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Semiparametric Bayesian Modeling of
Income Volatility Heterogeneity

Shane T. JENSEN and Stephen H. SHORE

Research on income risk typically treats its proxy—income volatility, the expected magnitude of income changes—as if it were unchanged
for an individual over time, the same for everyone at a point in time, or both. In reality, income risk evolves over time, and some people face
more of it than others. To model heterogeneity and dynamics in (unobserved) income volatility, we develop a novel semiparametric Bayesian
stochastic volatility model. Our Markovian hierarchical Dirichlet process (MHDP) prior augments the recently developed hierarchical
Dirichlet process (HDP) prior to accommodate the serial dependence of panel data. We document dynamics and substantial heterogeneity

in income volatility.

KEY WORDS: Hierarchical Dirichlet process; Income volatility; State-space models.

1. INTRODUCTION AND MOTIVATION

Income dynamics—how peoples’ incomes evolve over
time—are of great interest to economists. One reason for this
is that income volatility—the variance of income changes—is
frequently used as a proxy for income risk. To the degree that
people are risk-averse, such risk may carry substantial welfare
costs. Many social programs (e.g., unemployment insurance,
progressive income taxes) are designed to mitigate such costs.

Attempts to measure income volatility typically assume that
income volatility is the same for everyone, that it does not
change from year to year, or both. When volatility is allowed to
vary across time or individuals, such differences are tied to co-
variates (e.g., comparing the income volatility of high- and low-
education individuals).! In this article we develop a new method
to identify flexibly latent differences in income volatility across
individuals and over time. Such heterogeneity has a dramatic
impact on our interpretation of income volatility. To the degree
that volatility is chosen, we would expect individuals to take on
more of it when they are more risk-tolerant or have better risk-
sharing opportunities. As a result, average measures of income
volatility (coupled with average measures of risk aversion) may
dramatically overstate the welfare cost of income risk. For ex-
ample, Jensen and Shore (2009) used the methods outlined here
to show that the increase in average income volatility over time
can be attributed to a minority of individuals with high income
volatility; these individuals are more likely to self-identify as
risk-tolerant.

We examine self-reported labor incomes from the core sam-
ple of the Panel Study of Income Dynamics (PSID), designed
as a nationally representative panel of U.S. households. Data
were collected annually from 1968 to 1997 and biennially to
2005. Among the 3041 male household heads that we study,
the average number of income observations per individual was
17. This rich panel allows us to model income dynamics for

Shane T. Jensen is Associate Professor, Department of Statistics, The
Wharton School, University of Pennsylvania, Philadelphia, PA 19104 (E-
mail: stjensen @wharton.upenn.edu). Stephen H. Shore is Associate Profes-
sor, Department of Risk Management and Insurance, J. Mack Robinson
College of Business, Georgia State University, Atlanta, GA 30303 (E-mail:
sshore @gsu.edu).

I There are a few exceptions. Meghir and Windemejier (1999), Banks, Blun-
dell, and Grugiavini (2001), and Meghir and Pistaferri (2004) considered an au-
toregressive conditional heteroscedasticity (ARCH) process for volatility, and
Browning, Alvarez, and Ejrnaes (2010) allowed for heterogeneity in the degree
to which shocks are autoregressive.

each individual and to compare those dynamics across individ-
uals.

We build our current work on a standard model for in-
come dynamics that decomposes changes in log income into
predictable changes (with covariates), permanent shocks, and
transitory shocks. The rate at which permanent and transitory
shocks enter into and exit from income are governed by (ho-
mogeneous) parameters that we estimate. The chief objects of
interest are permanent and transitory volatility, the variance of
permanent and transitory income shocks. We develop a stochas-
tic volatility model in which volatility parameters differ across
individuals and evolve over time.

Conditional on volatility parameters, we decompose income
changes in a dynamic linear model, deconvolving the perma-
nent and transitory components of the income process for each
individual. We estimate this dynamic linear model using a
stochastic extension (Carter and Kohn 1994) of the standard
Kalman filter (Kalman 1960), nested within our full model out-
lined below.

The main challenge in modeling the entire income volatil-
ity distribution is a lack of a priori knowledge of the ap-
propriate functional form for this distribution. Absent such
knowledge, we pursue a nonparametric strategy when mod-
eling income volatility. Specifically, we build on the popular
Bayesian nonparametric approach of specifying a completely
unknown distribution for income volatility, with a Dirichlet pro-
cess (DP) prior on this unknown distribution. DP priors have
been used extensively for the estimation of unknown distribu-
tions, as reviewed by Muller and Quintana (2004). This prior
induces a discreteness on the posterior distribution that has of-
ten been used to cluster observations or latent variables (see,
e.g., Medvedovic and Sivaganesan 2002; Jensen and Liu 2008;
Quintana et al. 2008). In our application, income volatility can
take one of a discrete number of values, with the number of
such values and the values themselves determined by the data.

A standard DP-based model does not account for the grouped
nature of our labor income data. For each individual in our
dataset, we have multiple observations of reported income over
an individual-specific number of years. An individual’s volatil-
ity value in year ¢ is likely to be more similar to his or her value
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in another year than to a value of another individual. Teh et
al. (2006) recently addressed the situation of grouped data by
introducing the hierarchical DP (HDP). This hierarchical ex-
tension of the standard DP-based model induces clustering of
variables both within groups and between groups in the popu-
lation. The HDP is a natural framework for a model-based ap-
proach to our analysis. Each group is an individual person, and
so this flexible model allows us to share information on income
volatility both within an individual (across time) and between
individuals (across the population).

