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ABSTRACT: 

 

The aim of this study is to identify the most powerful motion model and filtering technique to represent an urban terrestrial mobile 

mapping (TMM) survey and ultimately to obtain the best representation of the car trajectory. The authors want to test how far a 

motion model and a more or less refined filtering technique could bring benefits in the determination of the car trajectory.  

To achieve the necessary data for the application of the motion models and the filtering techniques described in the article, the 

authors realized a TMM survey in the urban centre of Turin by equipping a vehicle with various instruments: a low-cost action-cam 

also able to record the GPS trace of the vehicle even in the presence of obstructions, an inertial measurement system and an 

odometer. 

The results of analysis show in the article indicate that the Unscented Kalman Filter (UKF) technique provides good results in the 

determination of the vehicle trajectory, especially if the motion model considers more states (such as the positions, the tangential 

velocity, the angular velocity, the heading, the acceleration). The authors also compared the results obtained with a motion model 

characterized by four, five and six states. 

A natural corollary to this work would be the introduction to the UKF of the photogrammetric information obtained by the same 

camera placed on board the vehicle. These data would permit to establish how photogrammetric measurements can improve the 

quality of TMM solutions, especially in the absence of GPS signals (like urban canyons). 

 

 

1. INTRODUCTION 

The majority of vehicles today have GPS instruments, digital 

maps or speedometers on board to measure their velocity. These 

instruments are characterized by low precision and are not able 

to integrate pieces of information from the different sources. 

The integration of the information obtained by these instruments 

with their accuracy and other visual data about the motion 

model could define a vehicle’s future position more accurately 

(Lytrivis et al., 2010). The application fields of these studies are 

many: e.g. driver assistance systems, start-stop systems and 

adaptive cruise control (Schubert et al., 2008).  

The Kalman filter, or its more modern derivatives, is the most 

commonly employed method to combine information about 

position, velocity, function of position and velocity and filtering 

techniques (Hartikainen and Särkkä, 2011). 

  

The data filtering may take different form: if the stochastic 

model is represented by a Gaussian and the state equations 

between two successive epochs may be considered linear by 

leaving out the second order effects, a more suitable method is 

the Extended Kalman Filter (EKF). Alternatively, if these 

conditions are not verified, for example without the introduction 

of big approximations, it is possible to use other techniques 

such as the Unscented Kalman Filter (UKF). 

 

However it is essential to adopt a motion model (Li and Jilkov, 

2003) that can include in the state parameters and in the 

observation equations the measurements effectively realized 

during the survey.  

 

2. CASE STUDY 

In order to obtain an adequate dataset for the application of 

motion models and different filtering techniques, the authors 

realized a TMM survey in the urban centre of Turin. Therefore 

the path is characterized by rectilinear segments spaced out by 

curves of up to 90 degrees, changes of velocity, some departures 

and stops and urban canyons, as shown in Figure 1. 

 

 
Figure 1. In red: vehicle’s trajectory, in green: portion of 

trajectory analyzed 

 

With the aim of placing the instrumentation on the vehicle, the 

authors equipped its baggage rack with a structure reminiscent 

of a “cross”. This is the name used (also in this article) to refer 

to this particular object.  

The cross is able to host the whole instrumentation in known 

and unmovable positions. 

In order to know the position of each instrument with a 

millimetric accuracy in respect of origin (O) and a direction 

(OA in Figure 2), the measurements were performed and 

adjusted depending on a tridimensional schema using a 

commercial software. 
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Figure 2. Schema of the positions of the various instruments on 

the cross 

 

The authors equipped the vehicle with various instruments: a 

low-cost action-cam (position V1 in Figure 2, in orange in 

Figure 3) able to record the trace of the vehicle even in presence 

of obstructions, since it has an internal highly sensitive GPS; an 

inertial measurement system (INS, position E in Figure 2, in 

blue in Figure 3), which is useful for obtaining the reference 

trajectory especially in the absence of GPS signals; and a DMI 

(distance measurement indicator, located on the vehicle as 

shown in Figure 4).  

