are observed at only one point
in time and do not aid in identifying the effects of the time-varying teacher attributes.

Beyond limiting the sample to students in Grades 3 through 5, I try to minimize
as much as possible any other sample restrictions. One benefit of the cumulative
model outlined in the previous section is that it does not require balanced student
panels, nor does it require students to remain in the same school over time. As a
result, I am able to include observations from students with missing test scores,
students who eventually leave to attend charters, or switch to schools with class-
rooms that are not self-contained. For a model focused on estimating teacher quality,
incorporating these students is critical since they have outcomes that are significantly
different from students who progress from third to fifth grade without ever missing
a test or switching schools. However, some data cleaning is employed to minimize
coding errors. Classes with fewer than five students or greater than 35 students are
excluded from the sample, as are classes with students from more than one grade.
Students who skip a grade or repeat a grade more than once are excluded. When
imposing all of these restrictions, I try to retain any valid student observations that
can be used for the model. As an example, suppose a student attends a class in fifth
grade that has fewer than five students, but has valid scores and teacher assignments
in third and fourth grade. This student remains in the sample and aids in identifying
the value-added of the third and fourth grade teachers.

The final data cleaning step is to ensure that each teacher has a minimum number
of associated test-score observations. As noted earlier, the accuracy of the each
teacher quality estimate will depend on the number of test-score observations avail-
able. Thus, to ensure that there is information in each teacher effect, I include only
those teachers with at least ten student test-score observations. To impose this re-
striction, I have to toggle between eliminating teachers and students since by elim-
inating one teacher, I will likely invalidate a set of student observations.24 However,
after a few iterations I reach a sample that satisfies the teacher restrictions. I create
separate samples, one for math test-score outcomes, and one for reading test-score
outcomes. After imposing all the above restrictions, I am left with a sample of
approximately 700,000 students, 40,000 teachers, and 2.5 million test-score obser-
vations. Close to three-quarters of the entire universe of students who ever attend
third through fifth grade between 1998 and 2007 are included in the sample. Notice
that students average more than three test-score observations across Grades 3 though
5. This reflects the fact that at the start of Grade 3, students take a pretest in both
math and reading. I treat this pretest as an unbiased measure of student ability that
is unaffected by prior teacher or other school inputs.25

24. After eliminating a set of teachers, students with fewer than two observations and students who have
incomplete teacher histories are eliminated. An incomplete teacher history is problematic for estimating
the impact of the contemporaneous teacher since it is not possible to account for the influence of all
previous teachers. Note that if a student is simply missing a past test score this is not a problem since I
can still account for the lasting impact of the teacher associated with the missing score.
25. Clearly to the extent that the kindergarten, first, and second grade teachers persist, part of the ability
measure is likely not permanent. However, I have no way of assigning students to classrooms or even
schools prior to third grade. In schools with excellent K-2 teachers, unobserved student ability will likely
be overstated, leading to downward bias in teacher quality.
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Table 3
Summary Statistics: North Carolina Elementary Students and Teacher

Math Reading

Teacher statistics
Total teachers 38,782 38,757
Average observations per teacher 63.75 63.6
Median observations per teacher 24 24
Teacher experience 12.73 12.73
Less than 5 years of experience 0.32 0.32
Graduate degree 0.26 0.26

Student statistics
Total students 689,641 687,445
Average observations per student 3.58 3.58
Nonwhite 0.40 0.39
Class size 22.9 22.9
Repeat 0.01 0.01
Transfer 0.04 0.04
Missing scores 0.003 0.003
Pretest score 0.12 0.12

(0.97) (0.99)
Grade 3 Test Score 0.17 0.02

(0.94) (0.99)
Grade 4 Test Score 0.2 0.04

(0.97) (0.98)
Grade 5 Test Score 0.18 0.07

(0.097) (0.91)

Note: Sample is constructed using cohorts of North Carolina third grade students who enter between 1998
and 2005. Sample selection is discussed in Section IV. Overall, close to three-quarters of the entire universe
of students who ever attend third through fifth grade between 1998 and 2007 are included. Math and
reading end-of-grade exams are available at the end of third, fourth, and fifth grade. In addition, a pretest
score is available from the beginning of third grade. Scores are normalized using the means and standard
deviations of test scores in standard setting years as suggested by the North Carolina Department of
Instruction. Observations per Teacher indicate the number of student test scores associated with a particular
teacher. Graduate degree is an indicator that a teacher received any advanced degree. Repeat is an indicator
that a student is repeating the current grade. Transfers indicate that the student is new to the current school.