A standard HDP-based model does not account for the panel
nature of our data. Each group (each individual’s data) is or-
dered by year. An individual’s volatility in year ¢ is likely to
be more similar to his or her volatility in year # — 1 than in
some other year distant from year . We introduce a novel ex-
tension of the HDP framework that imposes a Markovian time
dependence between volatilities within each individual. Volatil-
ity may remain unchanged from one year to the next. If volatil-
ity changes, it may change to a value held by that individual in
another year or to a value not elsewhere present for that indi-
vidual; if it changes to a value not elsewhere present for that
individual, it may change to a value held by other individuals in
the data or to a new value not seen elsewhere in the sample.

We combine our novel Markovian HDP (MHDP) model for
volatility with a dynamic linear model for permanent versus
transitory shocks. This semiparametric Bayesian model esti-
mates the evolution of income dynamics over time across the
entire population of individuals in our study. Our full model is
implemented with a Gibbs sampler to estimate the full posterior
distribution of each unknown parameter in our model.

There is an extensive literature on stochastic volatility mod-
els. The simplest of these, autoregressive conditional het-
eroscedasticity (ARCH) models, allow the current volatility
to also be a parametric function of previous shocks (Engle
1982) and have been applied to income dynamics in Meghir and
Windemejier (1999), Banks, Blundell, and Grugiavini (2001),
and Meghir and Pistaferri (2004). Generalized (GARCH) ver-
sions of these models also allow the current volatility to be para-
metric functions of both previous shocks and previous volatility
parameters (Bollerslev 1986). Compared with these simpler al-
ternatives, our MHDP model allows flexibility in the shape of
the cross-sectional volatility distribution and its evolution. Such
flexibility could in principle be obtained with a sufficiently rich
GARCH structure, but at considerable cost in terms of parsi-
mony and ease of computation. In contrast, the MHDP model
inherits from HDP models the intuitive estimation method and
structure for sharing information across years and between in-
dividuals. As such, this methodological contribution allows us
to tractably accommodate flexibility in volatility heterogeneity
and dynamics.

The MHDP model is particularly appealing in the analysis of
the volatility of individual income processes. For this applica-
tion, the key feature of the MHDP is its posterior discreteness.
Unlike an ARCH model in which volatility is constantly chang-
ing, volatility in an MHDP setting is constant for a period and
then jumps to a different value. Such discontinuous changes in
volatility can reflect discrete life events (career changes, begin-
ning care of an elderly parent who falls ill). Having said that,
findings on ARCH-based income dynamics (Meghir and Pista-
ferri 2004) mirror our own: they also reject the hypothesis that
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income volatility is the same for everyone and that it remains
unchanged over time for an individual.

We estimate our model on data from the PSID. We find that
the marginal distribution of volatility parameters is strongly
positively skewed. Most individuals have volatility parameters
that conform to our expectations (e.g., shocks with annual stan-
dard deviations of 15 percent), but a small minority of individ-
uals have enormous volatility parameters (with standard devi-
ations of 100 percent or more). Although volatility parameters
are highly persistent, we can strongly reject the hypothesis that
they are constant over time.

2. MODEL AND IMPLEMENTATION

Data are taken from the core sample of the PSID. The PSID
tracked families annually from 1968 to 1997 and has done so in
odd-numbered years thereafter. Our outcome variable is excess
log income, the residual from a regression to predict the natu-
ral log of self-reported labor income with covariates (e.g., age,
education). Details on sampling restrictions, covariates used to
obtain excess log income, missing data, and outliers are pre-
sented in Section 3.1.

2.1 Income Process

Our model is based on a standard process for excess log in-
come for individual i at time ¢ (Carroll and Samwick 1997,
Meghir and Pistaferri 2004). In this article, time ¢ represents
calendar time, not the age of individual i. Excess log income
vi.+ is modeled as the sum of permanent income, transitory in-
come, and error ¢; ;,

t—3 t
Vi = Zwi,k + Z P i—k - Wik
k=1

k=1-2
Permanent income

!
+ Z Qet—k - ikt e (1)

k=t—2

Transitory income

Permanent income is the weighted sum of past permanent
shocks w; x to income. Transitory income is the weighted sum
of recent transitory shocks ¢; x to income. Although we use the
word “shock” for parsimony, these innovations to income may
be predictable to the individual, even if they look like shocks in
the data.

In our model, permanent shocks come into effect over
three periods, and transitory shocks fade completely after
three periods,’ giving us three permanent weight parame-
ters (@w.0, Pw.1, Pw,2) and three transitory weight parameters
(¢e.0, Pe.1, Pe.2). We refer to these weights ¢ collectively as the

2 Furthermore, transitory shocks are observationally equivalent to measure-
ment error when ¢, ;—; = 0 for t — k > 0. Whether measurement error or a
transitory shock, income will change temporarily and then revert to its previ-
ous level. Our results on heterogeneity in transitory volatility are equivalent to
documenting heterogeneity in the degree of measurement error.

3 The choice to allow shocks to enter in and fade out over at most 3 years
is motivated by the work of Abowd and Card (1989), who documented that
income changes are not autocorrelated at lags greater than 2 years. We get very
similar results using two, four, or five periods.
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income process parameters,* which are shared globally by all
individuals to make their estimation computationally tractable.
We posit flat prior distributions for each weight parameter [i.e.,
p(¢) o 1]; however, to give meaning to the magnitude of our
transitory shocks, we normalize the weights placed on transi-
tory shocks to sumto 1 (3" ¢pex = 1).

The permanent shock, transitory shock, and error term are
assumed to be normally distributed as well as conditionally
independent of one another over time and across individuals
(given values of the other parameters). We examine this normal-
ity assumption at length in Section 4.1. The permanent shocks
;s have mean 0 and permanent variance o, , = E[?,], and
the transitory shocks ¢;; have mean 0 and trdﬁsitory variance
o2, =Ele} ]:

()@ 2] e
Eit 0 0 ‘752, it

We refer to aﬁ, = (%2,1', o oﬁy ;) Jointly as the volatility pa-
rameters, which are the main objects of interest in this study.
Subscripts for i and ¢ indicate that volatility parameters may
differ across individuals and over time, as discussed in Sec-
tions 2.3-2.4. This accommodates not just an evolving distribu-
tion of volatility parameters, but also systematic changes over
the life cycle of volatility parameters, as documented by Shin
and Solon (2008) and others. Finally, we have a homoscedastic
noise shock e; ; with mean 0 and residual variance y2 = E[e,% A
For this residual variance parameter, we use a noninformative
prior distribution p(y®) o (y»H~ L.

