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ABSTRACT

The characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and the variation of the gas-particle
partitioning of PCDD/Fs near two municipal solid waste incinerators (MSWIs) located in southern Taiwan were investigated.
In order to better understand the mechanism of dry deposition, the atmospheric dry deposition flux and velocity of PCDD/Fs
were calculated. It was found that the mean atmospheric PCDD/F concentrations (0.0386-0.106 pg I-TEQ/Nm®) were
comparable to those detected in the vicinity of MSWIs in Taiwan, but significantly lower than those in a highly industrialized
urban area (0.15 pg I-TEQ/Nm’) located in southern Taiwan. The relatively higher atmospheric PCDD/F concentrations was
found in winter than in summer, probably because of several loss process including photolysis, chemical reactivity, wet and
dry deposition, and scavenging by vegetation. The calculated total dry deposition flux of PCDD/Fs ranged from 0.0274-0.718
ng I-TEQ/m*-month, and the atmospheric deposition flux in winter tended to be higher than those in summer. The results also
indicated that dry deposition velocities of atmospheric particles for each month ranged from 0.52—-0.91 cm/s (mean = 0.63
cm/s) and 0.48-0.73 cm/s (mean = 0.55 cm/s) in sites A and B, respectively, which were similar to that for the ambient air
near two MSWIs in Taiwan, but slightly higher than those in urban area of Korea. In addition, the dry deposition of PCDD/Fs
was mainly contributed by particle-phase at both sampling areas during the estimated period. The above results demonstrated
that the dominant mechanism of dry deposition was particle phase deposition.
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INTRODUCTION

Polychlorinated dibenzo-p-dioxins and dibenzofurans
(also known as PCDD/Fs or dioxin) have received much
public concern over the last decade due to their potential
adverse health effects, such as reproductive difficulties and
increased risk of cancer. Since PCDD/Fs are persistent,
lipophilic, and bioaccumulative, they can be slowly reduced
by photodegradation (Eitzert et al., 1989). As a result, they
can remain in the environment for long periods and tend to
accumulate in food chains. PCDD/Fs are semi-volatile
organic compounds, which are similar to PAHs, PCBs and
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PBDD/Fs and exited in both gas and particle phases in the
ambient air and in the stack flue gases (Lee ef al., 1996;
Lai et al., 2007; Chen et al., 2011). In general, PCDD/Fs
released to the atmosphere are mainly from anthropogenic
activities, particularly from various forms combustions or
other thermal processes involving organic matters and
chlorine (Rappe, 1993; Wang et al., 2003). The important
sources of PCDD/Fs have been reported as the waste
incinerators (Wang et al., 2008; Wu et al., 2009), power
plants (Lin et al., 2007; Lin et al., 2010b; Wu et al., 2010),
electric arc furnaces (EAFs) (Lee et al., 2004; Lee et al.,
2005; Chiu et al, 2011), secondary aluminum smelters
(ALS), crematories (Chiu et al., 2011), vehicles (Chuang et
al., 2010), and woodchip-fuelled boilers (Chen et al., 2011).
Atmosphere is a major medium for the transport of
pollutants from combustion sources to terrestrial and aquatic
environments (Jurado et al., 2004; Fang et al., 2011; Oh et
al.,2011; Yeh et al., 2011). Lohmann et al. (2000) reported
that PCDD/Fs in air are primarily subjected to dispersion
and deposition. Dry deposition depends significantly on
the gas-particle distribution of PCDD/Fs (Oh et al., 2001).
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Gas-phase (vapor phase) PCDD/Fs were observed to be
depleted from the atmosphere due to photochemical
degradation reactions (Tysklind et al. 1993), while particle-
bound PCDD/Fs deposition accounted for most of the
atmospheric flux to the ecosystem (Lohmann and Jones,
1998). Furthermore, deposition of PCDD/Fs in air can be
divided into dry deposition (gaseous, particulate) and wet
deposition, both deposition processes contribute significantly
to the removal of atmospheric PCDD/Fs (Koester and
Hites, 1992).