 

          
Figure 3. Instruments on board 

 

     
Figure 4. The DMI in use 

 

The Garmin Virb Elite Action-Cam 1080p HD used for the 

survey is able to acquire HD video (with 1920*1080 pixel 

resolution) and high velocity frames (25 fps), as well as to 

provide the GPS locations of the frames, while maintaining a 

low cost. In fact, even if the camera crosses into an obstructed 

area, its high sensibility GPS is able to determine its position: 

for this reason it is a very useful instrument, especially in urban 

canyons or near high buildings or trees. Moreover, the presence 

of the integrated GPS guarantees easy synchronization of the 

time scale of the camera with the UTC time. 

 

Another instrument on board is the INS SBG Ekinox-D, a 

navigation grade sensor characterized by an internal GNSS 

receiver with two antennas (in yellow in Figure 3). 

The use of this INS does not want to contradict the idea of 

analyzing an unfavourable scenario to understand how the use 

of different instruments can really improve the positioning 

solution, but it is necessary to define the “true trajectory” and it 

also constitutes one of the ways to interface with the DMI. 

The authors decided to use the less precise GPS data (in fact are 

code points positions) acquired by the action-cam with the aim 

of testing how far a motion model and a more or less refined 

filtering technique could bring benefits in the determination of 

the vehicle trajectory and the position of the perspective centres 

of the camera.  

 

Lastly, a DMI (Pegasem WSS) is also located on the vehicle, 

which permits to record vehicle speed information (and 

obviously the epochs of acquisition) and measurements of 

distance. The authors used these speeds information, and for 

this reason the instrument could be defined speedometer, but for 

brevity they use the term DMI. 

The DMI permits the introduction of velocities into the analysis 

and also caters for the typical deficiencies of the motion models: 

e.g. failure to consider stops at traffic lights or zebra crossings, 

which are typically present in an urban road. 

The DMI permits to “adjust” these models, realized for a 

continuous trend of the vehicle also to a discontinuous trend.  

 

Obviously both camera and DMI were calibrated (Angelats and 

Colomina, 2014) before the survey, the first using the 

calibration tool of the commercial software Matlab® (Heikkilä 

and Silvén, 1997; Zhang, 1999), the second in the Laboratory of 

Topography of Politecnico di Torino, with the aim to determine 

the so-called “odometer gain” (in others words: the scale value 

of DMI). Figure 5 shows the instruments used for this latest 

calibration. 

 

    
Figure 5. On the left: the DMI during calibration; on the right: 

the measure of the circumference of the wheel of the vehicle 

 

The instruments used for the calibration of the DMI were a 

lathe, a speedometer and a chronometer, and obviously the 

value of measure of the circumference of the vehicle (shown in 

Figure 5). The instruments were used to define the 

correspondence between the mean value of velocity recorded by 

the DMI, when the odometer gain is in the amount of one 

pulse/m and the number of turns per second performed by the 

lathe.  

The authors considered different measurements respectively 

corresponding more or less to three, five and seven turns per 

second of the lathe, and for each one they defined the mean 

value of velocity recorded by the DMI. This value was then 

divided by the specific number of turns per second 

corresponding to the specific measurement session. Finally, the 

results obtained by each measurement session were averaged 

(Table 1), for the purpose of defining the most reliable value 

useful for the determination of the scale of the DMI. 

 

Measure 

session 

Time of 

measure  

[min] 

N° of 

turns 
Turn/s 

vMED 

of 

DMI 

vMED / 

(turn/s) 

1 2 364 3.03 780 257.43 

2 2 407 3.39 872 257.23 

3 2 629 5.24 1343 256.30 

4 2 802 6.68 1713 256.44 

Table 1. Results of DMI calibration test 

X 

Y 

 

SBG Ekinox-D 
Antenna Novatel 

702GG 

Virb-Elite Garmin 
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The final mean value of velocity related to turns per second, 

adopted for the determination of the scale value of DMI, was  

256.85. This value, divided by the circumference of the wheel 

of the vehicle, permitted the determination of the scale value of 

the DMI (equation 1), used in the successive surveys:  

 ����� � ��	.���.�
 � 135.90   (1) 

The DMI data are recorded at a rate of about one second, but 

their acquisition times are not synchronized with the GPS 

camera positions: for this reason, resampling of the DMI data 

was necessary. The authors opted for a spline interpolation, 

finer than to the linear one. The residuals obtained by the linear 

interpolation with respect to the spline were at most 8 cm/s. 