This parsimonious framework for income dynamics is not the
only option. In particular, our approach rules out an autoregres-
sive structure in income levels (Gottschalk and Moffitt 2002)
and does not allow for heterogeneous rates of income growth
(Baker 1997; Baker and Solon 2003). Abowd and Card (1989)
noted an absence of autocorrelation in income changes, and this
is frequently used to defend models of the class that we use.
However, Baker (1997) argued that the Abowd and Card (1989)
result merely reflects sample and power problems. Our choice
of income process is more practical than ideological; both of the
alternatives that we mention here require that we keep track of
and model additional state variables (i.e., person-specific long-
term income levels or growth rates), which would be computa-
tionally taxing. Because our model is estimated from relatively
high-frequency income changes, the trends and mean reversion
in alternative models should have little impact on our estimated
parameters.

2.2 Formulation of Income Process as
a State-Space Model

We first present our methodology for estimating the income
process model of Section 2.1, assuming that the income volatil-
ity parameters a?, are known. We then generalize our model to

4 As an example of our notation, ¢, » denotes the weight placed on a per-
manent shock from two periods ago w;,—» in current excess log income, and
¢¢2 denotes the weight placed on a transitory shock from two periods ago
€i—2 in current excess log income. Carroll and Samwick (1997) assumed
Pw.k = ¢e.x = 0 for k > 0, although they acknowledged that this assumption is
unrealistic and designed an estimation strategy that is robust to this restriction,
but did not estimate ¢,. Meghir and Pistaferri (2004) and Blundell, Pistaferri,
and Preston (2008) assumed ¢, x = 0 for k > 0 but did not assume ¢, = 0.

Journal of the American Statistical Association, December 2011

allow for unknown volatilities in Sections 2.3-2.4. We reformu-
late our income process model (1) as

yiie=Xir-B+eir
Xii=A-Xi—1+Qipr
The vector 8 collects our income process weights,

B = (1’ ¢a),2’ ¢a),1 ’ ¢w,0a ¢€,27 ¢8,] ’ ¢8,0)/7

and the vectors Q; , and X;; contain the latent shocks,

where

3

-3
Xi = E Wi 5, Wj1—2, Wi 1—1, Wi, Ei 125 Eiyi—15 Eit
s=1

and
Qi,t = (07 Oa O» wi,t’ O’ Oa 8[,!)7

where w; ; and ¢; ; are drawn from (2). The error term e¢; ; is nor-
mally distributed with mean 0 and variance y2. A is a matrix of
constants that does not have to be estimated (A encodes the
transition that takes w; ; and ¢;; when =1 to w; ;1 and &; ;_;
when ¢ = 2, etc.). The formulation (3) can be recognized as a
state-space model where the permanent and transitory shocks
are latent states collected in X; ;, which evolve over time. The
state-space formulation has been used extensively in stochas-
tic volatility models (Durbin and Koopman 2001). However,
this formulation is predicated on knowing the values of our in-
come volatility parameters oi2t, which we address with a flexi-
ble semiparametric approach in Sections 2.3-2.4.

2.3 Modeling Volatility With a Hierarchical
Dirichlet Process

Aside from a few exceptions using an ARCH structure
(Meghir and Windemejier 1999; Banks, Blundell, and Gru-
giavini 2001; Meghir and Pistaferri 2004), previous research
modeling income dynamics has assumed that all individuals
with the same demographics have the same volatility param-
eters, 02 = (0.2,02). The primary focus of this article is on
allowing heterogeneity of these volatility parameters, aft =
(aﬁ it aii’t), both across individuals and over time within an
individual.’ These individual volatility parameters are not actu-
ally known, as was assumed in Section 2.2, and so we need to
formulate a probability model for the distribution of volatilities

oft in the population. Without an a priori view of the correct
functional form for the distribution of al.zt,
metric modeling approach. We can model aizt as iid draws from

a completely unknown distribution,

ol ~G(). )

we take a nonpara-

This unknown distribution G(-) represents the common struc-
ture between the different volatility parameters in the popula-
tion. A popular Bayesian approach to nonparametric problems
is to give the unknown distribution G(-) a DP prior, D(ap - H),
where H is a finite (nonnegative) probability measure (Ferguson

5 An alternative approach was taken by Browning, Alvarez, and Ejrnaes
(2010), who allowed heterogeneity in parameters similar to ¢ and were able
to reject the hypothesis that these values are the same for everyone. We abstract
from ¢ heterogeneity to maintain tractability while considering heterogeneity
in volatility.
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1974).° A reasonable choice of H for a population of vari-
ance parameters is a xv distribution with small degrees of free-
dom parameter v. The parameter «p is a weighting factor that
characterizes our prior confidence in the shape of G. A well-
known consequence of this model is that the posterior distribu-
tion of G(-) is discretized. As explained by Ferguson (1974), if
01, ...,6, are n iid observations from the probability function
G whose prior distribution is the DP D(ap - H), then

G(-)|91,...,9n~D<ozD-H+289j). 5)
j=1

Thus the posterior mean of G(-), or the predictive distribution
of a new observation, is proportional to op - H + Z}’zl d¢;. The
point mass components allow for the clustering of similar vari-
ables. The parameter «p (D for “Dirichlet”) implicitly controls
the expected number of these clusters in the population.