Several studies have been carried out in Taiwan to
investigate atmospheric PCDD/F deposition from relevant
sources. Shih er al. (2006) reported the atmospheric dry
deposition flux of total PCDD/Fs in rural area averaged
150 pg/m*/day, and the calculated dry deposition velocity
of total PCDD/Fs was 0.42 cm/s. The mean dry deposition
fluxes of total PCDD/Fs ranged from 9.81-29.1 pg
I-TEQ/m’-day for the four investigated sites (a commercial
suburban area, an industrial area, a coastal area, and an
agricultural rural area), while those of wet deposition
ranged from 19.2-47.8 pg I-TEQ/L (Wang et al., 2010).
Results indicated that the dry deposition of PCDD/Fs is
more important than the wet deposition of PCDD/Fs to the
total PCDD/F distribution in the environment. In addition,
significant influence of atmospheric deposition of PCDD/Fs
on tap drinking water has been addressed (Lin ez al., 2010a).
Therefore, knowledge of the characteristics of PCDD/Fs
deposition is essential for observing subsequent fate of
PCDD/Fs in the environment.

In order to clarify the important features, this study
investigates the atmospheric PCDD/F concentration and

the variation of the gas-particle partitioning of PCDD/Fs in
the vicinity of two municipal solid waste incinerators
(MSWIs) located in a rural area of Taiwan. The monthly
dry deposition fluxes were determined by model
calculations. Estimated monthly dry deposition velocities
of PCDD/Fs were then calculated by using the PCDD/F
concentrations and dry deposition fluxes data.

MATERIALS AND METHODS

PCDD/F Sampling

Two municipal solid waste incinerators (MSWIs)
situated in a rural area of southern Taiwan were taken for
the treatment of municipal solid wastes generated from the
whole city with a population of 1.24 millions. The basic
information for these two MSWIs was shown in Wu et al.
(2009). Sites A and B with maximum ground
concentration of PCDD/F from the emissions of two
MSWIs, respectively, were found by the Industrial Source
Complex Short Term Model (ISCST). As a result, a total
of 16 ambient air samples were collected at two sites (Sites
A and B) twice separately, during July 2009 and January
2010. Mean temperature and total suspended particulate
(TSP) concentration during July 2009 and January 2010
are listed in Table 1. Meteorological information and TSP
concentrations during the periods from July 2009 to June
2010 are given in Table 2. All meteorological information
for sampling sites was obtained from the Meteorological
Bureau in Kaohsiung City.

PCDD/F concentrations in ambient air samples were
collected simultaneously by using a PS-1 sampler (Graseby

Table 1. Mean temperature and total suspended particulate (TSP) concentration during the sampling periods.

. . . . Mean Temp. TSP
Sampling site Sampling Period Q) (ue/m’)
A July 20-23, 2009 31.0 43
January 18-20, 2010 223 142
B July 27-30, 2009 313 34
January 1921, 2010 25.0 166

Table 2. Meteorological information (temperature, wind speed and sunny days) and total suspended particulate (TSP)
concentrations (ug/m’) during the periods from July 2009 to June 2010.

TSP (ug/m’) Mean Wind Speed (m/s)
Sampling Period Mean Temp. (°C) Sampling site Sampling site Sunny Days (day)
A B A B

July, 2009 29.2 45 43 2.68 2.31 12
August, 2009 29.2 56 56 3.35 2.85 17
September, 2009 29.4 72 77 2.11 1.84 18
October, 2009 26.8 128 150 2.08 2.06 28
November, 2009 23.9 110 135 2.07 2.18 29
December, 2009 20.3 126 152 2.23 2.36 29
January, 2010 19.9 120 133 2.38 2.31 28
February, 2010 21.5 77 89 2.56 2.28 27
March, 2010 23.7 132 141 2.62 2.19 29
April, 2010 24.9 90 105 2.55 2.30 22
May, 2010 27.8 62 77 2.70 2.20 24
une, 2010 28.3 42 61 2.52 1.95 18




450 Huang et al., Aerosol and Air Quality Research, 11: 448—459, 2011

Anderson, GA, USA), following the revised U.S. EPA
Method TO9A. Each sample was collected continuously on
three consecutive days, yielding a sampling volume of about
972 m’. The PS-1 sampler was equipped with a quartz fiber
filter for sampling particle-phase compounds, and a glass
cartridge that contained PUF for sampling gas-phase ones.
Prior to sampling, a known amount of surrogate standard
(SS) was spiked to check the collection efficiency of the
sampling train. The recoveries of the PCDD/Fs surrogate
standards were 90-122%, falling within the required
70-130%.

