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A B S T R A C T

Given the recent rise in childhood obesity, the School Breakfast Program
(SBP) and National School Lunch Program (NSLP) have received renewed
attention. Using panel data on more than 13,500 primary school students,
we assess the relationship between SBP and NSLP participation and (rela-
tively) long-run measures of child weight. After documenting a positive as-
sociation between participation and child weight, we find evidence of non-
random selection into the SBP. Allowing for such selection is sufficient to
alter the results, indicating that the SBP is a valuable tool in the current
battle against childhood obesity, whereas the NSLP exacerbates the cur-
rent epidemic.

I. Introduction

As is quite evident from recent media reports, childhood obesity is
deemed to have reached epidemic status in the US. Data from the National Health
and Nutrition Examination Survey (NHANES) I (1971–74) and NHANES 2003–
2004 indicate that the prevalence of overweight preschool-aged children, aged two
to five years, increased from 5 percent to 13.9 percent over this time period.1 Among

1. Overweight is defined as an age- and gender-specific body mass index (BMI) greater than the 95th
percentile based on growth charts from the Center for Disease Control (CDC).
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school-aged children, the prevalence has risen from 4 percent to 18.8 percent for
those aged six to eleven; 6.1 percent to 17.4 percent for those aged 12–19 years.2

In light of this, policymakers have acted in a number of different directions,
particularly within schools. Aside from these recent actions, two longstanding federal
programs have been met with renewed interest: the School Breakfast Program (SBP)
and the National School Lunch Program (NSLP). Given that more than 30 million
children are affected by these programs on a daily basis, and that the infrastructure
for these programs already exists, it is the relationship between the SBP, NSLP, and
child weight that we analyze here. Specifically, we have three objectives. First, assess
the relationship between participation in both school nutrition programs and child
weight using data collected after the most recent, large-scale reforms of the pro-
grams. Second, analyze the process by which children select into the SBP and NSLP.
Finally, assess the impact of such selection on our ability to infer a causal relation-
ship.

Our results are striking, yielding three salient findings. First, both SBP and NSLP
participation in first grade are associated with greater child weight in third grade
and a greater change in child weight between first and third grades. However, we
find strong evidence of nonrandom selection into the SBP on the basis of prekin-
dergarten weight trajectories; children who gained weight at a faster rate prior to
kindergarten are more likely to participate. Consonant with Schanzenbach (2009),
the evidence of such self-selection is much weaker for the NSLP. Finally, in nearly
all cases, the positive associations between SBP participation and child weight are
found to be extremely sensitive to nonrandom selection; even a modest amount of
positive selection is sufficient to eliminate, if not reverse, the initial results for SBP.
Moreover, allowing for modest positive selection into the SBP leads to a detrimental
effect of NSLP participation on child weight; ignoring nonrandom selection into
SBP biases the impact of the NSLP toward zero. The beneficial effect of the SBP,
and the deleterious impact of the NSLP, strengthens the findings in Bhattacharya,
Currie, and Haider (2006) and Schanzenbach (2009), respectively.

The remainder of the paper is organized as follows. Section II provides back-
ground information, both on the school nutrition programs themselves, as well as
the previous literature. Section III presents a simple theoretical framework for think-
ing about school nutrition programs. Section IV describes the empirical methodol-
ogy, data, and results, while Section V concludes.

II. Background

A detailed account of the institutional features of the SBP and NSLP
is provided in Millimet, Tchernis, and Husain (2008). Most pertinent, however, are
the nutritional requirements established by Congress in 1995 under the “School
Meals Initiative for Healthy Children” (SMI). The SMI represented the largest re-
form of the programs since their inception, and places restrictions on the nutritional
content of meals (Lutz, Hirschman, and Smallwood 1999). Schools failing to meet

2. See http://www.cdc.gov/nccdphp/dnpa/obesity/childhood/prevalence.htm.
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these restrictions are not eligible for federal funding.3 For breakfast, SMI stipulates
that no more than 30 percent of the meal’s calories be derived from fat, and less
than 10 percent from saturated fat. Breakfasts also must provide one-fourth of the
Recommended Dietary Allowance (RDA) for protein, calcium, iron, Vitamin A,
Vitamin C, and contain an age-appropriate level of calories. For lunches, the same
restrictions on fat apply, except lunches must provide one-third of the RDA for
protein, calcium, iron, Vitamin A, Vitamin C, and an age-appropriate level of cal-
ories. In addition, all meals are recommended to reduce levels of sodium and cho-
lesterol, as well as increase the level of dietary fiber.