 

3. MOTION MODELS 

It should be pointed out that each motion model is characterized 

by hypotheses and simplified assumptions, leaving out some 

errors, deliberately or otherwise. These un-modelled or causal 

effects relapse into the stochastic part of modern filters. We 

must remember that a simplified model, i.e. an “unpolished” 

model, even though it apparently works well, will be able to 

balance out only in a small part the simplified assumptions 

introduced in the motion errors. 

 

Different motion models (Yuan et al., 2014) were studied for 

the analysis of the case study.  

Linear models are the least complex and assume the vehicle 

velocity or its acceleration as constant: for this reason they are 

respectively called Constant Velocity or Constant Acceleration 

models (Schubert et al., 2008). Obviously their major advantage 

is the linearity of the state transition equation, but these models 

suppose a “straight” motion without changes of direction or 

curves, which are always present in an urban path.  

 

 
Figure 6. Scale of complexity of the motion models 

 

Therefore, more complex curvilinear models were adopted to 

describe the case study in a realistic way.  

These latest models could be classified using their unknown or 

constant parameters: the simpler is the so-called Constant Turn 

Rate and Velocity Model (CTRV), very useful in the description 

of the trajectories of aeroplanes; the second is the Constant Turn 

Rate and Acceleration (CTRA) (Altendorfer, 2009).  

Besides yielding the best results in the definition of the vehicle 

trajectory and a realistic description of the motion, the CTRA 

method is also the only curvilinear method able to consider 

change of direction, the presence of rectilinear and curvilinear 

paths, and therefore passages in clothoids. 

 

Figure 7 shows the variables used in the different motion 

models which are described in the next paragraphs. 

   
Figure 7. Variables in use in the motion models 

 

3.1 Motion model with 4 states 

This model considers the planimetric positions of the vehicle 

and its velocities in these directions. ����� � ��, ��, �, 	���           (2) 

where  x, y = positions of the vehicle 

 vx, vy = constant velocities in x and y directions 

 

This is a linear model and the state transition equation is shown 

in equation 3: 

����  !� � "����  ! ∙ ����	����  ! ∙ ���� $   (3) 

where  T = time interval between two successive epochs 

 x(t), y(t) = positions in the t-time 

 ����  !� = states at i-time (t + T). 

 

3.2 Motion model with 5 states: CTRV 

In this model the states are five: two positions, the tangential 

velocity, the direction angle θ and the rotation angle ω. ����� � ��, �, %, �, &� (4) 

where  x, y = positions of the vehicle 

 v  = tangential velocity 

 % = direction angle 

 & = rotation angle 

 

The equation 5 shows the state transition equation: 

����  !� �
'
(()

*+ ∙ ,-.�& ∙ !  %� / *+ ∙ ,-.�%�  ����	/ *+ ∙ �0,�& ∙ !  %� *+ ∙ �0,�%�  �����	& ∙ !  %& 1
223	(5) 

where  T  = time interval between successive epochs.  

 

Here both the tangential velocity and the rotation angle are 

constants, in fact we have: 

 

 ���  !� � ����              (6) 

 &��  !� � &���              (7) 

 

3.3 Motion model with 6 states: CTRA 

This model “come from” the CTRV and includes also the 

acceleration of the vehicle. ����� � ��, �, %, �, �, &�  (8) 

ϑ 
aT 

aC 

v ω 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W4, 2016 
EuroCOW 2016, the European Calibration and Orientation Workshop, 10–12 Feb 2016, Lausanne, Switzerland

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-3-W4-27-2016

 
29



 

The state transition equation is (Lategahn et al., 2012): 

 ����  !� � �		����  1&� [�����&  �&!� ∙ ,-.�&!  %����  …  � �0,�&!  %���� / ����& ,-.�%���� / � �0,�%����] ����  1&� [�/����& / �&!� ∙ �0,�&!  %����  ⋯ … � ,-.�&!  %����  ����& �0,�%���� / � ,-.�%����] & ∙ !  %  � ∙ ! 0 0	�	                   (9) 

  

where a = constant vehicle acceleration (���  !� � ����).  
 