Table 3 provides some basic information about the math and reading samples
employed in estimation. Both samples contain close to 40,000 teachers. Teachers are
observed with an average of 64 students, however, the median number of observa-
tions is significantly smaller at 24. This reflects both significant churning in the
teaching profession early in a teacher’s career, as well as the fact that some teacher
i.d.s cannot be matched, ensuring that I only observe them for one year. For matched
teachers, the average experience level is 13 years, but almost a third of the sample
has fewer than five years of experience. As for students, the sample is evenly split
among males and females, with nonwhite students making up approximately 40
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percent of the sample. There are very few transfers, missing scores, or repeaters.
Close to 67 percent of the sample progresses through Grades 3 though 5 without
missing any test scores, moving out of the state, switching to a charter school, or
switching to a school without self-contained classrooms.

The test scores in third, fourth, and fifth grade come from state mandated end-of-
grade exams. The scores are normalized using the means and standard deviations of
test scores in standard setting years as suggested by the North Carolina Department
of Instruction.26 Because both the math and reading exams changed during the time
frame, the normalizations vary according to the year of the exam. As an example,
the first standards setting year is 1997 for both reading and math. In 2001, a new
math exam was put in place, making 2001 the new standard. Thus from 1997–2000,
all test scores are normalized using the means and standard deviations in 1997. This
allows for test scores to improve over time either because students or teachers are
improving. Ideally, the method should be employed using a vertically scaled test
that remains consistent over time. Overall, the mean test scores are slightly positive,
suggesting that even with the limited amount of data cleaning students are still
positively selected. The fact that student performance appears to have improved over
time also results in positive test-score means.

As Section II illustrates, the amount of teacher and student sorting across schools
and classrooms can have important implications for estimates of teacher quality. To
provide a sense for the type of sorting in North Carolina’s primary schools, I examine
the dispersion in student test scores at the population, school, and teacher level in
Table 4. In addition to examining the dispersion in contemporaneous scores, I also
look at the dispersion in lag scores and pretest scores based on the third, fourth, and
fifth grade classroom assignments.

Table 4 illustrates that there exists significant sorting at the school and classroom
level, regardless of whether the contemporaneous, lag, or pretest score is considered.
The fact that contemporaneous outcomes vary less and less as we move from the
population to the classroom suggests that students are sorted by ability into schools
and classes, and that teacher quality likely varies significantly across classrooms.
The model with student and teacher effects will help disentangle these two com-
ponents. The data is also generally consistent with the notion that there is limited
sorting on lagged student outcomes. Note that the ratio of the within teacher variation
to the within school variation in lag scores is very similar across third, fourth, and
fifth grade. However, the lag score in third grade, which is actually the pretest score,
is not observed at the time third grade teachers are assigned. As a result, the sorting
into third grade teacher assignments likely reflects sorting on unobserved student
ability. In addition, the magnitude of the within teacher sorting based on pretest
scores in fourth and fifth grade is quite similar to the sorting based on lag-scores.
This result is not consistent with a process that has principals assigning teachers
based strictly on test-score outcomes in the previous grade.

V. Results

Using the North Carolina public school data, I estimate multiple ver-
sions of the cumulative model of student achievement. I start with the baseline

26. http://www.dpi.state.nc.us/accountability/reporting/
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version which assumes a constant geometric decay rate and time-invariant teacher
and student ability. The results from this simple accumulation model are then con-
trasted with the results obtained utilizing the levels and growth frameworks. Finally,
I estimate more flexible accumulation models that provide greater insight into the
true underlying production of student achievement.

