Chapter 9

Lecture 29 Upper limits and lower limits

§ 1 Upper limits and lower limits

Suppose $\{a_n\}$ is a bounded sequence. Then for any k, $\{a_{k+1}, \dots, a_n, \dots\}$ is still bounded. We use β_k to denote the supremum of $\{a_{k+1}, \dots, a_n, \dots\}$ and α_k its infimum.

That is

$$\beta_k = \sup_{n>k} \{a_n\} = \sup\{a_{k+1}, \dots, a_n, \dots\}$$

$$\alpha_k = \inf_{n>k} \{a_n\} = \inf\{a_{k+1}, \dots, a_n, \dots\}.$$

In this way, we obtain two sequences $\{\beta_k\}$ which is decreasing and $\{\alpha_k\}$ which is increasing. Hence both $\lim_{k\to\infty} \alpha_k$

and $\lim_{k\to\infty} \beta_k$ exist which are denoted by

$$H = \overline{\lim}_{n \to \infty} a_n = \lim_{k \to \infty} \sup_{n > k} \{a_n\}$$

and

$$h = \lim_{n \to \infty} a_n = \lim_{k \to \infty} \inf \{a_n\}.$$

Proposition 1.1.1 $h \le H$.

Remark 1.1.1 If $\{a_n\}$ has no upper bounded, then we assume $H = \overline{\lim_{n \to \infty}} \ a_n = +\infty$. If $\{a_n\}$ has no lower bound,

then we assume $h = \lim_{n \to \infty} a_n = -\infty$.

Theorem 1.1.2 Suppose $H = \overline{\lim_{n \to \infty}} a_n$.

(1) If H is finite, then for any $\varepsilon > 0$, the interval

 $(H-\varepsilon, H+\varepsilon)$ contains infinitely many a_n , but

 $(H+\varepsilon,+\infty)$ contains any finitely many a_n ;

- (2) If $H=+\infty$, then for any G>0, there are infinitely many a_n such that $a_n>G$.
- (3) If $H = -\infty$, then $\lim_{n \to \infty} a_n = H$.

Proof (1) Claim I For any $\varepsilon > 0$, there are infinitely many a_n such that

$$a_n > H - \varepsilon$$

Suppose not. Then there exist $\varepsilon_0 > 0$ and n_0 such that for all $n > n_0$,

$$a_n \leq H - \varepsilon_0$$
.

It follows that for all $n > n_0$,

$$\beta_n = \sup\{a_{n+1}, \dots, a_{n+2}, \dots\} \leq H - \varepsilon_0,$$

which implies that

$$H \leq H - \varepsilon_0$$
.

This is the desired contradiction.

Claim II For any $\varepsilon > 0$, there are at most finitely a_n such that

$$a_n \ge H + \varepsilon$$
.

It follows from $\lim_{n\to\infty} \beta_n = H$ that for any $\varepsilon > 0$, there is N such that for all n > N,

$$\beta_n < H + \varepsilon$$
.

Since $\beta_n = \sup\{a_{n+1}, ..., a_{n+2}, ...\}$, we see that for any k > 0, $a_{n+k} \le \beta_n < H + \varepsilon$.

The proof of (1) follows from the combination of Claims I and II.

- (2) If $H = +\infty$, then $\{a_n\}$ is unbounded. The conclusion is obvious.
- (3) If $H=-\infty$, then for any G>0, there is some n_0 such that for all $n>n_0$,

$$a_{n+1} \leq \beta_n < -G.$$

This shows that $\lim_{n\to\infty} a_n = -\infty$.

Similar discussion as in the proof of Theorem 1.1.2 shows that

Theorem 1.1.3 Suppose $h = \lim_{n \to \infty} a_n$.

- (1) If h is finite, then for any $\varepsilon > 0$, the interval $(h-\varepsilon,h+\varepsilon)$ contains infinitely many a_n and $(-\infty,h-\varepsilon)$ contains only finitely many a_n ;
- (2) If $h=-\infty$, then for any N>0, there are infinitely many a_n such that $a_n < -N$;
- (3) If $h=+\infty$, then $\lim_{n\to\infty} a_n = +\infty$.

Theorem 1.1.4 Suppose

$$H = \overline{\lim}_{n \to \infty} a_n$$
 and $h = \underline{\lim}_{n \to \infty} a_n$.

Then

$$H = \max\{A: A = \lim_{k \to \infty} a_{n_k} \text{ for any convergent subsequence } \{a_{n_k}\} \text{ of } \{a_n\}\};$$

$$h = \max\{B: B = \lim_{k \to \infty} a_{n_k} \text{ for any convergent subsequence } \{a_{n_k}\} \text{ of } \{a_n\}\}.$$

Proof It suffices to prove the first conclusion. The second one follows from similar reasoning. We divided our discussions into three cases.

