# Lecture 33 Series (I)

## § 1 Absolutely convergent series

## 1.1 Definition

 $\sum u_n$  is called absolutely convergent if  $\sum |u_n|$  is convergent.

If  $\sum u_n$  is convergent but  $\sum |u_n|$  is divergent, then we call  $\sum u_n$  conditionally convergent.

For example, we have known that  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$  is



convergent, but  $\sum_{n=1}^{\infty} \frac{1}{n}$  is divergent. Hence  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$  is conditionally convergent.

1.2 The relation between the convergence and the absolute convergence of series

**Theorem** 1.2.1 If  $\sum u_n$  is absolutely convergent, then  $\sum u_n$  itself convergent. The converse does not hold.



Proof (1) Since  $\sum u_n$  is absolutely convergent, we see that for any  $\varepsilon > 0$ , there is some N > 0 such that for all n > N and p > 0,

$$\left|u_{n+1}+\cdots+u_{n+p}\right|<\varepsilon.$$

It follows from

$$|u_{n+1} + \cdots + u_{n+p}| < |u_{n+1}| + \cdots + |u_{n+p}|$$

and Cauchy's convergence principle that  $\sum u_n$  is convergent.



(2)  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$  is convergent, but  $\sum_{n=1}^{\infty} \left| (-1)^n \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$  is

divergent.

**Example 1.2.1** Discuss the convergence of  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$ . Solution It follows from D'Alembert's test that  $\sum_{n=1}^{\infty} \frac{1}{n} x^n$  is convergent if |x| < 1. If |x| > 1, then  $\lim_{n \to \infty} (-1)^n \frac{1}{n} x^n \neq 0$ ,

which implies that  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$  is divergent. If x=1, then

$$\sum_{n=1}^{\infty} \left(-1\right)^{n} \frac{1}{n} x^{n} \quad \text{converges};$$

if 
$$x = -1$$
, then  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$  diverges.



Hence  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$  is absolutely convergent if |x| < 1, conditionally convergent if x = 1 and divergent if |x| > 1 or x = -1.

## § 2 Alternating series

#### 2.1 Definition

 $\sum a_n$  is called alternating if for each n,  $a_n = (-1)^n u_n$ , where  $u_n > 0$ .

### 2.2 Leibuniz's test



# **Theorem 2.2.1** Suppose $\sum_{n=1}^{\infty} (-1)^{n+1} u^n$ satisfies the

following:

- (1)  $\{u_n\}$  is decreasing;
- $(2) \lim_{n\to\infty}u_n=0.$

Then

(1) 
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} u^n$$
 converges;

(2) 
$$Sgn(r_n) = Sgn((-1)^n)$$
 or  $r_n = 0$ ;

$$(3) |r_n| \leq u_{n+1}.$$



Proof (1) Let  $S_n$  be the nth partial sum of  $\sum_{n=1}^{\infty} (-1)^n u^n$ . That means

$$S_n = \sum_{k=1}^{\infty} \left(-1\right)^{k+1} u_k.$$

Now we consider two subsequences:

$$\{S_{2m}\}\$$
and  $\{S_{2m+1}\}\$ of  $\{S_n\}$ .

For  $\{S_{2m}\}$ , we have that

$$S_{2m+2} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2m+1} - u_{2m+2})$$

$$= S_{2m} + u_{2m+1} - u_{2m+2} \ge S_{2m}.$$



This shows that  $\{S_{2m}\}$  is increasing.

On the other hand,

$$S_{2m} = u_1 - (u_2 - u_3) - \dots - (u_{2m-2} - u_{2m-1}) - u_{2m} \le u_1$$

It follows that  $\lim_{m\to\infty} S_{2m}$  exists.

Since  $S_{2m+1} = S_{2m} + u_{2m+1}$ , we see that  $\lim_{m \to \infty} S_{2m+1}$  exists and  $\lim_{m \to \infty} S_{2m} = \lim_{m \to \infty} S_{2m+1}$ . Hence  $\{S_n\}$  converges.

(2) It is obvious that 
$$r_n = \sum_{k=n+1}^{\infty} (-1)^{k+1} u_k = (-1)^n \sum_{k=n+1}^{\infty} (-1)^{k-n-1} u_k$$

and 
$$0 \le \sum_{k=n+1}^{\infty} (-1)^{k-n-1} u_k \le u_{n+1}$$
,



which implies when  $r_n \neq 0$ ,

$$\operatorname{sgn} \{r_n\} = \operatorname{sgn} \{(-1)^n u_{n+1}\} = \operatorname{sgn} \{(-1)^n\}$$

and

$$|r_n| \leq u_{n+1}$$
.