Analyses of PCDD/Fs

Analyses of PCDD/F samples were performed in the
Super Micro Mass Research and Technology Center in
Cheng Shiu University, certified by the Taiwan EPA for
analyzing PCDD/Fs. Each sample was spiked with a
known standard and extracted for 24 h. Then, the extract
was concentrated and treated with sulfuric acid, followed
by a series of cleanup and fraction procedures. The standard
solution was added to the sample before PCDD/F analysis to
ensure recovery during analysis. A high resolution gas
chromatography with a mass spectrometer (HRGC/MS) was
used to determine the concentrations of seventeen individual
PCDD/Fs. The HRGC (Hewlett Packard 6970 Series gas,
CA) was equipped with a DB-5 fused silica capillary
column (L = 60 m, ID = 0.25 mm, and film thickness = 0.25
um) and splitless injection (J&W Scientific, CA, USA).
The oven temperature was programmed as follows: initial
temperature at 150°C (held for 1 min), increasing to 220°C
at 30 °C/min (held for 12 min), then to 240°C at 1.5
°C/min (held for 5 min), and finally to 310°C at 1.5
°C/min (held for 20 min). Helium was used as the carrier
gas. The HRMS (Micromass Autospec Ultima, Manchester,
UK) was equipped with a positive electron impact (EI+)
source. The analyzer mode was set to ion monitoring with
resolving power at 10,000. The electron energy and the
source temperature were set at 35 eV and 250°C,
respectively. The method detection limits of the seventeen
individual PCDD/Fs for ambient air samples ranged from
0.0001 to 0.0035 ng/Nm’. The recoveries for the seven
individual PCDD/Fs compounds were 75-118% (Wang et
al., 2010).

Gas-particle Partitioning

Particle and gas concentrations were calculated by
gas-particle partitioning multiplying total PCDD/Fs
concentrations. The Egs. (1)—(3), based research by Pankow
(1991), Pankow (1994), and Pankow and Bidleman, (1992)
have been used to calculate the gas-particle partitioning of
semivolatile organic compounds (especially for PAHs).
Since PCDD/Fs and PAHs are all semivolatile organic
compounds, equations which have been successfully used to
describe gas-particle partitioning of PCDD/Fs by several
researchers (Lohmann and Jones, 1998; Wu et al., 2009;
Xu et al., 2009; Lin et al., 2010a; Wang et al., 2010).

K, = F/TSP
A

M

where K, (m’/pg) is a temperature-dependent partitioning
constant, TSP (ug/m’) is the total suspended particle
concentration, and F (pg/m’) and A (pg/m’) are the
associated particulate and gaseous concentrations of
PCDD/Fs, respectively.

When the log K, is regressed against the logarithm of
the subcooled liquid vapor pressure log P;°, the partitioning
constant can be calculated as follows (Yamassaki et al.,
1982):

log K, = m, log P,° + b, 2)

where m, is the slope and b, is the y-intercept of the trend
line.
P;°was then calculated as follows (Hung et al., 2002):

log P, =#(RD+1.67XIO’3(R[)—$+8.087 3)

where R/ is the gas chromatographic retention indexes
derived by Donelly ef al. (1987) and Hale et al. (1985),
and 7 is ambient temperature (K).

Complete datasets on the gas-particle partitioning of
PCDD/Fs in Taiwan has been reported by Chao et al
(2004), giving values for m,= —1.29 and b,= —7.2 with R?
=0.94.

Atmospheric Dry Deposition of PCDD/Fs

The atmospheric dry deposition flux of PCDD/Fs is a
combination of both gas- and particle- phase fluxes, which
is given by

Fr=F,+F, “)
CT XVd,T:CgX V¢g+ C‘p>< Vd,p (5)

where F7 is the total PCDD/F deposition flux contributed
from both gas and particle phases, F, and F, are the
PCDD/F deposition flux contributed by the gas phase and
particle phase, respectively, Cr is the measured
concentration of total PCDD/F in air, V,r is the dry
deposition velocity of total PCDD/Fs, C, and C, are the
calculated PCDD/F concentrations in the gas phase and
particle phase, respectively, and V,, and V;, are the dry
deposition velocities of PCDD/Fs in the gas phase and
particle phase, respectively.

