
University of Pennsylvania
ScholarlyCommons

PSC Working Paper Series Population Studies Center

4-27-2015

Variance Estimation for a Complex Life Table
Quantity: Disease-free Life Expectancy
Ezra Fishman
University of Pennsylvania, fishmane@sas.upenn.edu

Fishman, Ezra. 2015. "Variance Estimation for a Complex Life Table Quantity: Disease-free Life Expectancy." PSC Working Paper Series, WPS 15-2,
http://repository.upenn.edu/psc_working_papers/60.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/psc_working_papers/60
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/psc_working_papers
http://repository.upenn.edu/psc
http://repository.upenn.edu/psc_working_papers/60
mailto:repository@pobox.upenn.edu


Variance Estimation for a Complex Life Table Quantity: Disease-free Life
Expectancy

Abstract
Background: In the last decade, adult mortality in the United States has continued its long-run decline, while
diabetes prevalence has increased. It is unknown whether the additional person-years lived in the adult
population have mostly been spent in a diseased or a disease-free state. Furthermore, although illness and
death are stochastic processes, little is known about the variance in diabetes-free life expectancy (DFLE)
when compared across ages. More generally, methods of obtaining the variance of complex life table quantities
are under-explored.

Objective: Estimate DFLE and its variance in the United States in 2000 and 2010.

Methods: Data on diabetes prevalence for ages 20+ come from the National Health and Nutrition
Examination Surveys (NHANES), 1999-2000 (n=4,205) and 2009-2010 (n=5,752). Diabetes prevalence was
defined as HbA1c at least 6.5% or taking diabetes medication. Deaths and population counts by age and sex
come from the Human Mortality Database, covering the entire U.S. population. DFLE was estimated using
Sullivan’s method. Three methods of estimating variance in DFLE were explained and compared: the delta
method, Monte Carlo simulation, and bootstrapping.

Results: Although life expectancy at age 20 rose by approximately 3 years for both males and females between
2000 and 2010, DFLE at age 20 did not change during this decade. At age 70, life expectancy rose by 2.5 years
for males and 2.7 years for females, but DFLE rose only 0.7 years for males and 0.8 years for females. For all
methods, both sexes and in both years, variance in DFLE was larger at younger ages (males, 2000, age 20, delta
method: 0.020) than at older ages (males, 2000, age 70, delta method: 0.012). For any given age/sex/year, the
delta method produced the smallest estimates of variance of DFLE, followed by Monte Carlo. Bootstrapping
produced variance estimates that were by far the largest, often ten times larger than the Monte Carlo variances.
Differences across methods in the variance in estimated diabetes prevalence accounted for most of the
differences across methods in the variance of DFLE.

Conclusions: The vast majority of the person-years of life gained by the U.S. adult population between 2000
and 2010 were spent with diabetes. Variance in DFLE arises mostly from variance in estimated disease
prevalence. The variance of life-table quantities can be obtained using multiple methods, and the appropriate
method for a given research problem will vary.
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Abstract 

 

Background: In the last decade, adult mortality in the United States has continued its long-run decline, 

while diabetes prevalence has increased. It is unknown whether the additional person-years lived in the 

adult population have mostly been spent in a diseased or a disease-free state. Furthermore, although 

illness and death are stochastic processes, little is known about the variance in diabetes-free life 

expectancy (DFLE) when compared across ages. More generally, methods of obtaining the variance of 

complex life table quantities are under-explored. 

 

Objective: Estimate DFLE and its variance in the United States in 2000 and 2010.  

 

Methods: Data on diabetes prevalence for ages 20+ come from the National Health and Nutrition 

Examination Surveys (NHANES), 1999-2000 (n=4,205) and 2009-2010 (n=5,752). Diabetes prevalence 

was defined as HbA1c at least 6.5% or taking diabetes medication. Deaths and population counts by age 

and sex come from the Human Mortality Database, covering the entire U.S. population. DFLE was 

estimated using Sullivan’s method. Three methods of estimating variance in DFLE were explained and 

compared: the delta method, Monte Carlo simulation, and bootstrapping. 

 

Results: Although life expectancy at age 20 rose by approximately 3 years for both males and females 

between 2000 and 2010, DFLE at age 20 did not change during this decade. At age 70, life expectancy 

rose by 2.5 years for males and 2.7 years for females, but DFLE rose only 0.7 years for males and 0.8 

years for females. For all methods, both sexes and in both years, variance in DFLE was larger at younger 

ages (males, 2000, age 20, delta method: 0.020) than at older ages (males, 2000, age 70, delta method: 

0.012). For any given age/sex/year, the delta method produced the smallest estimates of variance of 

DFLE, followed by Monte Carlo. Bootstrapping produced variance estimates that were by far the largest, 

often ten times larger than the Monte Carlo variances. Differences across methods in the variance in 

estimated diabetes prevalence accounted for most of the differences across methods in the variance of 

DFLE. 

 

Conclusions: The vast majority of the person-years of life gained by the U.S. adult population between 

2000 and 2010 were spent with diabetes. Variance in DFLE arises mostly from variance in estimated 

disease prevalence. The variance of life-table quantities can be obtained using multiple methods, and 

the appropriate method for a given research problem will vary. 