Although the standard DP prior is a conventional choice for
modeling of an unknown distribution, it does not respect sev-
eral key features of our data. First, our data are grouped; each
group is an individual tracked across several years. If individu-
als differ systematically in their volatility parameters 02 then
the assumption of iid volatility values is not approprlate. Sec-
ond, our data are ordered. An individual’s volatility in year 7 is
likely to be more similar to his or her volatility in year t — 1
than in some other year distant from year .

We can address the grouped structure of the data using an
HDP prior, as outlined by Teh et al. (2006). In an HDP, aft
values are taken as iid draws from a group- (in this case,
individual-) specific unknown distribution,

o ~Gi("). (6)

This unknown distribution G;(-) represents the common struc-
ture between the different volatility parameters across time
within each individual i. Information is then shared between in-
dividuals by imposing another level of the prior model in which
all the prior measures G; also share a common DP prior distri-
bution,

G; ~D(ap - Go), (N
where the distribution Gy itself has a DP prior distribution
Go ~ D(ap - H), (®

where H is a base measure for the population of variance param-
eters. A reasonable choice for H is a X2 distribution with small
degrees of freedom parameter v. The combination of prior dis-
tributions (7)—(8) gives an overall prior structure that allows
clustering of volatility parameters across years within an indi-
vidual as well as across individuals within the population. This
clustering is influenced by two parameters. oy (H for “hierar-
chical”) implicitly controls the expected number of volatility
clusters per group (individual), whereas ap implicitly controls
the expected number of volatility clusters in the population.

6 Hirano (2002) also used such a DP prior in a model of income dynamics.
Our motivation and use of this framework is completely different, however. Hi-
rano used a DP prior to accomodate flexibility in the shape of the distribution
of shocks conditional on volatility; in contrast, we use it to accommodate flexi-
bility in the distribution of volatility.
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A different nonparametric approach for grouped data is the
nested DP given by Rodriguez, Dunson, and Gelfand (2008),
where a clustering is imposed on entire groups in addition to
being imposed on observations within each group. We prefer
the HDP, in which volatility values O’Et are shared individually
between individuals and over time within an individual.

However, our formulation up to this point does not address
the ordered panel structure of our data. In the next section,
we introduce a novel Markovian extension of the HDP prior
that allows a , to remain unchanged from the previous period

(C’i,t = Oi,t—l)’
2.4 Markovian Hierarchical Dirichlet Process

The HDP outlined in (6)—(8) does not acknowledge any or-
dering of an individual’s volatilities, but it is reasonable to as-
sert that an individual’s volatility in year ¢ is likely to be more
similar to his or her volatility in year t — 1 than in some other
year farther away from year . We introduce an MHDP model
that extends the HDP framework to accommodate panel data,
introducing a time dependence between volatilities within each
individual.

We start from the HDP model specified earlier,

Go ~ D(ap - H),
Gl' ~ D(Ol]-] . G()).

Now, instead of generating a , from individual-specific G; (ig-
noring the time ordering), we generate Gi’, conditional on that
individual’s volatility history up to time point ¢. Specifically, we
have a Bernoulli variable, Z; ;, at each time point, where Z; , =1
indicates that O’ , is the same as previous volatility value 0 _1
We sample these Bernoulli variables Z; ; with probablhtles

pZir=1Z;1.4-1, M) X N},
&)
pZiy = 0|Zi,1:171 o) o< ayy,

where N}, is now the number of consecutive preceding years
where Z; y =1 (i.e., where 02k = Ozz - ay (M for “Marko-
vian”) is the prior weight on the choice to look beyond the pre-
vious year’s Value IfZ,, =1, we set a 0121 -7 =0,
we sample 0’ ~ G;j.

This modlﬁcatlon of our model for generating Uft induces
a Markovian dependency within the hierarchical Dirichlet pro-
cess. The resulting process is still discrete and imposes a clus-
tering on the volatility parameters o>. However, the added
Markovian dependency ensures not only that particular volatil-
ity values are likely to be conserved within an individual’s his-
tory (as would be with the HDP), but also that contiguous years
within an individual are likely to share the same volatility value.

Building time ordering into a DP model has substantial
precedence. Fox et al. (2007) extended a HDP-HMM model for
speaker diarization to give extra preference to self-transitions
between neighboring time points. Other recent work has explic-
itly modeled the evolution of DP clusters over time (Wang and
McCallum 2006; Ahmed and Xing 2008) and dependence as
a function of covariates (MacEachern 1999; Iorio et al. 2004).
Griffin and Steel (2006) also developed a DP construction con-
ditional on a covariate (e.g., time), and Xue, Dunson, and Carin
(2007) developed a dependent DP model for multitask learning.
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Zhu, Ghahramani, and Lafferty (2005) and Blei and Frazier
(2010) discussed different weighting functions for ordered data
within a DP model. Neither of these approaches involves a hi-
erarchical DP or our specific form (9) for time dependence. Our
weighting scheme based on the current streak, N;, of the previ-
ous value is somewhat ad hoc, but reflects our desire to encour-
age extra stickiness toward last year’s value when considering
the current year’s value. We experimented with other depen-
dence structures and found generally similar results.

In the context of other stochastic volatility models, such
as the ARCH (Engle 1982) or generalized ARCH (GARCH)
(Bollerslev 1986) frameworks, our MHDP model maintains the
relative simplicity (and ease of estimation) of the HDP frame-
work while allowing an extremely flexible (and time-varying)
shape of the cross-sectional volatility distribution.

This Markovian approach provides an alternative to the
ARCH volatility dynamics used by Meghir and Pistaferri
(2004). One key disadvantage of our approach is that when
volatility changes, the previous level is irrelevant; presumably
high volatility values are likely to be followed by high val-
ues even when volatility changes. Two advantages of our ap-
proach are that we provide a tractable way to capture a flexible
cross-sectional distribution for volatility and allow for regime
changes in volatility that may be helpful in modeling career-
switching.

