Lecture 35 Properties of absolutely and conditionally convergent series

§ 1 Two new series

Definition 1.1 For a given series

$$\sum_{n=1}^{\infty} u_n,$$

let

$$u_n^+ = \frac{|u_n| + u_n}{2} = \begin{cases} u_n, & u_n > 0 \\ 0, & u_n \le 0 \end{cases}$$

and

$$u_n^- = \frac{|u_n| - u_n}{2} = \begin{cases} 0, & u_n \ge 0 \\ -u_n, & u_n < 0 \end{cases}$$

Proposition 1.1 For each n,

$$0 \le u_n^+ \le |u_n|, \quad 0 \le u_n^- \le |u_n|$$

and

$$u_n = u_n^+ - u_n^-, |u_n| = u_n^+ + u_n^-.$$

Theorem 1.2 (1) $\sum_{n=1}^{\infty} u_n$ is absolutely convergent if and only if both $\sum_{n=1}^{\infty} u_n^+$ and $\sum_{n=1}^{\infty} u_n^-$ are convergent; (2) If $\sum_{n=1}^{\infty} u_n$ is conditionally convergent, then both $\sum_{n=1}^{\infty} u_n^+$ and $\sum_{n=1}^{\infty} u_n^-$ are divergent.

Proof (1) The proof follows from the Proposition 1.1.

(2) Suppose not. Then at least one of $\sum_{n=1}^{\infty} u_n^{+}$ and $\sum_{n=1}^{\infty} u_n^{-}$ converges. Without loss of generality, we may assure that

 $\sum_{n=1}^{\infty} u_n^{+}$ is convergent. Since $\sum_{n=1}^{\infty} u_n$ is conditionally convergent and

$$u_n^- = u_n^+ - u_n,$$

we see that

$$\sum u_n^-$$

is also convergent.

(1) implies that $\sum_{n=1}^{\infty} u_n$ is absolutely convergent. This is the desired contradiction.

§ 2 New series obtained by changing the positions of u_n

Definition 2.1 For a given series $\sum_{n=1}^{\infty} u_n$,

let

$$\sum_{n=1}^{\infty} u'_n$$

be a series such that for each n, there is some n_k such that $u'_n = u_{n_k}$

and $\{u'_n\} = \{u_{n_k}\}$. Then we say that $\sum_{n=1}^{\infty} u'_n$ is a series obtained by changing the positions of u_n .

Theorem 2.2 Suppose $\sum_{n=1}^{\infty} u_n$ is absolutely convergent. Then any series $\sum_{n=1}^{\infty} u'_n$ obtained by changing the positions of u_n is still absolutely convergent and

$$\sum_{n=1}^{\infty} u_n' = \sum_{n=1}^{\infty} u_n.$$

Proof We divide our discussions into two cases.

Case I $\sum_{n=1}^{\infty} u_n$ is a series with nonnegative terms.

Let S'_k be the *kth* partial sum of $\sum_{n=1}^{\infty} u'_n$. Since

$$u'_1 = u_{n_1}, \ u'_2 = u_{n_2}, \cdots, \ u'_k = u_{n_k},$$

by taking $K = \max \{n_1, n_2, ..., n_k\}$, we have that for all n > K,

$$S'_{k} = u'_{1} + \dots + u'_{k}$$

$$\leq u_{1} + \dots + u_{n} = S_{n}.$$

This shows that for any k,

$$S_k' \leq S = \sum_{n=1}^{\infty} u_n$$

Hence $\sum_{n=1}^{\infty} u'_n$ is convergent and $S' \leq S$.

By changing the roles of $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} u'_n$ in the

discussions as above, we know that

$$S' \geq S$$

which yields S' = S.

Case II General case.

The hypothesis $\sum_{n=1}^{\infty} u_n$ being absolutely convergent implies

that both series $\sum_{n=1}^{\infty} u_n^+$ and $\sum_{n=1}^{\infty} u_n^-$ converges. We upon

$$W = \sum_{n=1}^{\infty} u_n^+$$
 and $V = \sum_{n=1}^{\infty} u_n^-$. Then $\sum_{n=1}^{\infty} u_n = W - V$ and $\sum_{n=1}^{\infty} |u_n| = W + V$.

Case I shows that

$$\sum_{n=1}^{\infty} |u_n'| = W + V$$

Hence $\sum_{n=1}^{\infty} u'_n$ is absolutely convergent.

Let $\sum_{n=1}^{\infty} u_n^{+'}$ and $\sum_{n=1}^{\infty} u_n^{-'}$ be the series obtained by changing the positions of u_n^{+} and u_n^{-} , respectively.

Then

$$\sum_{n=1}^{\infty} u_n'^+ = \sum_{n=1}^{\infty} u_n^+ = W \quad \text{and} \quad \sum_{n=1}^{\infty} v_n'^- = \sum_{n=1}^{\infty} v_n^- = V.$$

Hence

$$\sum_{n=1}^{\infty} u'_{n} = \sum_{n=1}^{\infty} (u'_{n}^{+} - u'_{n}^{-})$$

$$= W - V = \sum_{n=1}^{\infty} u_{n}.$$

The proof is finished.