Dry deposition velocities of total PCDD/Fs have been
presented by Shih er al. (2006), which were 0.45, 0.52,
0.32, and 0.39 cm/s in spring, summer, autumn, and winter,
respectively. Values were also adopted in this study for the
calculation of the dry deposition flux of total PCDD/Fs.
Dry deposition of gaseous PCDD/Fs is mainly by diffusion.
Because of the lack of measured data for PCDD/Fs, a
selected value (0.010 cm/s) for gaseous polycyclic aromatic
hydrocarbon (PAH) dry deposition velocity, reported by
Sheu et al. (1996) and used by Lee et al. (1996), is also
used here for the calculation of PCDD/F dry deposition
flux contributed by its gas phase.
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RESULTS AND DISCUSSION

Concentrations of PCDD/Fs in the Ambient Air

Mean PCDD/F concentrations in the ambient air of two
sampling sites are shown in Table 3. The mean total
PCDD/F TEQ concentrations in the ambient air of site A
were 0.0348 pg I-TEQ/Nm® (RSD = 49.3%) and 0.106 pg
[-TEQ/Nm’® (RSD = 17.3%) in July 2009 and January 2010,
respectively. For site B, those in July 2009 and January
2010 were 0.0386 I-TEQ/Nm’ (RSD = 17.1%) and 0.0791
pg I-TEQ/Nm’ (RSD = 8.22%), respectively. Both values
were much lower than the Japanese ambient air quality
standard (JAQS) of 0.6 pg I-TEQ/Nm’ for PCDD/Fs (JAQS,
1999). The above results revealed that the atmospheric
concentrations were similar to the results of Shih et al.
(2006), which indicated that total atmospheric concentrations
collected from rural area in southern Taiwan were 0.027,
0.016, 0.024, 0.063 pg I-TEQ/Nm’ in spring, summer, fall,
and winter, respectively. The PCDD/F values are comparable
to those detected in the vicinity of two MSWIs in southern
Taiwan (Hsieh ef al., 2009; Wu et al., 2009), but lower
than those in the highly industrialized urban area also located
in southern Taiwan (0.15 pg I-TEQ/Nm’) as reported by
Lee ef al. (2004). When compared with worldwide levels,
PCDD/F I-TEQ concentrations found in this study are in
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the low range of those analyzed in the vicinity of MSWI in
Porto, Lisbon, and Madeira, Portugal (0.130 pg I-TEQ/Nm’)
(Oh ef al., 2006) and in Bucheon, Korea (0.22-1.16 pg
I-TEQ/Nm®) (Coutinho ef al., 2007). As can be seen from
the atmospheric concentrations between the two seasons,
the total I-TEQ concentration in winter (January 2010) was
2-3 times higher than in summer (July 2009), respectively,
which has been found in previous studies (Shih et al., 2006;
Lee et al., 2009; Lin et al., 2010b). As shown in Table 1,
the significantly higher TSP concentration was measured
at both sites during January 2010. The PCDD/Fs bound to
suspended particles would thus increase and then led to the
relatively higher PCDD/F concentrations in the ambient air,
particularly during winter. Additionally, it has been reported
that the atmospheric PCDD/F concentrations varied with
the seasons because of several loss process including
photolysis, chemical reactivity, wet and dry deposition, and
scavenging by vegetation (Duarte-Davidson ef al., 1997).
The congener profiles of the seventeen 2,3,7,8 chlorinated
substituted PCDD/Fs (mean + SD) detected in air of two
sampling sites are shown in Fig. 1. The profiles were
calculated according to the fraction (%) of each congener
to total PCDD/F mass concentration. Similar PCDD/F
congener profiles were observed in 16 ambient air samples
(n = 16). OCDD was the dominant congener, followed by

Table 3. Mean PCDD/F concentrations in the ambient air of sampling sites A and B, respectively.