2.5 Variable Weight Parameters

The MHDP is influenced by three weight parameters: oy,
which implicitly controls the probability that volatility changes
from one year to the next; «y, which implicitly controls the
expected number of volatility clusters per individual; and ap,
which implicitly controls the expected number of volatility
clusters in the population. Thus far, we have presented these
prior weight parameters o = (otps, g7, @p) as fixed and known
values.

Similar to the approach of Escobar and West (1995), we
now allow these weight parameters to vary with their own
prior distributions. Specifically, oy ~ Gamma(a, b) for each
ke (M,H,D). We set a=>b = 1/2, which gives us prior ex-
pectation E(cx) = 1 and prior variance Var(oy) = 2 for each
weight parameter. We also examined other values for these hy-
perparameters a and b and found that they did not affect our
results presented in Section 3.

Our complete model contains several sets of unknown pa-
rameters, including the global income process parameters ¢,
noise parameter y2, and weight parameters a shared across all
individuals and all years, as well as the permanent and tran-
sitory latent shocks, w and €, and their corresponding volatil-
ity parameters, 6> = (az,, ag) that vary for each individual in
each year. The full posterior distribution of these unknown pa-
rameters can be constructed from the levels of our hierarchical
model,

P,y o, @ ¢ 0°y)
xp(yl9, v% @, €) - p(w, ela?) - p(a?|a)

-p(@) - p(¢) - p(y?), (10)
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where p(y|@, ¥2, , €) and p(w, €|o?) are determined by our
income process state-space model (Section 2.2), with the non-
informative prior distributions p(¢) and p(y?) outlined in Sec-
tion 2.1. The prior distribution p(a2|er) is determined by the
MHDP in Sections 2.3-2.4, and p(e) is given in Section 2.5.

2.6 Gibbs Sampling Implementation

We estimate the full posterior distribution (10) using Gibbs
sampling (Geman and Geman 1984), with sets of unknown pa-
rameters sampled conditional on the current values of all other
parameters. For our model, we sample our unknown parameters
iteratively as follows:

1. Sample income process shocks (@, €) conditional on ¢,
yz, o2, and y.

2. Sample income process weights ¢ conditional on w, &,
and y.

3. Sample residual variance y2 conditional on ¢, w, &, and y.

4. Sample volatility parameters aft for each individual and
year conditional on shocks (w, &) and weights o.

5. Sample weight parameters & conditional on volatility pa-
rameters oft.

In step 1, we sample the income process shocks (@, €) while
treating the income process parameters ¢ and the entire distri-
bution of income volatilities o2 = {ai2t} as fixed and known. In
our state-space formulation of the income process (3), this step
is equivalent to sampling the latent shocks X given fixed values
of the parameter vector 8 = (1, ¢)’ and the variance matrix X,
which contains volatility parameters aft. With known values of
the parameters y2, 8, and X, the Kalman filter (Kalman 1960)
can be used to calculate maximum likelihood estimates of the
latent shocks X. Instead of focussing on point estimates, we
use the Kalman filter within a Gibbs sampling algorithm out-
lined by Carter and Kohn (1994) to sample the full posterior
distribution of the latent shocks (w, €).

Step 2 of the Gibbs sampler, sampling our income process
weights ¢, becomes easy if we condition on our sampled latent
shocks (w, &) and residual variance yz, because the B vector
containing our income process parameters acts in (3) as the co-
efficient vector for a regression model with known covariates
and residual variance. Let X be the matrix that collects all vec-
tors X; ; across i and ¢, let Y be the vector that collects all excess
log incomes y;; across i and 7, and let B = (X'X)"'X'Y be the
maximum likelihood estimate of §. With flat priors on 8, the
conditional posterior distribution of g is

B ~MVNormal[8, y2 - (X'X)™ "]

with the additional restriction that the ¢, elements of 8 must
sum to 1.

Step 3 of this Gibbs sampler conditions on the sampled val-
ues of the income process shocks (w, €) and the income process
weights ¢ to sample the residual variance 2. The conditional
posterior distribution of y? is
N (Y-XB)(Y - XB))

y2 ~ Inv-Gamma| —,
2 2

where N is the total number of income observations in our
dataset, across all years and all people.
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Step 4 of this Gibbs sampler generates new values for the
volatility parameters 0> = (aft) conditional on all of the other
parameters and the observed data. Recall that each crl.?t =
(aﬁ i aaz)’i’t) consists of both permanent and transitory volatil-
ity parameters for time ¢ within individual i, so that these two
values are sampled as a pair. To sample a full set of volatility
parameters a2 from p(02|¢, yz, o,w,e,y), it is easiest to pro-
ceed sequentially by sampling (one-by-one) the volatility pa-
rameters aft for individual i and year ¢ from the distribution
p(al-?th), vi o, o e, GE(M), y). Uz(i,t) represents the volatility
parameters from other years within the individual as well as
other individuals, so that we sample each volatility value con-
ditioning on all other volatility values.

Noting that O—i%l is independent of ¢, % and y given GE([, "
and the latent shocks (w; s, €; 1), the conditional posterior distri-
bution oft is
p(aj?tlwi,t» Eits UE(,',,)’ “)

an

The first term in (11) is the likelihood of our sampled shocks
(wi 1, €i 1) from our state-space model,

2 2 2
o p(wi z, 8i,t|0i,;) 'P(Ui,t|a—(i,t)’ O‘)'

2
p(wi s, 5i,t|U,;;)

2 2
B 1 w; 1 &
(00 11" Toi) 1/26Xp<_502” ) 3 ) (12
w,i,t &,i,t

The second term in (11) comes from our MHDP prior described
in Sections 2.3-2.4. We begin by sampling a volatility parame-
ter proposal value (02 = {002) og% ,}) from the probability mea-

s*’

sure H given in (8). We set af[ = o only if we cannot find

a suitable candidate af[ € az( iy mong our currently existing
values in the population.