For a conditionally convergent series, the situation is quite different as the following result shows.

Theorem 2.3 (The Riemann's theorem) Suppose the series $\sum_{n=1}^{\infty} u_n$ is conditionally convergent. Then for any given

constant S which may be ∞ , by changing the positions of u_n , we can obtain a series $\sum_{n=1}^{\infty} u'_n$ such that

$$\sum_{n=1}^{\infty} u_n' = S$$

§ 3 Product of two absolutely convergent series Theorem 3.1 Suppose both series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} V_n$ are absolutely convergent and $\sum_{n=1}^{\infty} u_n = U$, $\sum_{n=1}^{\infty} V_n = V$. Then $\sum_{k=1}^{\infty} u_{n_k} v_{m_k}$ is absolutely convergent and $\sum_{k=1}^{\infty} u_{n_k} v_{m_k} = UV$, where $\sum_{k=1}^{\infty} u_{n_k}$ and $\sum_{k=1}^{\infty} v_{m_k}$ are two series obtained by changing the positions of u_n and v_n in $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$, respectively.

Proof Let $W_k = u_{n_k} v_{m_k}$ and consider the series

$$\sum_{k=1}^{\infty} |W_k|.$$

Let

$$S_{k}^{*} = \sum_{j=1}^{n} |W_{j}|,$$
 $p = \max\{n_{1}, \dots, n_{k}, m_{1}, \dots, m_{k}\},$
 $U_{p}^{*} = \sum_{r=1}^{p} |u_{r}|$

and

$$V^*_{p} = \sum_{r=1}^{p} |v_r|.$$

Then

$$S_{k}^{*} \leq \sum_{r=1}^{p} |u_{r}| \cdot \sum_{r=1}^{p} |v_{r}|$$
$$= U_{p}^{*} |V_{p}^{*}|.$$

This shows that $\sum_{k=1}^{\infty} W_k$ is absolutely convergent.

Now we come to prove $\sum_{k=1}^{\infty} W_k = UV$.

Let's consider the series

$$\sum_{n=1}^{\infty} a_n = u_1 v_1 + (u_1 v_2 + u_2 v_2 + u_2 v_1) + (u_1 v_3 + u_2 v_3 + u_3 v_2 + u_3 v_1) + \cdots$$

Then $\sum_{n=1}^{\infty} a_n$ is still absolutely convergent.

Let

$$U_n = \sum_{s=1}^n u_s$$
, $V_n = \sum_{s=1}^n v_s$ and $A_n = \sum_{s=1}^n a_s$.

Then

$$A_n = U_n V_n$$
.

This implies that

$$\lim_{n\to\infty} A_n = \lim_{n\to\infty} U_n V_n = UV$$

We deduce that

$$\sum_{k=1}^{\infty} W_k = UV$$

Example 3.1 For |q| < 1, show that $\sum_{n=1}^{\infty} nq^{n-1} = \frac{1}{(1-q)^2}$.

Proof Since $\sum_{n=0}^{\infty} q^n$ is absolutely convergent and

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$$
, the proof easily follows from Theorem 3.1.

§ 4 An added example

Example 4.1 Discuss the convergence of the following series.

(1)
$$\sum_{n=1}^{\infty} \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)} (x>0);$$
 (2) $\sum_{n=1}^{\infty} \int_0^{\frac{\pi}{n}} \frac{\sin x}{1+x} dx;$

Solution (1) Let
$$u_n = \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)}$$
. Then

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left[\frac{x^{n+1}}{(1+x)\cdots(1+x^n)(1+x^{n+1})} \cdot \frac{(1+x)\cdots(1+x^n)}{x^n} \right]$$

$$= \lim_{n \to \infty} \frac{x}{1 + x^{n+1}}$$

$$= \begin{cases} x, & 0 < x < 1 \\ \frac{1}{2}, & x = 1 \\ 0, & x > 1 \end{cases}$$

Hence
$$\sum_{n=1}^{\infty} \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)}$$
 is convergent.

(2) Since

$$0 \le \int_0^{\frac{\pi}{n}} \frac{\sin x}{1+x} dx \le \int_0^{\frac{\pi}{n}} \sin x dx = 2\sin^2 \frac{\pi}{n}$$

and

$$\lim_{n\to\infty}\frac{2\sin^2\frac{\pi}{2n}}{\frac{\pi^2}{2n^2}}=1,$$

we know from the convergence of $\sum_{n=1}^{\infty} \frac{\pi^2}{2n^2}$ that

$$\sum_{n=1}^{\infty} \int_{0}^{\frac{\pi}{n}} \frac{\sin x}{1+x} dx \quad \text{converges.}$$

Homework Page 43: 1; 2.