Case I H is finite

Then Theorem 1.1.2 implies that there must be a

subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that

$$\lim_{n\to\infty}a_{n_k}=H$$

and $(H + \varepsilon, +\infty)$ contains only finitely many $\{a_n\}$. Hence for any convergent subsequence $\{a'_{n_k}\}$,

$$\lim_{k\to\infty}a'_{n_k}\leq H+\varepsilon$$

By the arbitrariness of ε , we see that

$$\lim_{k\to\infty}a'_{n_k}\leq H$$

Case II $H=+\infty$

Then Theorem 1.1.2 implies that there is a subsequence $\{a_n\}$ of $\{a_n\}$ such that

$$\lim_{n\to\infty}a_{n_k}=+\infty.$$

Case III $H = -\infty$

Theorem 1.1.2 shows that $\lim_{n\to\infty} a_n = -\infty$.

The conclusion easily follows.

Theorem 1.1.4 implies the following.

Corollary 1.1.5 $\lim_{n\to\infty} a_n = A$ (finite or infinite) if and

only
$$\overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = A$$
.

Example 1.1.1 Suppose $a_n = n + (-1)^n n$ (n = 1, 2, ...). Find $\overline{\lim}_{n \to \infty} a_n$ and $\underline{\lim}_{n \to \infty} a_n$.

Solution Since
$$a_n = n + (-1)^n n = \begin{cases} 2n, & n \text{ is even} \\ 0, & n \text{ is odd} \end{cases}$$
, we see

that

$$\overline{\lim}_{n\to\infty} a_n = \infty \text{ and } \underline{\lim}_{n\to\infty} a_n = 0.$$

Example 1.1.2 Suppose $a_n = n\cos\frac{n}{4}\pi$ (n = 0, 1, 2, ...). Find $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} a_n$.

Solution Since

Solution Since
$$a_n = n\cos\frac{n}{4}\pi = \begin{cases} 8k, & n = 8k \\ \frac{8k+1}{2}\sqrt{2}, & n = 8k+1 \\ 0, & n = 8k+2 \\ -\frac{8k+3}{2}, & n = 8k+3 \\ -(8k+4), & n = 8k+4 \\ -\frac{8k+5}{2}, & n = 8k+5 \end{cases}$$

$$0, & n = 8k+6 \\ \frac{8k+7}{2}, & n = 8k+7 \end{cases}$$

$$\lim_{n\to\infty} a_n = +\infty$$
 and $\lim_{n\to\infty} a_n = -\infty$.

Example 1.1.3 Show $\overline{\lim}_{n\to\infty} (a_n + b_n) \le \overline{\lim}_{n\to\infty} a_n + \overline{\lim}_{n\to\infty} b_n$.

Proof The proof easily follows from the following inequality:

$$\sup\{a_n+b_n\} \le \sup\{a_n\} + \sup\{b_n\}.$$

Example 1.1.4 Show $\overline{\lim}_{n\to\infty} (a_n \cdot b_n) \leq \overline{\lim}_{n\to\infty} a_n \cdot \overline{\lim}_{n\to\infty} b_n$.

Proof The proof easily follows from the following inequality:

$$\sup\{a_n\cdot b_n\} \leq \sup\{a_n\}\cdot \sup\{b_n\}.$$

Example 1.1.5 Suppose $\lim_{n\to\infty} a_n$ exists. Show

$$\overline{\lim}_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \overline{\lim}_{n\to\infty} b_n.$$

Proof (I) It follows from Example 1.1.3 that

$$\overline{\lim_{n\to\infty}}(a_n+b_n)\leq\overline{\lim_{n\to\infty}}a_n+\overline{\lim_{n\to\infty}}b_n=\overline{\lim_{n\to\infty}}a_n+\overline{\lim_{n\to\infty}}b_n$$

and

$$\overline{\lim_{n\to\infty}}b_n\leq\overline{\lim_{n\to\infty}}(a_n+b_n)+\overline{\lim_{n\to\infty}}(-a_n)=\overline{\lim_{n\to\infty}}(a_n+b_n)-\overline{\lim_{n\to\infty}}a_n.$$

The equality easily follows.

(II) Let $\lim_{n\to\infty} a_n = a$. Then for any $\varepsilon > 0$, there is some

N > 0 such that for all n > N,

$$a - \varepsilon < a_n < a + \varepsilon$$
.

It follows that

$$a-\varepsilon+b_n < a_n+b_n < a+\varepsilon+b_n$$

So
$$\sup\{a-\varepsilon+b_n\}<\sup\{a_n+b_n\}<\sup\{a+\varepsilon+b_n\}$$
,

which is

$$a-\varepsilon+\sup\{b_n\}<\sup\{a_n+b_n\}< a+\varepsilon+\sup\{b_n\}$$
.

Hence

$$a + \overline{\lim}_{n \to \infty} b_n - \varepsilon \le \overline{\lim}_{n \to \infty} (a_n + b_n) \le a + \varepsilon + \overline{\lim}_{n \to \infty} b_n$$

which implies the required equality.

Homework Page 7: 4; 6.