Under our MHDP prior, the first candidate value for crf, that
we consider is the immediately preceding value, aft_l. Recall
our indicator variables Z;, = 1 if o/, = oft_l or Z;; =0 oth-
erwise. We need to sample a new value for Z; ; conditional on
the shocks w; ;, €;; and all other indicator variables Z; _; within
individual i (Z;, is independent of indicator variables Z; , for

j# i),
PZitlwis, i, Li—1, &) X p(@is, €i 1l Zit) - p(Zitl i, —1, o)
& p(wir, €i1|Zit) - P(Zi 1| Li1:0-1, @)

T

1 r@irizis, ..

k=t+1

Lij—1,0).

Thus the two values for Z; ; have relative probabilities
P(Ziy=1) X p(wis, eiflof_y) - N}

T

N1 r@inzii=1..... Zi-).
k=t+1
’ (13)

pZi;=0) x p(wi,, 8i,t|0*2) saM

T
: l_[ PZiklZi=0,....Zi;-1).
k=t+1
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The first term in (13) is the likelihood of (w; ;, €;,;) specified in
equation (12). The second term in (13) comes from our Marko-
vian prior specified in equation (9). The third term in (13) is
calculated by carrying forward the prior specified in equation
(9) for the subsequent years of individual i, conditional on ei-
therZ;;=1orZ;,=0.

We sample Z; ; according to the probabilities in (13). Note
that for = 1 within each individual i, we skip the foregoing
sampling step and set Z; ; = 0. If we sample Z; ; = 1, then we
set 03[ = aft_ |» and we are done with sampling O’l-?l.

If Z; , = 0, we then consider other values oiz_t within indi-
vidual i. Let k index the K; unique volatility pétrameter values
contained in cff_t. We have K; + 1 choices for aft with proba-
bilities
p(of, =0p) xp(wis eifod) Nu,  k=1,....K;,
(14)
(o7 ¢ o) & p@i, eidlo)) - an,

where Ny is the number of occurrences of the volatility param-
eter akz within the set of unique within-individual values afit
and oy is the prior weight for the group level of the HDP prior
(7). The first term in (14) is again the likelihood of (w;;, €;1)
specified in equation (12). Note that the prior probability of se-
lecting an existing within-individual value is proportional to its
popularity (number of occurrences Nj;) within the individual.
We sample one of these K; + 1 choices for cri?_t with relative
probabilities given in (14). If we sample Uft = crkz, then we are
done with sampling oft.

If we instead sample aft ¢ af_t, then we next consider val-
ues for crft from the current population of volatility parameters
outside of the individual, which we denote as afi. We now let
akz denote the unique values in GE[’ and let K denote the num-

ber of these unique values. We have K + 1 choices for af, with
probabilities

P(U,'?zzazz) O(P(wi,t,si,t|012) - N, k=1,...,K, (15)

2 2 2
p(o',',; ¢ 0'_,') X p(wiy, €irloy) - ap,

where Nj is the number of occurrences of ak2 within the set
of volatility values azi outside the individual. ap is the prior
weight for the population level of the HDP prior (8). Note that
the prior probability of selecting an existing value is propor-
tional to its popularity (i.e., number of occurrences N;) across
the population outside of the individual. We sample one of these
K + 1 choices for af_t with relative probabilities given in (15).
If we sample Gl%l = akz, then we are done with sampling al-?t.
If we instead sample Uft ¢ UEZ-, then we set O—i%t = af, which
is a new volatility value added to the population from measure
H. This entire sequential procedure for sampling crft for per-
son i and year ¢ then must be repeated for all other years and
individuals to update our full set of volatility values o2
Finally, step 5 of our Gibbs sampler updates the weight pa-
rameters & = (oy7, &g, @p) conditional on current volatility pa-
rameters o2, Each of these parameters are sampled using a
Metropolis step. We sample a proposal value a3, ~ N(ap, ©).
The variance of the proposal distribution c is a tuning parameter
(¢ =2 worked well in our algorithm). This proposal value a7},
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is accepted with probability ¢ = min{1, r} where

. _P@’lagy) - plej)
p(a?lam) - plam)’
Otherwise, the current value oy is retained. We update param-
eters oy and «p using an identical step.

Convergence of the Gibbs sampler for our full model (with
Markovian extension) was diagnosed by running multiple
chains for 20,000 iterations from well-dispersed starting points,
as recommended by Gelman and Rubin (1992). In the cur-
rent application, we observed that convergence had occurred
after approximately 5000 iterations. The first 5000 iterations of
several chains were discarded, and the remaining values were
thinned (taking only every 20th iteration) to reduce autocorre-
lation.

(16)

3. APPLICATION TO LABOR INCOME DATA

Our data are the core sample of the PSID. The PSID was
designed as a nationally representative panel of U.S. house-
holds (Hill 1991); it provides annual or biennial labor income
spanning the years 1968 to 2005. Restricting ourselves to male
household heads aged 22-607 gives us 52,181 observations on
3041 individuals with 17 years of recorded data per individual
on average. After some initial processing and basic summaries
presented in Section 3.1, we proceed to examine our main pa-
rameters of interest, the income process parameters and perma-
nent and transitory income volatilities, in Section 3.4.

3.1 Initial Processing and Summaries

We focus on excess log income as our outcome measure,
which is the residual from a regression to predict the natural log
of labor income. This regression is weighted by PSID-provided
sample weights, normalized so that the average weight in each
year is the same. We use the following measures as covariates
in this regression: a cubic in age for each level of educational
attainment (none, elementary, junior high, some high school,
high school, some college, college, graduate school); the pres-
ence and number of infants, young children, and older children
in the household; the total number of family members in the
household; and dummy variables for each calendar year. In-
cluding calendar year dummy variables eliminates the need to
convert nominal income to real income explicitly.®

We want to ensure that changes in income are not driven by
changes in the top code (i.e., the maximum value for income
entered that can be entered in the PSID). The lowest top code
for income was $99,999 in 1982 ($202,281 in 2005 dollars),
after which the top code rises to $9,999,999. To ensure that top
codes are standardized in real terms, this minimum top code? is
imposed on all years in real terms, so the top code is $99,999 in
1982 and $202,281 in 2005.