A B
July 20-23, 2009 January 18-20, 2010 July 27-30, 2009 January 19-21, 2010
PCDD/Fs Mean3 RSD Mean3 RSD Mean3 RSD Mean3 RSD
(pg/Nm) g (PE/NM) 0 (pg/Nm) - 0 (/N
n=4 n=4 n=4 n=4

2,3,7,8-TeCDD 0.00286  31.5 0.00478  10.4 0.00274  10.0 0.00380  10.0
1,2,3,7,8-PeCDD 0.00583  44.4 0.0147 29.3 0.00546 195 0.00995  3.28
1,2,3,4,7,8-HxCDD 0.00378  41.0 0.0122 20.0 0.00385  25.1 0.00866  2.52
1,2,3,6,7,8-HxCDD 0.00657  41.4 0.0241 19.7 0.00710  26.2 0.0173 3.92
1,2,3,7,8,9-HxCDD 0.00441  37.3 0.0192 19.6 0.00507  23.1 0.0146 3.14
1,2,3,4,6,7,8-HpCDD 0.0302 35.2 0.146 22.0 0.0505 19.4 0.134 19.9
OCDD 0.116 48.0 0.350 15.7 0.307 64.5 0.341 242
2,3,7,8-TeCDF 0.0220 49.2 0.0567 10.6 0.0271 8.34 0.0429 9.48
1,2,3,7,8-PeCDF 0.0240 38.1 0.0622 11.4 0.0275 15.8 0.0457 9.70
2,3,4,7,8-PeCDF 0.0306 60.7 0.0908 17.8 0.0339 18.2 0.0651 13.8
1,2,3,4,7,8-HxCDF 0.0305 375 0.0909 16.4 0.0300 19.4 0.0699 8.69
1,2,3,6,7,8-HxCDF 0.0235 455 0.0874 14.2 0.0278 21.4 0.0652 8.74
1,2,3,7,8,9-HxCDF 0.00218  54.0 0.0149 35.2 0.00183  18.6 0.0148 5.63
2,3,4,6,7,8-HxCDF 0.0214 60.4 0.0929 19.5 0.0283 29.4 0.0751 13.2
1,2,3,4,6,7,8-HpCDF 0.0596 50.6 0.262 23.2 0.0725 27.8 0.238 7.22
1,2,3,4,7,8,9-HpCDF 0.00758  34.7 0.0500 14.1 0.00878  20.1 0.0426 13.5
OCDF 0.0393 76.5 0.166 18.8 0.0475 18.4 0.181 9.08
PCDDs 0.169 43.9 0.571 17.9 0.382 49.0 0.528 20.0
PCDFs 0.261 443 0.974 17.7 0.305 18.0 0.840 6.07
PCDDs/PCDFs ratio 0.649 18.4 0.587 2.59 1.35 67.0 0.635 24.9
Total PCDD/Fs 0.430 43.1 1.55 17.7 0.687 21.6 1.37 5.09
PCDDs (pg I-TEQ/Nm®)  0.00766  37.7 0.0195 20.0 0.00788  12.7 0.0145 4.81
PCDFs (pg I-TEQ/Nm®)  0.0272 52.9 0.0861 16.9 0.0307 18.1 0.0646 10.9
PCDDs/PCDFs ratio 0.297 15.4 0.225 4.68 0.259 7.22 0.227 15.7
Total PCDD/Fs TEQ 0.0348 493 0106 173 00386  17.1 0.0791 822

(pg I-TEQ/NmS)
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Fig. 1. Congener Profiles of PCDD/Fs in ambient air of two sampling sites.

1,2,3,4,6,7,8-HpCDF, OCDF, and 1,2,3,4,6,7,8-HpCDD,
which are consistent with those found in other studies
(Shih et al., 2006; Wang et al., 2008; Hsich ef al., 2009).

