Lecture 31 Series of nonnegative terms (I)

§ 1 Concept of series of nonnegative
terms

Definition 1.1 For a series 2 u, ifforeach n=1 u, =20,

n=1

a0

then 2. U, 15 called a senes with mmnegative terms.

=1
Proposition 1.2 Let 35, =;E_lui. Then Z1H“ 1s convergent

if and only 1f {S.} is bounded. If {S.} is bounded, then

2 U, =+w0
a=]
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§ 2 Criteria for convergence

Theorem 2.1 (Companson theorem) Suppose both

o}

and 2 V. are two series of nonnegative terms,

and suppose there 1s a positive constant € such that
u <cv, (n= 1,2,--),

(D) If Z v, 1is convergent, then Z u, must be convergent;

oy

(2) If 2, u, 1s divergent, then ?_- v, must be divergent.

The prﬂt}t easily follows from Prnpnsﬁmn 1.2,




Theorem 2.2 (The limit form of comparison theorem) For

2. v, of nonnegative terms, if

=1

two series Ej u, and

lim — =}

e
Fl—alk "
vﬂ

where 0</ <. Then iun 1s convergent (resp. divergent

if and only 1f 2_-] V, 1s convergent (resp. divergent).

Proof It follows from

.U
Im—==[

ﬂ)-ﬂﬂ‘p
n
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! |
that for &, = 3 there is some N such that forall n>N

7 :
—g, <——l<¢g,
This yiclds that i
lhrﬂ <u, < Efvﬂ
2 2

The conclusion follows from Theorem 2.1.

24

: v, of

Corollary 2.3 For two series E_l u,_ and
nonnegative terms, suppose
u

lim % =0

I:I—H:ﬁv
n
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If _E v, 18 convergent, then Z 4, 1s convergent; If 2_1 u,

is divergent, then 2, V. 1S dwergenl

Corollary 2 4 For two series Z u, and Z vV, of
nonnegative terms, suppose

.U,
Im =& = 400
=l v

If Z_] u, 1s convergent, then }_'_a V. 1s convergent; If

z V. 1s divergent, then l u, is divergent.
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Theorem 2.5 (The Cauchy’s test) Suppose El u, isa

series of nonnegative terms. If there 1s some N such that

forall n>N,

d nlu, <g<1,
then E U, 1s convergent; if for any N, there 1s some
n> N such that

1) e

then Zi“,, 1s divergent.
=
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Proof It follows from
that forall n> N |

Theorem 2.1 shows that 241 U, 1s convergent.
n=

If for any N, there is some n> N such that
nly =1

then l‘_ﬂ u, # 0 This shows that ;.Z—l U, is divergent.
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Theorem 2.6 (The limit form of Cauchy’s test) For a series

Z u, of nonnegative terms,

(1) if Em”m <1, then Z”n is convergent;

m=l1
(2)if 7=lm y nfu, >1, then Z] U, is divergent;

(3) there 1s some convergent series with nonnegative terms

such that 7 =1 and divergent series with nonnegative

terms for which r =1.

Proof (1) Since r <1, thereis some &,>0 such that
O<r+g, <1
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Then there is some N >0 such that forall >N,
UE;{:TH{F+£“:1‘

Theorem 2.5 shows that é’f‘, CONVErges.
Since 7 > 1 _there is some £, >0 such that
F—, >1,
Then there is some N >0 such that forall n> N |

rMu, 2r—6,>1,

Hence lm #, #0 showing that E u, diverges.

Moy
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(3) The proof follows from the following example.

© ] = 1
Examples 2.1 Z'l; and uzzln_z

Theorem 2.7 (The D’Alembert’s test) Suppose 2 %, is a

n=]
series with nonnegative terms. If there is some N >0

such that forall n> N |

Wfu, <q<1,

ol
then Z«l u, 1is convergent; if for any » , there is some
=

n>N such that %z, 21,
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then 2; U, 1s divergent.
Theorem 2.8 (The limit form of D’ Alembert’s test)

oy
Suppose 2.4, isa series with nonnegative terms.

() If '_

rznhﬂ’{fuﬂ <l

o
then 214, is convergent;
n=1
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E:

5

o, >1

then E”n is divergent;

(3) There is convergent series with nonnegative terms such
that » =1 and divergent series of nonnegative series for
which r=1.

The proof is similar to that of the case of Cauchy’s test.
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Remark 2.9 Theorem 2.8 (3) can be seen from Example 2.1.

Examples 2.2 Discuss the convergence of the following

series.
0P [" l]n; @ zCr@>0;
n4—
i = 1 n+l
’ 3 __]u ey
® 2y @ Z[" B }

Solution (1) Since




it is divergent.
(2) Since

o

lenﬂl,ll[E] =lm —=0
r:—.rﬂ:r\ 1 n»0 gy *
this serics 1s convergent.

(3) Since

il
lim 7f '

"_}m\lﬁﬂ_3n=n—}m_ ] 3 n 5 <
y-(s

this series is convergent.




(4) It follows from

{]El—l{)gn-l-lﬂ 1
n s n(n+1)

o | n+l
that Z(;_ log T] is convergent.

n=1
. n!
Examples 2.3 Show nh_ﬂn_,. =0
n!
Proof Let %, = Since

1,["” =

(ﬂ+l)! 'n"_ 1

u, (n+1)" n! _[I_I_IJ"*




we know

. U 1
hm-—22=—<1
I ‘HH e
= . n!
showing that ; “, is convergent. Hence lﬂﬂ_n =1

Homework Page23: 1(1,3,5,7,9,11,13);2;4;5 (1)
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