As the acceleration, also the rotation angle is constant:  &��  !� � &���. 
 

4. DATA FILTERING        

4.1 KF and EKF 

The hypotheses of the Kalman filter (hereafter called “KF” for 

brevity; Kalman, 1960; Einicke, 2012) are: 

� the system evolves linearly in the time; 

� the measure equations are linear; 

� both the state equations than the measure equations 

are normally distributed and uncorrelated.  

 

In a lot of situations it is possible to linearize the measure 

equations and, if these are sufficiently precise, it is possible to 

consider these as normally distributed without falling into error 

and obtaining imprecise, less reasonable or divergent results. 

Instead, less frequently the state equations are linear and indeed 

usually are differential equations. 

However, if the time intervals between the measures are 

evaluated as “little” (a more detailed explication would request 

more space), it is usually possible to write non-linear state 

equations and then linearize these equations using a matrix of 

partial derivatives. 

 

The initial state parameters, being non-linear equations -

generally positions, velocities, accelerations, angular velocities, 

etc.-are obtained by the motion and measure equations of the 

previous epoch.  

In this situation the filtering technique isn’t known as Kalman 

Filter (KF), but is called Extended Kalman Filter (EKF).  

The clearest difference is represented by the computation of the 

update of the state parameters, not by the classical computation 

of the parameters.  

After the linearization of the state equations, the structure of the 

EKF follows the typical rules of the more traditional KF. 

The KF is a recursive filter characterized by two steps: the 

filtering and the smoothing. The first step is divided into two 

parts: a time-update of the state equations (for this reason this 

passage is known as predictive estimation, or “prediction”) and 

a following time-update of the measure equations (a process 

known as “correction”). 

At the successive epoch, in the EKF, the estimation just filtered 

is updated and then becomes the new starting point for the 

prediction of the successive instant. 

In conclusion, the EKF permits the update of both the solution 

of the problem and the variance matrix. 

 

4.2 UKF 

The principal limitations that characterize both the KF and the 

EKF are the necessary linearization of the non-linear equations 

(Wan and Van der Merwe, 2000; Van der Merwe  and Wan, 

2001) and the hypothesis of the normality of the measures. 

Thanks to the use of the Unscented Kalman Filter, it is possible 

to remove the first hypothesis and maintain the second, though 

with minor consequences (Tsogas et al., 2011). 

The data filtering related to dynamic non-linear systems has in 

the recent years become a fascinating study area, considering 

that a lot of approaches are developed with the aim of solving 

the problem.  

The Unscented Kalman Filter is based on unscented 

transformation, that is a mechanism for the propagation of the 

mean and the covariance, using non-linear transformations 

(Xiong et al., 2006; Terejanu et al., 2007).  

The state vector is not unique, but instead constitutes a reduced 

number of state vectors (points in a space of 2L+1 dimensions, 

where L is the dimension of the variance-covariance matrix of 

the states). These state vectors (called sigma points; Van der 

Merwe, 2004; Zoeter et al., 2004) are accurately chosen to 

approximate both the 2L+1 dimensional mean, and the 

variance-covariance matrix of the variable computed a 

posteriori, which is still Gaussian, with a second order accuracy 

(the mean and the variance). 

The improvement in respect of the EKF is clear if we consider 

that EKF permits only the obtainment of the first order of 

accuracy (we only know the mean value: the variance-

covariance matrix is only obtained for a more or less linear rule 

and it refers to the only average value). Furthermore with the 

UKF it is not necessary to build the Jacobean matrix, and so in 

this respect the computational commitment is reduced.  