In terms of the prior literature, the SBP and NSLP have each been studied to
some extent. These studies can be loosely categorized into three groups: (i) assess-
ments of the nutritional content of meals offered, (ii) noncausal assessments of the
association between child outcomes and (student- or school-level) participation in
the SBP or NSLP, and (iii) causal assessments of participation in the SBP or NSLP.
The third group is most relevant to our study. Within this group, Gleason and Suitor
(2003) focus on NSLP participation and use student-level fixed effects to control for
nonrandom selection. The authors find that NSLP participation increases intake of
nutrients, but also increases intake of dietary fat. Hofferth and Curtin (2005) obtain
instrumental variables (IV) estimates of the impact of NSLP participation using
public school attendance as the instrument; SBP participation is treated as exoge-
nous. The authors find no impact of either program, but the IV estimates are very
imprecise. Bhattacharya, Currie, and Haider (2006) analyze the effects of SBP avail-
ability in the school on nutritional intake, employing a difference-in-differences strat-
egy (comparing in-school versus out-of-school periods in schools participating and
not participating in the SBP). The authors conclude that SBP availability does not
impact caloric intake, but does have nutritional benefits. Finally, Schanzenbach
(2009) utilizes panel data methods, as well as a regression discontinuity (RD) ap-
proach that exploits the sharp income cutoff for eligibility for reduced-price meals,
to assess the impact of the NSLP. She finds that NSLP participation increases the
probability of being obese due to the additional calories provided by school lunches.

We add to this literature in two important ways. First, we assess the long-run
relationship between participation in both the SBP and NSLP program and children’s
weight using data after the reforms enacted under the SMI should have been fully
implemented. Second, we assess the nature of selection into both programs, and
examine the sensitivity of the estimated program effects to nonrandom selection.

III. Data

The data are obtained from the Early Childhood Longitudinal Study-
Kindergarten Class of 1998–99 (ECLS-K). Collected by the U.S. Department of

3. While the SMI required schools to follow the nutrition guidelines by the 1996–97 school year, some
schools received a waiver until the 1998–99 school year (Lutz, Hirschman, and Smallwood 1999). En-
forcement of the SMI is ultimately the responsibility of the Food and Nutrition Service (FNS) of the U.S.
Department of Agriculture. While programs are administered by state education agencies, states are required
to monitor local school food authorities through reviews conducted at least once every five years. In turn,
the FNS monitors state compliance with this review requirement.
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Education, the ECLS-K follows a nationally representative cohort of children
throughout the United States from fall and spring kindergarten, fall and spring first
grade, and spring third grade. The sample includes 17,565 children from 994 schools.

We measure participation in school nutrition programs during spring first grade.4

However, we measure the health status of each child either in spring third grade or
as the change from fall first grade to spring third grade. Thus, we are analyzing
more of the long-run relationship between child health and participation in the two
programs, as in Schanzenbach (2009).

To measure child health, we utilize data on the age (in months) and gender of
each child, as well as data on the weight and height of each child. We construct
five measures of child health: body mass index (BMI) in logs, growth rate in BMI
from fall first grade to spring third grade, change in BMI percentile over the same
time span, and indicators for overweight and obesity status, where percentiles are
determined based on age- and gender-specific growth charts.5 Children with missing
data for gender and race are dropped from our sample. Particular care was needed
to clean the data on child age, height, and weight, and this is detailed in Millimet,
Tchernis, and Husain (2008).

To control for parental and environmental factors, we include the following co-
variates in the analysis: child’s race (white, black, Hispanic, Asian, and other) and
gender, child’s birth weight, household income, mother’s employment status,
mother’s education, number of children’s books at home, mother’s age at first birth,
an indicator if the child’s mother received WIC benefits during pregnancy, region,
city type (urban, suburban, or rural), and the amount of food in the household.
Finally, we also include higher order and interaction terms involving the continuous
variables, as well as fall kindergarten measures of child health.6 Missing values for
the control variables are imputed and imputation dummies are added to the control
set.