A. Baseline

Table 5 presents estimates from the baseline accumulation model, the levels speci-
fication, and the growth specification for math and reading scores. The results in-
dicate that in both math and reading, teacher effects persists at a rate that is neither
0 or 1. Teacher effects persist at a rate equal to 0.38 for math outcomes and 0.32
for reading outcomes. These results fall in the range of previous estimates of the
decay rate discussed in the introduction.

The overall dispersion in teacher quality is estimated to be quite significant for
math outcomes, and somewhat smaller for reading outcomes. A one standard devi-
ation increase in contemporaneous teacher quality increases math (reading) test
scores by approximately 0.25 (0.14) of a standard deviation of the test-score distri-
bution. These results are larger than previous estimates, partly because I do not
include school effects.27 Including school effects in the baseline model indicates that
a one standard deviation increase in teacher quality increases math scores by only
0.2 of a standard deviation of the test-score distribution. This effect is identified
only from variation in teacher quality within each school-grade combination. The
persistence parameter is unchanged when school effects are incorporated.

The final two columns in Table 5 provide estimates of the dispersion in teacher
quality under the assumptions that teacher inputs do not persist at all, or perfectly
persist. They are included to illustrate the importance of modeling student achieve-
ment as a cumulative process. For math outcomes, the overall importance of teacher
quality is understated in the levels framework and overstated in the growth frame-
work. For reading outcomes, the levels and growth models result in upward-biased
estimates of teacher dispersion, however, the differences are quite small. As a result,
in the following discussion I focus on the results for math outcomes only.

The result that the overall dispersion in teacher quality is biased downward in the
levels model and biased upward in the growth model is a result of the fact that
teacher quality is only slightly positively correlated across grades. The unadjusted
cross-grade correlation in teacher quality is approximately 0.11, with a slightly
smaller correlation between third and fourth grade teachers, and a slightly larger
correlation between fourth and fifth grades. Table 1 illustrates that for very low

27. As noted earlier, unobserved classroom-year level shocks, such as a dog barking on the day of the test
or a common illness among students in the class will likely bias the persistence effect downward and the
dispersion in teacher quality upward. The extent of the bias will depend on the variance of the classroom-
year level shocks. To get a sense for how important classroom-year shocks are, I estimate the standard
deviation of the classroom-year shocks using the within-class covariance in test score residuals across math
and reading exams. When constructing this covariance I exclude classrooms where the associated teacher
is observed for fewer than five years. I find that the standard deviation of the classroom level shocks is
only 0.044. In additional Monte Carlo exercises I find that including a class-year shock with this standard
deviation has a negligible effect on the estimates of the persistence parameter and the dispersion in teacher
quality. Results available upon request.
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Table 5
Estimates of Baseline Accumulation, Levels, and Growth Models Using NC Data

Accumulation Levels Model Growth Model

Math Outcomes
Teacher Persistence 0.375 0 1

(0.007) — —
Unadjusted2σ ,T 0.0676 0.0635 0.0726
Adjusted2σ ,T 0.0570 0.0547 0.0607
Adjusted2σ ,Tj3

0.0546 0.0459 0.0550
Adjusted2σ ,Tj4

0.0628 0.0577 0.0648
Adjusted2σ ,Tj5

0.0507 0.0601 0.0536

Observations 2,472,252 2,472,252 1,772,197
R-square 0.86 0.86 0.14
Adjusted R-square 0.80 0.80 0.12
Students 689,641 689,641 688,573
Teachers 38,782 38,782 38,567

Reading Outcomes
Teacher Persistence 0.317 0 1

0.016 — —
Unadjusted2σ ,T 0.0344 0.0322 0.0380
Adjusted2σ ,T 0.0204 0.0207 0.0219
Adjusted2σ ,Tj3

0.0288 0.0233 0.0305
Adjusted2σ ,Tj4

0.0180 0.0196 0.0157
Adjusted2σ ,Tj5

0.0125 0.0187 0.0112

Observations 2,463,093 2,463,093 1,762,790
R-square 0.83 0.83 0.06
Adjusted R-square 0.76 0.76 0.04
Students 687,445 687,445 686,055
Teachers 38,757 38,757 38,544