These conclude the proof.

Examples 2.2.1 Discuss the convergence of the following series.

(1) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}$$
  $(s>0)$ ; (2)  $\sum_{n=1}^{\infty} \frac{(-\alpha)^n}{n^s}$   $(s>0, \alpha>0)$ .

(3) 
$$\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + a^2}) \quad (a \neq 0)$$



Solution (1) Obviously,  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}$  is absolutely

convergent when s > 1, conditionally convergent when  $0 < s \le 1$ .

(2) Let 
$$a_n = \frac{(-\alpha)^n}{n^s}$$
. Then

$$\frac{a_{n+1}}{a_n} = \frac{\left(-\alpha\right)^{n+1}}{\left(n+1\right)^s} \cdot \frac{n^s}{\left(-\alpha\right)^n} = -\alpha \left(\frac{n}{n+1}\right)^s.$$

This shows that  $\sum_{n=1}^{\infty} \frac{(-\alpha)^n}{n^s}$  is absolutely convergent when



 $\alpha < 1$ . If  $\alpha = 1$ ,  $\sum_{n=1}^{\infty} \frac{(-\alpha)^n}{n^s}$  is absolutely convergent when s > 1, conditionally convergent when  $0 < s \le 1$ .

If  $\alpha > 1$ , we see from

$$\lim_{n\to\infty}\frac{\alpha^n}{n^s}=+\infty$$

that  $\sum_{n=1}^{\infty} \frac{(-\alpha)^n}{n^s}$  is divergent.

(3) Since

$$\sin\left(\pi\sqrt{n^2+a^2}\right) = \left(-1\right)^n \sin\left(\pi\sqrt{n^2+a^2}-n\pi\right)$$



$$= \left(-1\right)^n \sin \frac{\alpha^2 \pi}{\sqrt{n^2 + \alpha^2} + n}$$

and

$$\lim_{n\to\infty}\frac{a^2\pi}{\sqrt{n^2+a^2}+n}=0,$$

we know that for sufficiently large n,

$$\sin\frac{a^2\pi}{\sqrt{n^2+a^2}+n}>0$$

showing that 
$$\sum_{n=K}^{\infty} \sin(\pi \sqrt{n^2 + a^2})$$
 is alternating.



Obviously,  $\sin \frac{a^2 \pi}{\sqrt{n^2 + a^2} + n}$  monotonically goes to 0,

which tells us that  $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + a^2})$  is convergent.

Obviously, it is conditionally convergent.

## § 3 Added examples

Examples 3.1 Suppose  $\lim_{n\to\infty} \left( n^{2n\sin\frac{1}{n}} \cdot a_n \right) = 1$  and  $a_n \ge 0$ .

Discuss the convergence of the series  $\sum_{n=1}^{\infty} a_n$ .



Solution Let  $\varepsilon = \frac{1}{2}$ . Then there is some N > 0 such that for all n > N,

$$\frac{1}{2} < n^{2n\sin\frac{1}{n}} \cdot a_n < \frac{3}{2}$$

showing that

$$\frac{1}{2n^{2n\sin\frac{1}{n}}} < a_n < \frac{3}{2n^{2n\sin\frac{1}{n}}}.$$

Since

$$\lim_{n\to\infty}\frac{\frac{1}{2n\sin\frac{1}{n}}}{\frac{1}{n^2}}=1,$$



we see that

$$\sum_{n=1}^{\infty} \frac{1}{n^{2n\sin\frac{1}{n}}}$$

is convergent. Hence  $\sum_{n=1}^{\infty} a_n$  is convergent.

**Examples** 3.2 Suppose  $\sum_{n=1}^{\infty} u_n$  is a divergent series with nonnegative terms. Let  $S_n = u_1 + u_2 + \cdots + u_n$ .

Then  $\sum_{n=1}^{\infty} \frac{u_n}{S_n}$  is still divergent.

**Proof** Since



$$\sum_{k=n+1}^{n+p} \frac{u_k}{S_k} \ge \frac{\sum_{k=n+1}^{n+p} u_k}{S_{n+p}} = \frac{S_{n+p} - S_n}{S_{n+p}} = 1 - \frac{S_n}{S_{n+p}}$$

and  $\lim_{n\to\infty} S_n = +\infty$ , we see that for sufficiently large p,

$$0<\frac{S_n}{S_{n+p}}<\frac{1}{2}.$$

Hence

$$\sum_{k=n+1}^{n+p} \frac{u_k}{S_k} > \frac{1}{2}.$$



This implies that  $\sum_{n=1}^{\infty} \frac{u_n}{S_n}$  is divergent.

Homework Page 34: 3 (1, 3); 4