The final sample contains 13,531 students, of which 3,074 participate in neither
the SBP nor NSLP, 3,347 participate in both, and 116 (6,994) participate in the SBP
(NSLP) only. Summary statistics are provided in Millimet, Tchernis, and Husain
(2008). The average BMI during spring third grade is 18.4, up from 16.3 in fall
kindergarten. The average growth rate in BMI over this time span is 11.2 percent,
and the average increase in BMI percentile is 1.4 units (from 61.0 to 62.4). Finally,
while 11.3 percent (25.7 percent) of entering kindergarten children were obese (over-
weight), 17.2 percent (32.3 percent) of third grade students were obese (overweight).
Also noteworthy, the observable attributes of participants and nonparticipants in the
school nutrition programs do differ. Specifically, participants in both the SBP and
NSLP are more likely to be nonwhite, reside in the south, live in a poor household

4. The relevant questions were also asked in the spring kindergarten wave. However, the fact that many
students attend half-day kindergarten programs adds an additional element of nonrandom selection into
school meal programs. In Millimet, Tchernis, and Husain (2008) we present results using participation
measured during kindergarten; the results are similar.
5. For the sake of expositional convenience, we define overweight (obese) as a BMI above the 85th (95th)
percentile. Percentiles are obtained using the -zanthro- command in Stata, which computes the age- and
gender-specific percentiles based on preepidemic distributions summarized in the 2000 CDC growth charts.
6. Except for maternal employment, all controls come from either the fall or spring kindergarten survey.
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with a less educated mother, have fewer children’s books in the home, and have a
mother who was more likely to have given birth while a teenager.

IV. Empirics

A. Preliminaries

1. Model

We begin by assessing the impact of school nutrition programs on child health
utilizing typical regressions that control for the covariates mentioned in the previous
section plus school fixed effects. The basic estimating equation is given by

y �x ��� D �� D �� �ε ,(1) is is 1 1is 2 2is s is

where is a measure of health for student in school , for all SBPy i s D �1is 1is

participants (zero otherwise) and for all NSLP participants (zero otherwise),D �12i

are school fixed effects, and is a mean zero error term. For OLS estimation� εs is

of Equation 1 to yield a consistent estimate of and , participation in the SBP� �1 2

and NSLP must be independent of the error term conditional on and . The schoolx �
fixed effects account for school-level unobservables potentially correlated with the
availability of and participation in school nutrition programs. In addition, measuring
child weight as the change from first to third grade in some specifications, and the
inclusion of lagged dependent variable terms in in all specifications, accounts forx
time invariant student-level attributes as well.

2. Results

Estimates are presented in Table 1. Column 1 utilizes the full sample, while the
specifications in Columns 2 and 3 relax the assumption that school nutrition pro-
grams (and the control variables) have identical effects across children. Since chil-
dren entering kindergarten overweight or obese are the most likely targets of any
policies designed to combat the recent rise in childhood obesity, we allow for het-
erogeneous effects by risk type. Column 2 estimates Equation 1 using the subsample
of children entering kindergarten with a BMI below the 85th percentile (“normal”
weight); Column 3 uses the subsample of students entering with a BMI between
above the 85th percentile (“overweight” or “obese”).

While we do not wish to interpret the baseline results in a causal manner, two
findings are noteworthy. First, in the full sample, SBP and NSLP participation are
both associated with greater child weight in third grade. For example, participants
in either program roughly experience a 0.6 percent gain in BMI from first to third
grade and are 3.1 percent more likely to be overweight in third grade. Second,
dividing the sample by risk type yields different inferences. In the subsample of
children entering kindergarten in the normal weight range, we find a stronger positive
association between SBP participation and child weight in third grade. However, in
the subsample of children entering kindergarten in the overweight and obese sample,
we fail to find any statistically meaningful association between SBP participation
and child weight in third grade; the association between child weight and NSLP
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Table 1
Preliminary Results: School Fixed Effects

Full Sample Risk Type

Normal Weight
Range Entering

Kindergarten

Overweight or
Obese Entering

Kindergarten
(1) (2) (3)

I. BMI: logs
School breakfast 0.009* 0.011* 0.004

(0.003) (0.004) (0.007)
School lunch 0.010* 0.008† 0.021*

(0.003) (0.003) (0.007)
II. BMI: growth rates

School breakfast 0.006* 0.007* 0.003
(0.002) (0.003) (0.005)

School lunch 0.006* 0.005† 0.013†
(0.002) (0.002) (0.005)