 

Key words 

Diabetes, Life Expectancy, Sullivan Method, National Health and Nutrition Examination Survey 

(NHANES), statistical demography 
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Introduction and Background 

 

The most basic indicator of mortality in a population is life expectancy (LE), which is calculated from a 

set of age-specific mortality rates using a single-decrement life table [1]. When using current (cross-

sectional) mortality rates, LE at birth measures the average length of time a newborn would live if he 

were subject to the current mortality risks for his entire life. For decades, population health researchers 

have been interested in methods to combine information on mortality with information on health into 

single indices to facilitate the comparison of health and mortality across populations and over time. 

Prominent among these indices is disease-free life expectancy (DFLE), also known as healthy life 

expectancy, which measures the average length of time a disease-free individual at a given age would 

live in a disease-free state, if she were subject to the current risks of mortality and disease for her 

remaining life. DFLE can refer to expected life without any disease or expected life without a particular 

disease, such as diabetes, the subject of the analysis in this paper. A fairly simple method of calculating 

DFLE was developed by Sullivan [2], in which the person-years lived at each age in the life table 

population are apportioned to diseased and disease-free states based on the age-specific prevalence of 

disease. Consistent with the basic life table, Sullivan’s method uses a synthetic cohort approach, 

meaning it subjects the population at every age to current rates of disease and death, rather than 

observing the rates experienced by actual cohorts as they age. The synthetic cohort approach thus 

facilitates comparisons of the combined mortality-health states of a population at a point in time with 

the combined mortality-health states of the population at a different point in time. 

 

Historically, demography has been more interested in measures of central tendency, such as means (of 

which LE and DFLE are examples), than in variances. Neither of the two major demography textbooks 

published in the last 15 years discusses the estimation of variances of life table parameters [1, 3]. And in 

fact, if one were to obtain information on disease presence from every member of the population, as 

well as complete records of mortality and age-specific population counts, one could calculate DFLE 

without consideration of sampling variation. However, in reality, disease prevalence in a population is 

almost always estimated from sample data in the form of queries from national health care databases 

with incomplete coverage [4] or from health surveys [5]. The variance of estimated DFLE, or some other 

measure of its uncertainty, such as a 95% confidence interval, is therefore of interest.  

 

More fundamentally, even if the investigator had data on the entire population, one might consider the 

actual events that took place (deaths and disease cases) to be random draws from underlying, 

unobserved stochastic processes of mortality and disease. In this case, even quantities in the basic life 

table, such as LE, would have variances associated with them [6].   

 

This paper will explore three methods of estimating variances of estimated DFLE. First, the delta method 

[7], so called because it involves approximating non-linear functions by taking partial derivatives and 

using Taylor Series linearization, will be employed as an analytic way to estimate the variance of non-

linear functions of data. The delta method is widely used, but in many applications, the parameters 

estimated are functions too complex to obtain analytic confidence intervals; therefore, I will explore two 

simulation-based approaches as well. Monte Carlo simulation draws input parameters, such as 

regression coefficients, from an assumed distribution, and then calculates the output parameters of 

interest (such as DFLE) for each of m independent draws of inputs from this assumed distribution. The 

Monte Carlo variance is the variance of the output parameters from the m draws [8]. Finally, 

bootstrapping takes advantage of the property that a well-designed sample survey is representative of 

the population. By resampling observations from the sample subjects, bootstrapping recreates multiple 

simulated sample surveys and calculates DFLE for each. The bootstrap variance is again the variance of 
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the output parameters across all the resamples [9]. Both simulation-based approaches use the definition 

of the variance of an estimated parameter as the variation in the parameter over multiple independent, 

identically distributed samples. 

 

Substantively, the paper compares diabetes-free life expectancy at various adult ages in the United 

States in 2000 versus 2010. As age-specific diabetes prevalence has risen [5] and adult mortality has 

declined [10], it is not obvious whether the additional years of life gained in the adult population over 

the last decade have mostly been spent in a diseased or a disease-free state. A recent paper on 

diabetes-free life expectancy in the United States for a somewhat earlier period did not report variances 

or confidence intervals [11]. 

 

Data  

 

The basic data requirements for DFLE are a set of age- and sex-specific mortality rates and a set of age-

and sex-specific disease prevalence rates. For mortality, I use sex-specific deaths and population counts 

for ages 20 to 85+, for years 1999, 2000, 2009, and 2010, from the Human Mortality Database [12], 

which organizes death data from the National Center for Health Statistics [13–16] and population counts 

from the U.S. Census. Death data are based primarily on death certificates and cover nearly 100% of 

deaths in the United States. Since each year’s data are based on the mid-year population, averaging 

adjacent years’ life tables centers the mortality schedules on January 1, 2000 and January 1, 2010.  

 

Data on age-specific diabetes prevalence for ages 20 to 85+ come from the National Health and 

Nutrition Examination Surveys (NHANES), 1999 to 2000 and 2009 to 2010. Continuous NHANES began in 

1999, for which data are released in two-year cycles, centered on January 1 of the second year of the 

release. NHANES is a complex, multi-stage probability sample of the U.S. civilian non-institutionalized 

population. Participants complete a home interview and are then examined in a mobile examination 

center, which includes sampling participants’ blood for laboratory tests. Whenever possible, NHANES 

uses consistent laboratory procedures over time to facilitate analysis of trends in population health. 