Note: Sample is constructed using cohorts of North Carolina third grade students who enter between 1998
and 2005. Sample selection is discussed in Section IV. Overall, close to three-quarters of the entire universe
of students who ever attend third through fifth grade between 1998 and 2007 are included. Math and
reading end-of-grade exams are available at the end of third, fourth, and fifth grade. In addition a pretest
score is available from the beginning of third grade. Scores are normalized using the means and standard
deviations of test scores in standard setting years as suggested by the North Carolina Department of
Instruction. The dependent variable is the normalized end of grade math or reading test score. The ex-
planatory variables are unobserved student and teacher ability. In the accumulation model the rate at which
past teacher inputs persist is estimated. is the estimated variation in teacher value-added across all2σT
grades, while , for example, is the estimated variance of teacher value-added among only third grade2σTj3
teachers. Standard errors are obtained through bootstrap.
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levels of cross-grade correlation, the levels model will tend to understate the overall
dispersion in teacher quality, while the growth model will tend to overstate the
overall dispersion in teacher quality.28 The source of the small positive correlation
in teacher ability across grades appears to stem primarily from teacher sorting across
schools. The ratio of the average within school standard deviation of teacher quality
to the population standard deviation of teacher quality is 0.89, indicating significant
sorting of teachers across schools.

Note that in Table 5, I also list separately the estimated within grade teacher
variances across the accumulation, levels, and growth models. The cross-grade pat-
tern of bias in the the levels and growth frameworks is also consistent with the
empirical example from Section II. For the levels model, the estimated variance of
the third and fourth grade teachers is biased downward relative to the accumulation
model, while the variance of the fifth grade teacher effects are biased upward. In
the growth model the estimated dispersion of teacher quality is extremely similar to
the accumulation model for third grade teachers, and is biased upward for fourth
and fifth grade teachers.29 So while the magnitude of the bias in the overall estimate
of teacher dispersion isn’t terribly large, the within grade biases are significantly
greater. For example, the adjusted variance of third grade teachers is 0.055 in the
accumulation model and 0.046 in the levels framework. This gap is four times the
size of the gap in the estimates of the overall dispersion in teacher quality.

While the biases in the estimated dispersion of teacher quality resulting from the
levels and growth models are important, perhaps more important from a policy
perspective are the biases in the individual estimates of teacher quality. Many states
are currently debating proposals to use value-added estimates of teacher quality to
inform important personnel decisions. Thus policymakers, schools, and particularly
teachers want to ensure that estimated teacher value-added is accurate. Section II.B
discusses the fact that the accuracy of the levels and growth models in estimating
teacher value-added will depend on the cross-grade correlation in teacher quality.
When the cross-grade correlation in teacher quality is positive, the levels model will
yield teacher value-added estimated that are highly correlated with the truth, while
the growth model will likely perform significantly worse. The empirical results are
consistent with this theoretical finding. The correlation in estimated teacher quality
across the accumulation model and the levels model is 0.97, 0.96, and 0.98 for the
third, fourth, and fifth grade teachers respectively. The corresponding numbers for
the growth model are significantly lower at 0.96, 0.90, and 0.83.

To put the biases in the individual estimates of teacher quality in perspective I
perform the following simple thought experiment. Imagine a policy was put in place
in 2007 to monetarily reward teachers who perform at an effectiveness level one