III. Percentile BMI: changes
School breakfast 0.794† 0.855‡ �0.132

(0.380) (0.498) (0.530)
School lunch 0.709* 0.787‡ 1.051‡

(0.360) (0.458) (0.541)
IV. Probability of being overweight

School breakfast 0.031* 0.041* �0.014
(0.010) (0.012) (0.021)

School lunch 0.031* 0.022† 0.062*
(0.009) (0.010) (0.024)

V. Probability of being obese
School breakfast 0.022* 0.020* 0.026

(0.008) (0.007) (0.025)
School lunch 0.023* 0.009 0.068*

(0.007) (0.006) (0.023)

NOTES: ‡ p�0.10, † p�0.05, * p�0.01. Standard errors are in parentheses. Dependent variable in
Panels II and III represent the change from fall first grade to spring third grade; all other dependent variables
are measured in spring third grade. Additional controls in each model: age, gender dummy, child’s birth-
weight, four race dummies, two city type dummies, three region dummies, three dummies for mother’s
age at first birth, dummies for whether mother received WIC benefits during pregnancy, five mother’s
education dummies, two dummies for mother’s current employment status, household income, number of
children’s books in the household, three dummies for the amount of food in the household, the lagged
dependent variable (from the fall kindergarten wave), quadratic and cubic terms of all continuous variables,
the complete set of pairwise interactions among the continuous variables, the complete set of pairwise
interactions between the binary lagged dependent variable (Panels IV and V only) and the continuous
variables, and school fixed effects. Panels IV and V are estimated using a linear probability model. N �
13,531 (full sample); N � 10,052 (Normal); N � 3,479 (Overweight or Obese). See text for more details.
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participation is positive and statistically and economically meaningful. For example,
NSLP participation is associated with a 6.8 percent increase in the probability of
being obese in third grade.

In sum, the preliminary results are consistent with an equal, positive association
between SBP and NSLP participation and child weight, but different associations
across subsamples defined by risk type. However, each subsample yields a positive
association between at least one of the programs and third grade child weight; the
results differ, though, in terms of to which program the positive effect is attributed.

B. Nonrandom Selection into School Nutrition Programs

Because the preliminary estimation results are susceptible to bias from selection on
student-level unobservables that affect weight trajectories (as opposed to weight in
levels), we first look for evidence of self-selection into either program on the basis
of such trajectories. After this, we assess the sensitivity of the preliminary results to
such selection utilizing the methods developed in Altonji, Elder, and Taber (2005).

1. Preprogram Health Outcomes

Despite controlling for time invariant student-level attributes in the baseline model,
the estimates will be biased if there is positive selection into either program on the
basis of expected future changes in child weight. We explore this possibility by
examining selection into the programs on the basis of weight growth prior to kin-
dergarten.

To proceed, we follow the strategy of Schanzenbach (2009) and reestimate our
models using the growth rate in weight from birth to kindergarten entry as the
dependent variable.7 In the full sample, we obtain positive, statistically significant
coefficients for both programs, although the association is stronger for SBP
( , s.e. ; , s.e. ). When we split the sample� �0.015 �0.005 � �0.009 �0.004SBP NSLP

risk type, we continue to obtain a strong statistical association between SBP partic-
ipation and weight trajectories prior to kindergarten; NSLP participation is at best
weakly related to weight growth prior to kindergarten.8

These findings suggest that the estimated effects of SBP participation reported in
Table 1 are upward biased. Equally important, however, is the fact that not only
does positive selection into the SBP bias the regression coefficients on SBP partic-
ipation upward, it most likely biases the regression coefficients on NSLP partici-
pation downward given the positive covariance between SBP and NSLP participa-
tion. Thus, despite the lack of overwhelming evidence of any direct selection bias
associated with NSLP participation, particularly once we condition on risk type,

7. The specifications used are analogous to those in Table 1, with the addition of child height measured
during fall kindergarten (along with corresponding higher order and interaction terms) as covariates and
the omission of child birth weight as a covariate. In addition, we drop observations for which birtweight
is missing.
8. For children entering kindergarten in the normal weight range, we obtain )� �0.015 (s.e.�0.005)SBP

and . For children entering kindergarten either overweight or obese, we obtain� �0.007 (s.e.�0.004)NSLP

and ).� �0.023 (s.e.�0.009) � �0.002 (s.e.�0.009)SBP NSLP
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failure to address selection into the SBP biases the estimates of the NSLP effect.9

To quantify exactly how sensitive the results are to selection into the SBP program,
we turn to the methods developed in Altonji, Elder, and Taber (2005).