Gas-particle Partitioning of PCDD/Fs

The total TSP concentrations were found to vary in the
range of 43 to 166 pg/m’ during the sampling periods at
sites A and B (Table 1) and their corresponding PM,
concentrations were calculated according to a factor TSP:
PM,o = 1.24:1 (Sheu et al., 1996). The relationship between
PCDD/F concentration and PM,yvalue during the sampling
periods were estimated in the regression analysis as presented
in Fig. 3. It was demonstrated that the PCDD/F concentrations
were strongly related to PM;, values, and the correlation
coefficient was as high as 0.9438. Based on the regression
model and environmental conditions stated above (Table 2),
the subcooled liquid vapour pressure (P;°) and gas-particle
partitioning constant (K, for individual PCDD/F congeners
in the ambient air can be calculated and then gas-particle
partitioning can be determined. Tables 4 and 5 list the
monthly fluctuations of gas-particle partitioning of total
PCDD/Fs in the ambient air of sampling sites A and B,
respectively. The mean particulate fractions of TCDD/F,
PCDD/F, HCDD/F, and OCDD/F in the ambient air of site
A ranged from 1.2-13.5%, 3.9-46.9%, 17.6-96.5%, and

88.9-99.4%, respectively. Those of site B ranged from
1.5-18.6%, 5.6-56.3%, 23.7-97.4%, and 91.9-99.6%,
respectively. Results from both sampling sites show that
atmospheric PCDD/Fs tended to be distributed between the
gaseous and particulate phases based on molecular weight;
the higher chlorinated congener occupied a higher particulate
fraction. Moreover, PCDD homologues tended to be more
associated with particles than the equivalent PCDFs,
probably due to the slightly lower vapour pressures of
PCDDs (Rordorf, 1989). The above findings are
comparable with those reported earlier (Lohmann et al.,
1998; Chao et al., 2004; Wu et al., 2009; Xu et al., 2009;
Lin et al., 2010a).

Vapor pressure, a property strongly related to
temperature, has been reported as the main factor
influencing partition of semivolatile organic compounds
(e.g. PAHs) (Pankow, 1987). Due to the variation of
ambient temperatures during July 2009 and January 2010,
from 19.9°C-21.5°C in winter and 29.2°C-29.4°C in
summer, the PCDD/Fs bound to particles was found to
increase with decreasing temperature. As a result, the
relatively higher PCDD/Fs in the particle phase during
winter were observed. Additionally, results show that the
total PCDD/Fs is dominated by the particle-phase, while
total I-TEQ is dominated by its gas phase.
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Dry Deposition Flux of PCDD/Fs

Based on the Egs. (4) and (5), the dry deposition flux of
PCDD/Fs was calculated. In this study, the term Cr was
calculated according to the regression model shown in Fig.
2; C, and C, were determined based on the gas-particle
partitioning shown in Tables 4 and 5; V41 and V4, were
assumed; and then the unknown Vg4, can be determined.
The estimated monthly fluctuations of dry deposition fluxes
of PCDD/Fs in the ambient air of sampling sites A and B
were listed in Tables 6 and 7, respectively. Atmospheric dry
deposition fluxes of total PCDD/Fs in site A ranged from
0.186-0.718, 0.0406-0.0653, 0.118-0.431, and 0.323-0.698
ng [-TEQ/m*-month, with an average of 0.416, 0.0518, 0.325,
and 0.558 ng I-TEQ/m*-month in spring, summer, fall, and
winter, respectively. Those in site B ranged ranged from
0.181-0.708, 0.0274-0.0607, 0.0925-0.506, and 0.355-0.769
ng I-TEQ/m*-month, with an average of 0.400, 0.0455,
0.360, and 0.593 ng I-TEQ/m*month in spring, summer,
fall, and winter, respectively. The above findings are similar
to Wu’s research, which reported the mean dry deposition
fluxes of total PCDD/Fs were 18.0 and 23.5 pg I-TEQ/m’-day
in the ambient air near MSWI-GS and MSWI-RW located
in southern Taiwan (Wu et al., 2009).

Results revealed that the total dry deposition flux for
both sampling sites reached the highest level in winter and
the lowest level in summer, the total dry deposition flux
was found to decrease as the temperature increased (Fig. 3).
The observed findings are similar to those reported by Shih
et al. (2006). Authors indicated that temperature influences
the amount of PCDD/Fs that are bound to particles and
subsequently dry deposit. Results also shown that
approximately 90% of dry deposition fluxes PCDD/Fs
were contributed by particle-phase deposition in both
sampling sites. It was demonstrated that the dry deposition
of PCDD/Fs was primarily contributed by the particle
phase. This is probably because of the significantly higher
deposition velocity of particle-phase PCDD/Fs (0.32-0.52
cm/s) than that of gas-phase velocity (0.010 cm/s).