28. Note that the results in Table 1 indicate that when the correlation in teacher quality across grades is
equal to 0.12, both the levels and growth models tend to understate the overall variation in teacher quality.
However, this is the true correlation in teacher quality across grades, while the result from the North
Carolina sample is an unadjusted estimate of the cross-grade correlation. In addition, in the Monte Carlo
exercises the variance in teacher quality and the cross-grade correlation in teacher quality are constant
across grades, neither of which appears to be true in the data.
29. In the growth framework the estimates of teacher quality for third grade teachers should be identical
to the estimates from the accumulation model. However, in the sample teachers actually switch grades
across years, leading to a very slight upward bias in the dispersion of the third grade teacher effects.
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standard deviation above the mean. Using the same data utilized in this paper, a
policy maker estimates teacher quality for the entire population of fifth grade teach-
ers in 2007 using either a levels or growth model. The question is how many teachers
receive the bonus when they shouldn’t and how many fail to receive the bonus when
they should? For the levels model, both numbers are small; 1.7 percent of teachers
fail to receive the bonus when they should while 1 percent of teachers are unjustly
rewarded. If the policy maker relied on the growth model, 2.1 pecent of teachers
who should have received a bonus do not, while 7.9 percent of teachers are unjustly
rewarded. Overall, close to 10 percent of the 2007 fifth grade teachers would be
misclassified in the growth framework.

The results from the baseline model are useful for illustrating the shortcomings
of the basic levels and growth models. However, even the baseline accumulation
model makes a number of strong assumptions that can be easily relaxed. The next
section shifts the focus from contrasting the accumulation model with the basic levels
and growth frameworks to analyzing more robust models of student achievement.

B. Heterogenous Persistence and Time-Varying Teacher Quality

The baseline model assumes that teacher inputs persist at a constant geometric rate
and that teacher and student ability are time invariant. In this section I relax these
assumptions by allowing for more flexible persistence patterns and including time-
varying teacher and student characteristics that are informative for student achieve-
ment.

The assumption that teacher inputs persist at a constant geometric rate is useful
in that the cumulative nature of the production process can be captured by one
parameter. However, if the persistence patterns are more nuanced, then not only are
the conclusions about the lasting effects of teachers misguided, but the estimated
teacher effects themselves will be biased. As a check on this assumption I reestimate
the accumulation model allowing for separate short- and long-term persistence rates.
The short-term persistence rate is the persistence of teacher inputs after one year,
while the long-term rate is then constant for all additional years. The achievement
equation takes the following form,

g−2

A = α + ∑ I T + δ ( ∑ I T ) + ∑ δ ( ∑ I T ) + ε(18) ijg i ijg jg 1 ij(g−1) j(g−1) 2 ijg ′ jg ′ ijg
∈ ∈ ∈j J j J g ′ = 1 j Jg g−1 g ′

where ranges from 3 to 5, with a baseline achievement observation in grade 2.g
Estimates of the short- and long-term persistence rates for math and reading out-

comes are shown in the left hand panels of Tables 6 and 7. In practice, the estimated
rates do not differ much from those generated using the estimated geometric rate in
the baseline model.30 At least in this setting, it appears that the constant geometric
persistence rate is not a bad assumption, though with a longer panel of achievement
outcomes it might be possible to recover more interesting patterns of teacher per-
sistence.

30. The fact that the estimated teacher effects from the baseline model and the model with nongeometric
persistence are almost perfectly correlated also suggests that the geometric assumption in this setting is
not limiting.
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Table 6
Estimates of Extended Accumulation Models in NC: Math Outcomes

Nongeometric Persistence Rates Varying Teacher Quality

One period persistence 0.371 Teacher Persistence 0.3254
(0.006) (0.021)

Long-term persistence 0.188 No experience −0.136
(0.009) (0.0033)

One or two years
experience

−0.0137
(0.0032)

Between 3 and 5 years
experience

0.0045
(0.0021)

Graduate degree −0.0268
(0.0039)

Class size −0.0073
(0.0002)

Transfer −0.0235
(0.0019)

Repeat 0.677
(0.0041)

Lag repeat 0.617
(0.0051)

Twice lagged repeat 0.5726
(0.006)

Unadjusted2σ ,T 0.0683 Unadjusted2σ ,T 0.0668
Adjusted2σ ,T 0.0575 Adjusted2σ ,T 0.0576

Observations 2,472,252 Observations 2,472,252
R-square 0.86 R-square 0.86
Adjusted R-square 0.80 Adjusted R-square 0.81
Students 689,641 Students 689,641
Teachers 38,782 Teachers 38,782