2. Bivariate Probit Model

To assess the impact of positive selection into the SBP, we first employ the bivariate
probit model utilized in Altonji, Elder, and Taber (2005). The model is given by

y �I(x � �� D �� D �ε �0)(2) i i 0 1 1i 2 2i i

D �I(x � �� D �� �0)1i i 0 2 2i i

where is the indicator function, , is a binary measure ofI(•) ε,� � N (0,0,1,1,�) y2

child weight, and and represent SBP and NSLP participation, respectively.D D1 2

The set of covariates, , is identical to Table 1 when we use the full sample, butx
excludes the lagged variable terms when we split the sample by risk type. The
parameter captures the correlation between unobservables that impact child weight�
and the likelihood of SBP participation; implies positive selection on unob-� �0
servables.

Given the bivariate normality assumption, the model is technically identified even
absent an exclusion restriction. However, to assess the role of selection into the SBP
without formally relying on the distributional assumption, Altonji, Elder, and Taber
(2005) constrain to different values and examine the estimates of the remaining�
parameters. Here, we set to 0, 0.1, . . . , 0.5, representing an increasing amount�
of positive selection on unobservables into the SBP. The results are presented in
Table 2.

The results are dramatic. First, across both outcomes and all data samples, the
positive effect of SBP participation disappears when , and is negative and��0.1
statistically significant in all cases when . Second, consistent with our earlier� �0.2
hypothesis, the coefficients on NSLP increase with ; in most cases, the positive�
coefficient on NSLP participation is statistically significant in all specifications when

.� �0.2
In sum, the results indicate that the positive associations documented earlier be-

tween SBP participation and child weight are extremely sensitive to selection on
unobservables; even a modest amount of positive selection eliminates or even re-
verses the previous results. In addition, allowing for positive selection into the SBP
indicates that the NSLP leads to greater child weight. Thus, conditioning on SBP
participation, but allowing for positive selection into the SBP, yields NSLP effects
that are consistent with the contemporaneous relationship documented in Schanzen-
bach (2009) using alternative methodologies. Our findings are also consistent with
findings from the SNDA-2 analysis of school meals conducted in 1998–99. The
SNDA-2 study found that the average percent of calories derived from fat (saturated

9. For simplicity, consider the simple regression model , where $x$ includes only SBP andy���x��ε
NSLP participation dummies. The expectation of the OLS estimate, , equals .�1ˆlim E[�] ��(x �x) x �ε
Assuming and , conditional on the other element of , andlim Cov(SBP,ε)�0 lim Cov(NSLP,ε)�0 x

, one can show that ( ) is biased up (down).ˆ ˆlim Cov(SBP, NSLP)�0 � �SBP NSLP
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Table 2
Sensitivity Analysis: Bivariate Probit Results with Different Assumptions
Concerning Correlation Among the Disturbances

Correlation of the Disturbances

��0 ��0.1 ��0.2 ��0.3 ��0.4 ��0.5

I. Full sample
A. Probability of being overweight

School breakfast 0.098* �0.069† �0.235* �0.402* �0.569* �0.736*
(0.034) (0.034) (0.034) (0.033) (0.033) (0.032)

School lunch 0.108* 0.133* 0.158* 0.184* 0.212* 0.241*
(0.033) (0.033) (0.033) (0.033) (0.033) (0.032)

B. Probability of being obese
School breakfast 0.116* �0.050 �0.216* �0.383* �0.550* �0.718*

(0.039) (0.039) (0.039) (0.038) (0.037) (0.036)
School lunch 0.100† 0.126* 0.153* 0.183* 0.216* 0.252*

(0.040) (0.040) (0.039) (0.039) (0.039) (0.038)

II. Normal weight entering kindergarten
A. Probability of being overweight

School breakfast 0.129* �0.038 �0.204* �0.370* �0.536* �0.701*
(0.041) (0.040) (0.040) (0.039) (0.038) (0.037)

School lunch 0.092† 0.116* 0.143* 0.172* 0.204* 0.239*
(0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