The application fields for this method are various, for example, 

the fusion of the output data of different types of sensor; the 

determination of the position; or the training of a neural network 

(Haykin, 2001). 

Therefore the literature suggests that this method is able to 

obtain better results than the EKF (Gustafsson and Hendeby, 

2012), so the authors decided to apply the UKF to their case 

study. 

 

5. RESULTS 

The following tables and figures show the results obtainable 

using the two types of UKF method: one is the UKF not-

augmented, described in the previous paragraphs, and the 

second method is the UKF augmented, that differs from the 

previous method because of its use of a greater number of 

states. This greater number of states is due to the fact that the 

state and measure equations are considered as non-linear with 

respect to the noise, which generally describes a real situation 

(Rutten, 2013). The number of states is not casual, it is justified 

by the introduction of the analysis of the noise that troubles the 

states (Guzzi, 2012).  

The biggest advantage of the augmented method is the 

possibility of considering the influence of the noise of the 

measures in the computation, but its biggest disadvantage is 

represented by a computational commitment and by the 

possibility of not getting a positive weight matrix. The latter 

situation causes an inapplicability of the Cholesky factorization 

(a fundamental step in the UKF computational process) and  the 

consequent end of the computation. In order to solve these 

problems, some authors proposed different alternative solutions 

to the factorization (Rutten, 2013). 
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In relation to both the procedures for implementation of the 

UKF method, whatever the number of states under examination, 

it is important define two parameters: the coefficient “α” 

(equation 10), which takes into account the spread of the sigma 

points (Turner and Rasmussen, 2010) and is generally inversely 

proportional to the considered number of states, and “β”, which 

considers the a priori knowledge of the sigma points distribution 

(for Gaussian distribution generally is assumed equal to two). 

 α9	�0,1]     (10) 

 

In fact, for the case study, it was possible to observe that the 

assumption of values of α about its lower limit usually 

determined the impossibility of applying Cholesky 

factorization, and so the crash of the method. 

 

Another element to take into account as input is the variance-

covariance matrix of the process: the adjustment of this matrix 

depends on the case study, in particular on the number of states 

used. As an example the equation 11 and equation 12, show the 

variance-covariance matrix used for the motion model 

characterized by four states: 

 : � ;[:�] 0 00 0 [:�]<   (11) 

where 

:� �	=� ∙ >�?!? ��!@��!@ !� A    (12) 

 
where  q  = standard deviation of the process		 
  T = time interval between successive epochs. 

 

In the next tables, the authors show the means and the 

respective standard deviations (SQM) obtained by comparing 

the 2D positions of the reference INS (in black in the next 

figures) with the planimetric trajectories achieved by the UKF 

methods (augmented and not-augmented) applied to the 

GPS+DMI data. In these tables are shown the results obtained 

by the comparison between the reference and the smoothed 

values. 

Obviously to compare these data, the authors applied the 

specific level-arm between the GPS+DMI data and the 

reference trajectory, using the heading extracted from the 

velocity vector. 

In the related graphs, it is also possible to observe the 

trajectories: the reference in black; the trajectories obtained by 

the UKF filtering and smoothing applied to the GPS and DMI 

data in blue and green respectively, and the GPS data of the 

camera in red. 

All the results shown in the next tables and graphs were 

obtained thanks to a script realized in Matlab® by the authors. 

 

In Table 2 are shown the results related to the case study with 4 

states (�, ��, �, 	��). 

 

N° states UKF Augmented 
UKF 

not-augmented 

4 

∆2DMEAN 

INS-CASE 

[m] 

∆2DSQM 

INS-CASE 

[m] 

∆2DMEAN 

INS-CASE 

[m] 

∆2DSQM 

INS-CASE 

[m] 

4.47 1.80 7.99 4.16 

Table 2. Delta mean and delta standard deviation between INS 

and UKF augmented or not-augmented applied to the motion 

model with 4 states 

The Figure 8 show the trajectory obtainable by the UKF, using 

four states: 

  
Figure 8. On the left: UKF augmented trajectory with 4 states; 

on the right: UKF not-augmented trajectories with 4 states 

 

In Table 3 are shown the same results of Table 1, but related to 

the motion model with 5 states (�, �, %, �, &). 