Note: See previous table notes for sample information and Sections IIIB1 and IIIB2 for model details.
is the estimated variation in teacher value-added across all grades. Standard errors obtained by bootstrap.2σT

While the assumption that teacher effects persist at a constant geometric rate has
little effect on the overall results, the same cannot be said for the time-invariant
teacher and student ability assumptions. The right hand panels of Tables 6 and 7
present estimates of the student achievement production function that allows for
teacher ability to vary according to experience level and education, student ability
to vary with observable characteristics such as whether the student transferred
schools or is repeating a grade, and time-varying classroom attributes. Under the
assumption of a constant geometric rate of persistence, the achievement equation
now takes the following form
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Table 7
Estimates of Extended Accumulation Models in NC: Reading Outcomes

Nongeometric Persistence Rates Varying Teacher Quality

One-period persistence 0.293 Teacher persistence 0.4317
(0.013) (0.019)

Long-term persistence 0.077 No experience −0.1132
(0.018) (0.0052)

One or two years
experience

−0.0682
(0.0031)

Between 3 and 5 years
experience

−0.0332
(0.0029)

Graduate degree 0.0346
(0.0037)

Class size −0.0049
(0.0001)

Transfer −0.0228
(0.0026)

Repeat 0.5729
(0.0049)

Lag repeat 0.5246
(0.0053)

Twice lagged repeat 0.05467
(0.0057)

Unadjusted2σ ,T 0.0342 Unadjusted2σ ,T 0.0344
Adjusted2σ ,T 0.02 Adjusted2σ ,T 0.0207

Observations 2,463,093 Observations 2,463,093
R-square 0.83 R-square 0.83
Adjusted R-square 0.76 Adjusted R-square 0.76
Students 687,445 Students 687,445
Teachers 38,757 Teachers 38,757

Note: See previous table notes for sample information and Sections IIIB1 and IIIB2 for model details.
is the estimated variation in teacher value-added across all grades. Standard errors obtained by bootstrap.2σT

A = α + β X + ∑ I (T + β X )(19) ijgt i 1 igt ijgt jg 2 Tjgt∈j Jg

g−1
g−g ′+ ∑ (δ ( ∑ I (T + β X ))) + ε′ijgt jg ′ 2 T ijgt′jg ′t∈g ′ = 1 j Jg ′

where are the time-varying student and classroom attributes and are theX Xigt Tjgt

time-varying teacher attributes. Notice that the lasting effect of a teacher on a par-
ticular student now depends on what the ability of the teacher was at the time of
the teacher-student match. As written, the above achievement function assumes that
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the time-varying student and classroom attributes do not persist from one grade to
the next. However, as Tables 6 and 7 indicate, I do allow the impact of some of
these observable variables to persist.

When teacher, student, and classroom observable characteristics are added to the
model the persistence of teacher inputs declines for math outcomes and increases
significantly for reading outcomes. However, they remain in the range of 0.3 to 0.4.
The estimates of individual teacher abilities are highly correlated with the estimates
from the baseline model, 0.98 for math and 0.95 for reading. These correlations
overstate the similarities since there are a large number of teachers observed with
only one cohort of students, meaning their ability estimates should be largely un-
affected. Note that these teachers do not aid in identifying the effects of time-varying
teacher attributes.

The results pertaining to the time-varying teacher attributes, experience and edu-
cation, are quite similar to previous findings in the literature. For experience, I group
teachers into four categories: no experience, one to two years of experience, three
to five years of experience, and more than five years of experience. Conditional on
unobserved teacher ability, students assigned to a teacher with no experience will
score 14 percent and 11 percent of a standard deviation lower in math and reading
respectively relative to students assigned to a teacher with more than 5 years of
experience. In math, the experience gap closes very quickly and teachers with only
one or two years of experience perform only slightly worse than a more seasoned
teacher. For reading outcomes, even teachers with between 3 and 5 years of expe-
rience continue to under perform relative to more experienced teachers. Teachers
who receive a graduate degree tend to have lower math test scores and higher reading
test scores conditional on ability. This pattern could easily be explained if most
teachers return to school for a higher degree in something other than math. Unfor-
tunately this data is unavailable.