B. Probability of being obese
School breakfast 0.144† �0.023 �0.189* �0.355* �0.523* �0.693*

(0.058) (0.058) (0.057) (0.056) (0.055) (0.053)
School lunch 0.054 0.080 0.111‡ 0.146† 0.186* 0.232*

(0.059) (0.059) (0.059) (0.059) (0.058) (0.057)

III. Obese or overweight entering kindergarten
A. Probability of being overweight

School breakfast 0.015 �0.151† �0.317* �0.485* �0.654* �0.824*
(0.065) (0.065) (0.064) (0.063) (0.062) (0.060)

School lunch 0.150† 0.174* 0.195* 0.215* 0.233* 0.248*
(0.062) (0.062) (0.062) (0.062) (0.062) (0.062)

B. Probability of being obese
School breakfast 0.077 �0.089 �0.255* �0.421* �0.588* �0.753*

(0.057) (0.057) (0.056) (0.056) (0.054) (0.052)
School lunch 0.120† 0.144† 0.168* 0.191* 0.214* 0.236*

(0.057) (0.057) (0.056) (0.056) (0.056) (0.056)

NOTES: ‡ p�0.10 † p�0.05 * p�0.01 Standard errors are in parentheses. Control set used is identical
to Table 1, except for the omission of school fixed effects and the omission of the lagged dependent
variable terms (Panels II and III only). See Table 1 and text for details.
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fat) was 3 percent (12 percent), which still exceeds the requirements instituted under
the SMI. Breakfasts, on average, met the SMI requirements, deriving 26 percent
(9.8 percent) of calories from fat (saturated fat).10 Moreover, a vast research touts
the importance of eating breakfast; skipping breakfast is associated with overall
higher caloric intake (for example, Morgan, Zabik, and Stampley 1986; Stauton and
Keast 1989). On the other hand, the FNS found that even a dietitian could not select
a low fat lunch provided by the NSLP in 10–35 percent of schools.

Prior to continuing, a few comments are warranted. First, while the Altonji, Elder,
and Taber (2005) approach is informative, it does provide a different type of infor-
mation than applied researchers are accustomed. Specifically, we are not arriving at
point estimates of the effects of participation. While that should be the goal of future
work, obtaining consistent point estimates of the effect of participation (as opposed
to program availability, as in Bhattacharya, Currie, and Haider 2006) requires a valid
instrument. While the RD strategy pursued in Schanzenbach (2009) is promising,
one might worry that the treatment effect being identified is only valid for students
near the income thresholds used in the subsidy eligibility rules. Thus, the point
estimates may not apply to a student chosen at random from the population. In light
of this, we believe the preceding analysis to offer valuable insight: Modest positive
selection into the SBP implies a beneficial effect of participation on child health and
an adverse effect of NSLP participation.

Second, while we do not know the true value of (and, indeed, cannot know it�
absent a valid exclusion restriction or reliance on the bivariate normality assump-
tion), a value around 0.1–0.2 does not seem unreasonable since important factors,
such as parental height and weight, family size, and genetic endowments, are not
included in the set of observables. Moreover, we did estimate the bivariate probit
models without constraining ; thus, the models are identified from the parametric�
assumption. We obtain estimates of between 0.21 and 0.27 in the full sample and�̂
subsample of children entering kindergarten overweight or obese, and between 0.37
and 0.41 for children entering kindergarten in the normal weight range.

Finally, we exploited the identification strategy used in Schanzenbach (2009).
Specifically, we used binary indicators for having a household income below 130
percent and 185 percent of the federal poverty line as exclusion restrictions and we
augmented to include a fourth order polynomial for the ratio of household incomex
to the poverty line. The estimates of are quite similar, albeit the exclusion restric-�
tions are only statistically significant at conventional levels in the subsamples defined
by risk type.

3. Extent of Selection on Unobservables

Altonji, Elder, and Taber (2005) offer an alternative method for assessing the role
of unobservables, applicable to continuous outcomes as well. Intuitively, the idea is
to assess how much selection on unobservables there must be, relative to the amount
of selection on observables, to fully account for the positive association between

10. See also http://www.iom.edu/Object.File/Master/31/064/Jay%20Hirschman.IOM%20Presentation.Oct%
2026%202005.pdf.
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SBP participation and child weight under the null hypothesis of no average treatment
effect.