7 Age restrictions are standard in the income dynamics literature, although
exact age ranges vary slightly: Gottschalk and Moffitt (2002) (22-59), Meghir
and Pistaferri (2004) (25-55), and Abowd and Card (1989) (21-64).

8 Working with excess log real income is also standard in this literature
(Carroll and Samwick 1997; Meghir and Pistaferri 2004).

9 Our key results on volatility dynamics and heterogeneity are robust to other
choices of this top code. Naturally, because changing the top code changes the
range over which income can change, changing the top code does shift the
distributions of income volatility slightly.
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Table 1. Distribution of excess log income and
income changes for men

Excess income

One-year
Level change
Mean 0 0.0017
St. dev. 0.7307 0.4870
Observations 52,181 43,261
Minimum —2.9325 —3.6877
Sth percentile —1.6283 —0.7323
25th percentile —0.2964 —0.1089
50th percentile 0.1246 0.0134
75th percentile 0.4601 0.1442
95th percentile 0.9757 0.6673
Maximum 2.6435 3.5862

Because our income process does not model unemployment
explicitly, we need to ensure that results for the log of income
are not dominated by small changes in the level of income near
0 (which will imply huge or infinite changes in the log of in-
come). To address this concern, we replace income values that
are very small or O with a nontrivial lower bound. We choose
as this lower bound the income that would be earned from a
half-time job (1000 hours per year) at the real equivalent of the
2005 federal minimum wage ($5.15 per hour). This imposes
bottom codes of $5150 in 2005 and $2546 in 1982. Note that the
difference in log income between the top and bottom codes is
constant over time, so that differences in the prevalence of pre-
dictably extreme income changes over time cannot be driven by
changes in the possible range of income changes. The vast ma-
jority of the values below this bound are exactly 0. This bound
allows us to exploit transitions into and out of the labor force.
Results are robust to other values for this lower bound, such as
the income from full-time work (2000 hours per year) at the
2005 minimum wage (in real terms).

Table 1 presents the distribution of excess log income and
1-year changes in excess log income. The key thing to note
is that most l-year income changes are relatively modest,
with half of all income changes (25th percentile through 75th
percentile) between 11 percent and 14 percent (both in log
points). However, a small fraction of income changes are ex-
tremely large, with the worst 5 percent of income changes be-
low —73 percent and the best 5 percent better than 67 percent
(again in log points). This provides suggestive evidence that a
minority of extreme income changes represents much of the
volatility in the data. To the degree that such extreme income
changes are clustered within some individuals, it indicates sub-
stantial heterogeneity in income volatility, which we intend to
model.

3.2 Addressing Missing Data

Some observations are missing within our dataset, mostly be-
cause no data were collected by the PSID in even-numbered
years after 1997. We use an imputation step within our Markov
chain Monte Carlo implementation that fills in these missing in-
comes with sampled values from their full conditional distribu-
tion under our model. Specifically, for a missing income value,
Yir» we sample an imputed value y;, from the distribution of
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Figure 1. Impulse response function for permanent and transitory shocks. The online version of this figure is in color.

the missing value y; ; conditional on the surrounding observed
values y; ;—1 and y; ;+1 and current values of all parameters.

The conditional distribution of y; ; given y; j+1 — yi—1 =z 1s
normal, with mean and variance that are standard functions of
z and current values of our volatility parameters > and income
process parameters ¢. The imputation of all missing income
values is repeated at the end of each full iteration of our Gibbs
sampling algorithm. We also implemented our full model on
a smaller dataset on data before 1997 in which all individuals
containing missing values were removed and achieved similar
results.

3.3 Estimated Parameters of Income Process

We first examine our posterior results for the global income
process parameters of our model. Figure 1 shows the posterior
means of the coefficients ¢, which govern the rate at which
shocks enter into and exit from income. These posterior means
are presented in the form of an impulse response function, the
impact of a 1 SD shock for an individual with average volatil-
ity parameters. As outlined in Section 2, we constrain ¢ to be
constant over time and across individuals. We see that the per-
manent shocks (left panel) enter in quickly, as indicated by ¢,, x
increasing quickly to 1. We also see that transitory shocks (right
panel) damp out quickly, as indicated by ¢, x quickly dropping
to 0. Our model assumes that shocks enter and exit from in-
come over three periods, but we estimate similar impulse re-
sponse functions in models that allowed shocks to enter over
two, four, or five periods. We estimate a 95% posterior interval
of (0.0037, 0.0040) for the global residual variance y2.

3.4 Estimated Volatility Parameters

The parameters of primary interest in our model are the pa-
rameters that govern volatility within individuals and over time.
Figure 2 shows the distribution of the posterior mean of all per-

manent (0‘20) and transitory (ag) volatility parameters, across
all individuals and all years. Note the extreme skew and fat tails
in the distribution of volatility parameters, 2. We present both
the full distributions (right plots) and the distributions with the
right tail truncated (left plots), with that tail represented by a
large mass at the extreme right of each plot.

Although the medians are modest, the means far exceed these
medians. At the median, permanent shocks have an SD of ap-
proximately 16% annually; permanent shocks have an SD of
approximately 18% annually. However, the upper tails of the
transitory volatility parameters imply shocks with SDs well
above 100% annually.