The impact of student and classroom characteristics is largely as expected. Class
size negatively impacts student performance conditional on teacher and student abil-
ity, however it is not economically important even contemporaneously. Similarly,
students who just transferred in to their current school perform worse relative to
years when they did not transfer, though again the effect is quite small. Because the
contemporaneous effects for these variables were small, I assume these effects do
not persist into future years. The one student characteristic that was quite important
was an indicator for whether a student was currently repeating a grade, or had
repeated a grade previously. These students tend to perform significantly better than
they did prior to being held back. This could reflect some type of catchup on the
students part, or simply a significant negative shock in the initial test score.

A nice feature of this extended model is that it isolates underlying teacher ability
independent of actual teacher experience. Thus, I can examine whether teachers with
more experience are positively or negatively selected. A priori the selection could
work either way. Highly productive teachers are more likely to receive tenure, but
these same teachers may also have high labor market productivity, making them
more likely to exit the profession. To examine this question I estimate a simple
pooled regression where the dependent variable is an indicator for whether a teacher
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exits the teaching profession permanently in any given year.31 The independent vari-
ables are experience, experience squared, grade dummy variables, and teacher ef-
fectiveness in math. In this simple framework, teacher ability is significantly nega-
tively related to exit, though the effect is small.32 For example, a one-standard
deviation increase in teacher ability for a third-grade teacher with no experience
reduces the probability of exit by 7 percent. However, it appears as if the effect is
highly nonlinear. When I include an indicator variable that captures whether a
teacher is in the 95th percentile of the teacher ability distribution, the coefficient is
positive and significant. Being in the bottom of the ability distribution also leads to
a much greater probability of exiting the profession.

VI. Conclusion

In this paper I illustrate the biases in estimates of teacher quality
associated with the strong persistence assumptions inherent in the standard levels
and growth models of student achievement. There are two key features of the data
that determine the size and direction of the bias in each model. First, the closer the
true underlying rate of teacher persistence is to zero or one, the more accurate the
levels or growth model will be. Second, the bias in the levels and growth models
tends to increase as the cross-grade correlation in true teacher value-added increases
in absolute value.

To avoid these biases, I develop a tractable model of student achievement that
explicitly accounts for both the accumulation of teacher inputs over time and the
nonrandom sorting of students to teachers. The estimation methodology is quite
flexible both in regards to the types of inputs that can be included and assumptions
regarding the persistence process. While unobserved teacher quality is assumed to
be time-invariant, teacher effectiveness can change over time as teachers accumulate
experience and additional schooling. Time-varying student and classroom attributes
can also be included in the model, with their own rates of persistence.

To deal with the computational burden of having to estimate thousands of teacher
and student effects, I pursue an iterative estimation strategy that updates portions of
the parameter space with each iteration. The updating equations stem from the first-
order conditions of the least squares problem defined by the achievement equation.
At every step of the process, the sum of squared residuals is reduced, and iterations
continue until the parameters converge.

I implement the proposed methodology using data from North Carolina’s public
primary schools. A key finding of the paper is the result that teacher inputs decay
rather quickly. There are two ways to interpret this result. First, teacher value-added
is a poor metric with which to evaluate teachers since it is not indicative of any
long-term gain in student achievement. As a result, policies that emphasize improv-
ing teacher value-added may induce teachers to decrease effort on other unobserved
metrics that have a greater permanent effect. The second interpretation is that the

31. Teachers may leave my sample but remain in the North Carolina public schools. I do not consider this
an exit. However, the results are quite similar if I instead define exit as exiting my sample.
32. Results available upon request.
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curriculum and tests are designed such that they provide relatively independent sig-
nals across grades. As long as these signals are associated with future labor market
returns, than focusing on teacher value-added may be beneficial. Differentiating be-
tween these hypotheses is left for future research.
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