The (normalized) amount of selection on unobservables is formalized by the ratio

E[	⎪D �1]�E[	⎪D �0]1 1(3)
Var(	)

where denotes SBP participation as above and captures unobservables in theD 	1

outcome equation (that is, in Equation 1). Similarly, the (normalized) amount��ε
of selection on observables is formalized by the ratio

˜ ˜E[x �⎪D �1]�E[x �⎪D �0]o 1 o 1(4) ˜Var(x �)o

where is the set of observables included in the outcome equation ( ) and inx x Do 2

Equation 1) and is the corresponding parameter vector. The goal is to assess how�̃
large the selection on unobservables in Equation 3 must be relative to the selection
on observables in Equation 4 to fully account for the positive association between
SBP and child weight documented in Table 1.

To begin, express actual SBP participation as

D �x ���(5) 1i oi i

and substitute this into Equation 1. Equation 1 becomes

˜y �x (��� �)�� � �	 .(6) i oi 1 1 i i

The probability limit of the OLS estimator of in Equation 6 is given by�1

Cov(�,	) Var(D )1plim �̂ �� � �� � {E[	⎪D �1]�E[	⎪D �0]}.(7) 1 1 1 1 1Var(�) Var(�)

Under the assumption of equal normalized amounts of selection on observables and
unobservables, the bias term in Equation 7 is

˜ ˜Cov(�,	) Var(D ) E[x �⎪D �1]�E[x �⎪D �0]1 o 1 o 1� Var(	) .(8) � �˜Var(�) Var(�) Var(x �)o

Under the null hypothesis that , can be consistently estimated from Equation˜� �0 �1

6 using either OLS or a probit model and constraining to be zero. Using the�1

estimated and variance of the residual (which is unity when Equation 6 is esti-�̃
mated via probit), along with sample values of and yields an esti-Var(D ) Var(�)1

mate of the asymptotic bias under equal degrees of selection on observables and
unobservables.

Dividing the unconstrained estimate of from Equation 6 by Equation 8 indicates�1

how much larger the extent of selection on unobservables needs to be, relative to
the extent of selection on observables, to entirely explain the treatment effect. If this
ratio is small, the implication is that the treatment effect is highly sensitive to se-
lection on unobservables. As discussed in Altonji, Elder, and Taber (2005), if one
conceptualizes the set of variables included in as a random draw of all factorsxo



Millimet, Tchernis, and Husain 651

affecting child weight (with the remaining factors being captured by ) and no factorε
(observed or unobserved) plays too large of role in the determination of child weight,
then the estimated treatment effect should be interpreted as not robust if the ratio is
less one.

The results are given in Table 3. Across all samples and measures of child health,
the ratio is never greater than 0.37 and often smaller than 0.08. Thus, if the (nor-
malized) amount of selection on unobservables is even one-quarter the (normalized)
amount of selection on observables, and often even 10 percent, the positive effects
of SBP participation are completely explained.

As in the bivariate probit model, this model does not yield point estimates of the
treatment effect. Nonetheless, it provides very useful information consonant with the
bivariate probit findings: Even a modest amount of selection on unobservables is
sufficient to explain the positive association between SBP participation and child
weight.

C. Final Robustness Checks

We perform two final robustness checks of our analysis. First, because the 116
responses indicating participation in the SBP, but not the NSLP, may reflect mea-
surement error, or students sufficiently different from the remainder of the sample,
we redid the analysis omitting these observations. The results are unaffected and are
available upon request.

Second, we estimate the average treatment effect (ATE) of each program using
propensity score matching (PSM). Now quite commonplace in economics and other
disciplines, PSM estimation yields three potential benefits over regression methods
(Smith and Todd 2005). First, it is a semiparametric estimator in that one does not
need to specify a functional form for potential outcomes. Second, issues of common
support are explicitly addressed.11 Third, the robustness of PSM estimates to selec-
tion on unobservables may be gauged using Rosenbaum bounds (Rosenbaum 2002).

In the interest of brevity, and because Rosenbaum bounds have become more
widely used in economics, we do not provide the formal details. Instead, we note
that the objective is to obtain bounds on the significance level of a one-sided test
for no treatment effect under different assumptions concerning the role of unob-
servables in the treatment selection process. Specifically, upper bounds on the p-
value for the null of zero average treatment effect are obtained for different values
of , where reflects the relative odds ratio of two observationally identical childrenC C
receiving the treatment. Thus, is unity in nonexperimental data free of “hiddenC
bias” from selection on unobservables; higher values of imply an increasinglyC
important role of unobservables. For example, implies that observationallyC�2
identical children can differ in their relative odds of treatment by a factor of two.