 

N° states UKF Augmented 
UKF 

not-augmented 

5 

∆2DMEAN 

INS-CASE 

[m] 

∆2DSQM 

INS-CASE 

[m] 

∆2DMEAN 

INS-CASE 

[m] 

∆2DSQM 

INS-CASE 

[m] 

4.56 2.16 5.29 1.63 

Table 3. Delta mean and delta standard deviation between INS 

and UKF augmented or not-augmented applied to the motion 

model with 5 states 

 

Figure 9 show the trajectory obtainable by the UKF methods 

considering the motion model characterized by 5 states: 

 

 
Figure 9. On the left: UKF augmented trajectory with 5 states; 

on the right: UKF not-augmented trajectories with 5 states 

 

The trajectory shown in Figure 9 are quite the same. 

 

Figure 10 shows also the comparison between the tangential 

velocity of DMI (in red), and the values obtained with UKF 

filtering (blue) or smoothing (green) augmented or not-

augmented. 

 

 
Figure 10. On the left the UKF augmented and on the right the 

not-augmented tangential velocities with 5 states 

 

 

In Table 4 are shown the same results of the previous tables, but 

related to the motion model with 6 states (�, �, %, �, �, &). 
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N° states UKF Augmented 
UKF 

not-augmented 

6 

∆2DMEAN 

INS-CASE 

[m] 

∆2DSQM 

INS-CASE 

[m] 

∆2DMEAN 

INS-CASE 

[m] 

∆2DSQM 

INS-CASE 

[m] 

4.06 1.44 4.74 1.73 

Table 4. Delta mean and delta standard deviation between INS 

and UKF augmented or not-augmented applied to the motion 

model with 6 states 

 

Figure 11 shows the trajectory obtainable by the UKF methods: 

 

 
Figure 11. On the left: UKF augmented trajectory with 6 states; 

on the right: UKF not-augmented trajectories with 6 states 

 

 
Figure 12. On the left the UKF augmented and on the right the 

not-augmented tangential velocities with 6 states 

 

Figure 12 and the previous Figure 10 show results of tangential 

velocity a little bit more noised if it is considered the UKF 

augmented rather than the not-augmented.  

  

With the aim of showing the results in a clearer scenario and to 

underline that a bigger number of states guarantees the best 

results in the definition of the trajectory, the authors show in 

Figure 13 the trajectories resulting from the UKF not-

augmented method (with four, five and six states) in the urban 

canyon of Turin. They prefer to report the not-augmented 

results in a satellite view, because the differences in the various 

motion models in the definition of the final smoothed trajectory 

are clearer in this type of analysis than in the UKF augmented. 

 

  
Figure 13. UKF not-augmented smoothed trajectories: in blue 

the INS, in red 4 states, in orange 5 states, in green 6 states 

 

Figure 13 represents the results in the acquisition context, 

enabling us to see clearly that a greater number of states 

determines a more realistic definition of the trajectory (in 

green). 

In fact, the “worst” trajectory corresponds to the least number of 

states: it is the motion model with four states represented in red. 

Here we can see that the trajectory is sinuous (that may be 

because of good UKF smoothing), but this trajectory is not 

always correctly located on the road: after the curves especially 

the positions are placed on trees or on the buildings. 

An improvement is determined by the introduction of another 

state: the trajectory in orange corresponds to the motion model 

with five states, which is a little bit more realistic than the 

previous because it also follows the road after a curve.  

However, it is the last analysis with the motion model based on 

six states that gives the best results: even if the final trajectory 

seems to be quite similar to the previous case, a visual analysis 

revels that after the curve this one is located in a more correct 

position than the other. 

 

6. CONCLUSION 

The results shown in the previous tables suggest that the UKF 

methods (especially the not-augmented), associated with a 

reduced number of states, are not able to consider all of the 

physics entities that have a role in the specific case study, and 

determines “dirty” results in the delta planimetric mean. In 

contrast, if the number of states considered is bigger, we can see 

an improvement (that is, a reduction) of the same value of the 

delta planimetric mean. 