Additionally, higher chlorinated congeners were dominant
in the deposition flux for all seasons. The dry deposition
flux was most dominated by OCDD, followed by OCDF,
1,2,3,4,6,7,8-HpCDF, and 1,2,3,4,6,7,8-HpCDD. This pattern
is very similar to congener profiles of ambient concentrations
in this study and same trends have been mentioned in
previous studies (Shih ez al., 2006; Wu et al., 2009).

Dry Deposition Velocity of PCDD/Fs

Deposition velocity is a function of various parameters
related to gas-particle partitioning of PCDD/Fs in ambient
air, particle size distribution, atmospheric conditions, surface
roughness, and may vary seasonally (Chi et al., 2009). In
order to better understand the dry deposition process, the dry
deposition velocities of individual PCDD/Fs were calculated
and the monthly fluctuations of dry deposition velocities of
total PCDD/Fs in the ambient air of sites A and B were
hown in Table 8. Dry deposition velocities of total
PCDD/Fs which were assumed to be about 0.45, 0.52, 0.32,
and 0.39 cm/s in spring, summer, autumn, and winter,
respectively (Shih et al., 2006). In this study, the estimated
deposition velocities of atmospheric particles (Vg,) for
each month ranged from 0.52-0.91 cm/s (mean = 0.63
cm/s) and 0.48-0.73 cm/s (mean = 0.55 cm/s) in sites A
and B, respectively. The highest and lowest values of
atmospheric particles were observed in May 2010 and
November 2009, respectively. The deposition velocities in
particle phase were similar to that for the ambient air near
two MSWIs (0.44-0.68 cm/s) (Wu et al., 2009), but
slightly higher than those in urban site of Korea (0.49 cn/s)
as reported by Moon et al. (2005). The differences among
these deposition velocities can be attributed to the
discrepancy in sampling site and particle size distribution.

CONCLUSIONS

The mean atmospheric PCDD/F concentrations in this
investigation were comparable to those detected in the
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Fig. 2. Regression of PM,, and total PCDD/F concentration during the sampling periods.
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Fig. 3. Estimated monthly fluctuations of dry deposition fluxes of total PCDD/Fs (ng I-TEQ/m’- month) in ambient air of

two sampling sites.

Table 8. Monthly fluctuation of dry deposition velocity.

Month Ju.  Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. Jun.

2009 2009 2009 2009 2009 2009 2010 2010 2010 2010 2010 2010

Vg (cm/s) 0.01 001 001 001 001 001 001 001 001 001 001 0.01
Vyr(cm/s) 032 032 039 039 039 045 045 045 052 052 052 032

Vy," Sampling A 058 0.60 070 055 052 055 055 059 067 077 091 0.62
(cm/s)  Site B 048 049 057 050 048 051 052 055 063 066 073 047

"Vyp=(Crx Vg1—C, x V4,)/C,, calculated by total concentration of 17 congeners.

vicinity of MSWIs in Taiwan, but significantly lower than
those in the highly industrialized urban area located in
southern Taiwan. The relatively higher atmospheric
PCDD/F concentrations was found in winter than in
summer, probably because of several loss process
including photolysis, chemical reactivity, wet and dry
deposition, and scavenging by vegetation. The observed
total dry deposition flux for both sampling sites was found
to decrease as the temperature increased. This was
attributed to the fact that temperature influences the
amount of PCDD/Fs that are bound to particles and
subsequently dry deposit. Calculated dry deposition
velocities of atmospheric particles (0.48-0.91 cm/s) were
similar to that for the ambient air near two MSWIs in
southern Taiwan (0.44—-0.68 cm/s), but slightly higher than
those in urban area of Korea (0.49 cm/s). The differences
among these deposition velocities can be attributed to the
discrepancy in sampling site and particle size distribution.
In addition, results shown that approximately 90% of dry
deposition fluxes PCDD/Fs were contributed by particle-
phase deposition, therefore the dominant mechanism of
dry deposition was particle phase deposition.
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