Results are omitted for brevity, but confirm the findings presented here (see Mil-
limet, Tchernis, and Husain 2008). Specifically, the PSM estimates indicate a posi-

11. To implement the PSM estimator, we use kernel weighting with the Epanechnikov kernel, a fixed
bandwidth of 0.10, and imposing the common support. Standard errors are obtained using 100 repetitions.
We perform the analysis twice, once using SBP participation as the treatment, , and once using NSLPD1

participation as the treatment, .D2
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Table 3
Sensitivity Analysis: Amount of Selection on Unobservables Relative to Selection
on Observables Required to Attribute the Entire SBP Effect to Selection Bias

Cov(ε,
)�Var(
) �1 Implied Ratio

I. Full Sample
BMI: logs 0.027 0.010 0.368

(0.003)
BMI: growth rates 0.123 0.007 0.053

(0.002)
Percentile BMI: changes 4.116 0.733 0.178

(0.342)
Probability of being overweight 0.365 0.026 0.072

(0.009)
Probability of being obese 0.454 0.022 0.048

(0.007)
II. Normal weight entering kindergarten

BMI: logs 0.065 0.010 0.160
(0.003)

BMI: growth rates 0.185 0.007 0.037
(0.002)

Percentile BMI: changes 4.395 0.949 0.216
(0.440)

Probability of being overweight 4.420 0.034 0.008
(0.010)

Probability of being obese 2.569 0.016 0.006
(0.006)

III. Obese or overweight entering kindergarten
BMI: logs 0.044 0.011 0.247

(0.006)
BMI: growth rates 0.182 0.007 0.040

(0.004)
Percentile BMI: changes 6.074 0.209 0.034

(0.423)
Probability of being overweight 1.621 0.005 0.003

(0.018)
Probability of being obese 0.404 0.032 0.079

(0.019)

Notes: Standard errors in parentheses. Control set used is identical to Table 1, with the addition of NSLP
participation and the omission of school fixed effects. Cov(ε,
)�Var(
) refers to the asymptotic bias of
the unconstrained estimate under the assumption of equal (normalized) selection on observables and unob-
servables. �1 refers to the unconstrained estimate of the effect of SBP participation. The implied ratio is
the latter divided by the former. See Table 1 and text for details.



Millimet, Tchernis, and Husain 653

tive and statistically significant association between participation in either program
and child weight. However, the results are not found to be robust. In the vast majority
of cases, the positive effects of SBP participation are sensitive to hidden bias if

. In the PSM literature, is usually interpreted as “small,” implying thatC �1.6 C �2
our PSM estimates are not robust.

V. Conclusion

Given the importance of breakfast, as well as the nutritional require-
ments imposed on schools under the SBP and the NSLP, these programs are viewed
by many as a crucial component of attempts to combat childhood obesity. That said,
empirical research on the causal impact of these programs after the reforms instituted
under the School Meals Initiative for Healthy Children has been lacking. Using panel
data on more than 13,500 students from kindergarten through third grade, we assess
the relatively long-run relationship between SBP and NSLP participation and child
weight.

Our analysis yields a consistent picture of the effects of school nutrition programs.
First, SBP participation is likely related to unobservables correlated with trajectories
for child weight (in addition to child weight in levels), whereas there is much weaker
evidence that NSLP participation is affected by selection on unobservables (particu-
larly after conditioning on risk type). Second, ignoring this selection biases estimates
of the average treatment effect of SBP (NSLP) participation upward (downward)
regardless of whether one examines measures of child weight in levels or changes.
Finally, allowing for even modest positive selection into the SBP is sufficient to
yield a negative (positive) causal effect of SBP (NSLP) participation on child weight.
Thus, consonant with the results in Bhattacharya, Currie, and Haider (2006) and
Schanzenbach (2009), the analysis does not point to the SBP as a contributing factor
to the current obesity epidemic, and the SBP may actually constitute a valuable tool
in the battle, but the NSLP is contributing to the problem.

Future work is warranted to address two key questions. First, are exclusion re-
strictions available in order to identify consistent estimation of the causal effects of
participation in the SBP and NSLP? Second, what are the mechanisms by which the
NSLP appears to be contributing to the rise in childhood obesity?
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