At the same time, the values of the delta planimetric SQM are 

almost unvaried, even if the number of states is augmented.  

Moving from the most restricted number of states towards the 

biggest, we can see an improvement in the delta planimetric 

mean value for the UKF augmented, but the SQM does not 

change substantially. 

 

Observing in a more detailed manner the case study 

characterized by five states, it possible to see that the 

augmented method apparently determines more noisy results, 

since it is characterized by a SQM 50 cm bigger than the 

equivalent not-augmented method. However it is important also 

to consider the delta planimetric mean, which is equal to 4.56 m 

for the augmented method and 5.29 m for the other: there is a 

worsening of about 70 cm between the two UKF filtering 

techniques.  

 

With respect to the results shown in the previous paragraph, it is 

possible to conclude that if we consider a reduced number of 

states, the not considered entities in the analysis try to influence 

the results negatively, in particular “dirtying”  the mean value; 

otherwise, if the number of states augments, it is possible to see 

a general improvement (a reduction) of the value of the 

planimetric mean.  

It can therefore be concluded that the UKF augmented achieves 

better results than the not-augmented. 

 

Following the integration of the GPS and DMI data, the 

available dataset permits another type of integration: GPS data 

with photogrammetric information (De Agostino et al., 2011).  

Both the GPS data and the frames are obtained from the low-

cost camera used for the survey.  

The aim of this different type of integration is to see if the 

photogrammetric information is useful to improve the solution 

of positioning when there are not other technologies available. 

Obviously it was possible using a software able to simulate the 

situation represented by the case study (Taglioretti and 
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Manzino, 2014), but in order to achieve this goal, the authors 

initially use a commercial software (frequently used in the field 

of photogrammetric research), able automatically to discover a 

lot of tie points (TP) between the frames and to compute the 

orientation between successive frames. The latest goal is the 

introduction of attitude parameters between the state parameters 

for the estimation of the camera coordinates with the respective 

errors of measure. 

The authors decided to illustrate the results of a commercial 

software to permit an initial comparison with the values 

obtained using the UKF methods. This is because the authors 

are currently in a phase of implementation of a proprietary 

software: this software will be able to integrate GPS data with 

photogrammetric information, and will be the subject of future 

work.  

It is important to underline that these results are obtained using 

a sort of “loosely coupled” integration.  

The authors introduced in the commercial software the real 

values of position and accuracy of the camera obtained by the 

UKF methods, but they not identified any significant changes in 

respect of the introduction of the accuracy of the camera 

position. For this reason they believe more interesting 

understand how the errors change in respect of the reference 

trajectory modifying this parameter. They chose a value of 

camera accuracy equal to a low 1 meter, up to 3 meters and they 

decided to study the situation characterized by five states, 

because it represents a sort of “compromise” in the number of 

state at disposal. 

The aim was to understand how photogrammetric 

measurements can improve positioning, in particular depending 

on the specific quality of the data available (and consequently 

depending on the camera quality) (Taglioretti et al., 2015).  

 

The results obtained with the commercial software and 

compared with INS trajectory, are shown in the next Table 5. 

 

Camera 

accuracy 

[m] 

∆2DMEAN 

INS-CASE 

[m] 

∆2DSQM 

INS-CASE 

[m] 

1 2.44 1.42 

2 2.57 2.11 

3 5.63 3.20 

Table 5. The results obtained by the commercial software 

 

These values suggest that a loosely coupled integration permits 

an improvement of the mean value, but it is not sufficient to 

guarantee a real improvement in the positioning solution in 

respect of results obtained by the UKF. In fact the results shown 

in Table 5 obtained with the camera accuracy equal to two, 

show that there is an improvement in the mean value, but the 

SQM is quite similar to the previous case shown in Table 3. 

For this reason, a more complete tightly-coupled integration is 

necessary (Cazzaniga et al., 2007) that permits the obtainment 

of better results, and which the authors will follow when 

developing their software. 
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