Figure 3 presents two features of the within-individual
volatility distribution: the distribution of the number of volatil-
ity parameter values or clusters held by an individual [Fig-
ure 3(a)] and the probability that an individual’s volatility value
will be the same in 1, 2, 3, 4, or 5 years [Figure 3(b)]. At the me-
dian, an individual’s volatility parameters take on seven values
(changing six times over on average in 17 years of data). The
probability that volatility remains unchanged after 5 years is
roughly 20 percent. This indicates both that volatility is strongly
persistent but also that the common assumption of constant
volatility for an individual over time (as in Carroll and Samwick
1997) is violated.

We also examined the marginal posterior distributions of our
weight parameters o. We estimate a 95% posterior interval of
(2,5) for ap, which weights the prior probability that volatil-
ity will change from the previous year within an individual in
equation (13). We estimate a 95% posterior interval of (17,22)
for apy, which weights the prior probability of choosing unique
volatility value within an individual in equation (14). Finally,
we estimate a 95% posterior interval of (31, 47) for ap, which
weights the prior probability of choosing unique volatility value
across the population in equation (15).
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4. MODEL SENSITIVITY AND VALIDATION
4.1 ldentifying Heterogeneity With Sample Moments

Our state-space model presented in Section 2.1 assumes
that income shocks are normally distributed conditional on the
volatility parameters (2). One consequence of this assumption
is that unconditional kurtosis in the distribution of shocks is
automatically attributed to heterogeneity in volatility param-
eters. However, an alternative hypothesis is that there is lit-
tle or no heterogeneity in volatility parameters, but that the
income shocks come from a more fat-tailed distribution than
the normal distribution that we assume. When looking only
at the cross-section of income changes, these two possibil-
ities are observationally equivalent: heterogeneity in volatil-
ity parameters (with conditionally normal shocks) versus con-
ditionally fat-tailed shocks (without heterogeneity in volatil-
ity parameters). However, by examining the serial depen-
dence over time, it is possible to compare the two hypothe-
ses. If shocks are conditionally fat-tailed but everyone has the
same volatility parameters, then individuals with large past
income changes should be no more likely than others to ex-
perience large subsequent income changes. If individuals dif-
fer in their volatility parameters and those volatilities are per-
sistent, then individuals with large past income changes will
be more likely than others to have large subsequent income
changes.

We investigate these alternatives using the simplest sample
moment that captures volatility, squared (2-year excess log) in-
come changes:

ie — yit—2)2~

In each year, we partition the data into two groups, individuals
with and without large past absolute income changes, and com-
pare the absolute size of subsequent income changes. In each
year, a cohort without large past income changes is formed as
the set of individuals whose squared income change was below
the median 4 years ago. Correspondingly, a cohort with large
past income changes is formed as the set of individuals whose
squared change was above the 95th percentile 4 years ago. This
4-year period is chosen so that income shocks are far enough
apart to be uncorrelated (Abowd and Card 1989). In Figure 4,
we compare the distribution of squared income changes for the
two cohorts. Note that current squared income changes are sys-
tematically and substantially lower for the cohort without large
last squared income changes (solid line) than for those with
large past squared income changes (dashed line). This indicates
that volatility parameters are persistent, and that heterogeneity
in estimated volatility parameters cannot be explained solely by
fat-tailed but homogeneous shocks to income.

4.2 Stability of Income Process Parameters

In this section we compare estimates of income process
weights ¢ (governing the rate at which shocks enter into and
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exit from income) from our model to the same weights esti-
mated under two simpler models of the volatility distribution.
Specifically, in addition to our full MHDP model, we consider
two alternatives: HDP, our model without the Markovian exten-
sion outlined in Section 2.4, and DP, an even simpler version
of our model without the HDP outlined in Section 2.3. In each
of these alternative models, we have different structures for our
volatility parameters o> but the same state-space income pro-
cess (3) parameterized by ¢. Figure 5 shows boxplots of the
posterior distribution of the income process weights ¢ for our
full model versus these simpler models. The distributions of ¢
from each model show a reasonably similar pattern, suggesting
that the income process parameters are not highly sensitive to

different model choices for our volatility parameters o 2.

density

squared log income change

without large past changes ———-—- with large past changes ‘

Figure 4. Distribution of squared income changes for those with
and without large past income changes.

5. DISCUSSION

We have presented a sophisticated Bayesian hierarchical
model for estimation of income volatility from panel data.
Past approaches have focussed on overall summaries of income
volatility across the population without addressing the hetero-
geneity between individuals in that population. Our semipara-
metric methodology based on an MHDP allows income volatil-
ity to vary between individuals and within individuals across
time, while still sharing information over time and across in-
dividuals. We evaluated the validity of several model choices
in Section 4, using sample moments to justify our modeling
assumption of persistence in our distribution of volatility pa-
rameters ¢ 2. Our income process parameters ¢ did not seem
to be sensitive to different models (DP vs. HDP vs. MHDP)
for the income volatility parameters. Our methodological de-
velopments could be easily extended to other applications with
grouped and ordered data, such as topic models where ordered
e-mails are clustered based on word composition within a indi-
vidual and across individuals (Zhu, Ghahramani, and Lafferty
2005).

Our semiparametric methodology leads to several interesting
results when applied to data from the PSID. We estimate that
the vast majority of observations are associated with modest
volatility parameters (e.g., implying transitory income shocks
with a standard deviation of 15% per year). However, a small
minority have enormous income shock parameters (e.g., im-
plying transitory income shocks with a standard deviation of
>100% per year). We find that the distribution of volatility pa-
rameters is highly (positively) skewed with substantial excess
kurtosis that would not be well approximated by a lognormal
or x? distribution, underscoring the importance of our flexible
approach, which accommodates any shape of the volatility dis-
tribution.

[Received May 2009. Revised July 2011.]
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Figure 5. Distribution of the income process weights from the three models discussed in the text. Permanent income weights ¢,, are plotted

in (a)—(c), and transitory income weights ¢, are plotted in (d)—(f).
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