Extensive documentation of NHANES survey, examination, and laboratory procedures and 

characteristics of the NHANES study sample are reported elsewhere [17–19]. 

 

I rely on laboratory results, rather than self-reported diagnoses, because the latter fails to capture the 

considerable number of individuals in the U.S. population with undiagnosed diabetes. A 2010 study 

estimated that 3.9 million individuals above age 20 had undiagnosed diabetes, representing 19% of the 

diabetic population [20]. Furthermore, intertemporal comparisons based on self-reported diagnosis are 

complicated by the fact that criteria for diagnosing diabetes in the clinical setting have changed over 

time [21]. Laboratory results are not available for children under age 12, and past studies have focused 

only on the population age 18 and above or 20 and above [11, 20], so I will also exclude children and 

begin with age 20. NHANES top-codes individuals aged 85 and above, and at those ages, prevalence 

barely rises at all with age [22], so I will use 85+ as the terminal age. 

 

My definition of diabetes is based on HbA1C (glycated hemoglobin). This measure reflects average 

glycemia over a prolonged period and thus has more intra-subject stability than the leading alternative, 

a measure of fasting plasma glucose (FPG) [23]. Furthermore, HbA1c-based measures of diabetes are 

more strongly associated with cardiovascular disease and death than are FPG-based measures [24].  

 

Several changes in laboratory measurement of HbA1C occurred over the course of Continuous NHANES 

(detailed elsewhere [18]), but I follow the NHANES recommendation and the methods of recent studies 
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and used HbA1C data without any corrections or adjustments [5, 18]. Individuals are considered diabetic 

if they had HbA1c ≥ 6.5% (48 mmol/mol) [25]. Because diabetes medication is expected to reduce 

glycemia, the HbA1c values of medicated persons might not capture their diabetes status correctly; 

therefore, all individuals who reported taking diabetes medication are considered diabetic. 

 

Methods 

 

Deaths and population counts from adjacent years (1999-2000 and 2009-2010) are added together to 

center the life tables on January 1 of the second year of each pair of years. Then, for each sex, standard 

life table columns – death rates ������, death probabilities ����, survival probabilities (�� � 1 
 ��, 

note lower-case p), cumulative survivors ����, person-years lived ����, and life expectancies – are 

calculated using standard methods [1]. One-year age intervals are used throughout, and individuals who 

die in a given interval are assumed to die, on average, halfway through that interval. 

 

Diabetes prevalence among adults increases monotonically with age, but the increase is slow at the 

oldest ages [22]. There are not enough observations in NHANES to generate a smooth, monotonically 

increasing series of single-year age- and sex-specific prevalence estimates; this is a feature of almost any 

health survey, not a limitation specific to NHANES. Therefore, I model age- and sex-specific prevalence in 

a given year (2000 or 2010) using a logistic regression: 

 Φ � ��� � ��1 
 ��� � �� � ����� � ��������. (Eq. 1) 

In Equation 1, Px (note upper-case P) is the probability of having diabetes at age x; using the model it can 

be understood as the age-specific prevalence of diabetes. Φ is the logit of Px , the linear combination of 

the predictors. 

Prevalence is then estimated as 

 ��� � 1/�1 � exp!
���" � ��"��� � ��"�������#�. (Eq. 2) 

The logit of prevalence is modeled as a linear combination of an intercept, age, and sex, but the 

prevalence is a non-linear combination of these. 

 

Sullivan’s DFLE at age x is 

 $%�&� � ∑ �()(*� �1 
 �(��� , (Eq. 3) 

where , is the oldest age interval, �( is person-years lived in the ith age interval, and �� is the size of the 

life-table population at exact age x. 

 

Delta Method 

 

The delta method can be used to estimate variances and confidence intervals around life table-based 

estimated parameters [26]. Suppose �� is fixed (it is an arbitrary starting value fixed by the investigator), 

but �� and �� are random variables. �� is a random variable if we consider mortality to be a stochastic 

process [6], and/or if mortality is estimated from sample data [27]. �� is estimated from sample data 

(NHANES prevalence) and so is a random variable. Thus, DFLE is a non-linear function of random 

variables.  
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When using a period life table, as in the current study, deaths and person-years lived at a given age are 

uncorrelated with deaths and person-years at other ages [6, 28]. Furthermore, when age-specific 

prevalence is obtained from a separate cross-sectional survey, it can be considered independent of age-

specific mortality [29]. Therefore, covariances can be ignored and the delta method yields 

 -�.�$%�&�� � ∑ /01234035 6� -�.��(� � /01234075 6� -�.��(�)(*� . (Eq. 4) 

The first term in Equation 4 may be thought of as the contribution of the variance in mortality to the 

variance in DFLE, while the second term may be thought of as the contribution of the variance in disease 

prevalence to the variance in DFLE. 

 

We have 

 01234078 � ∑ 3595:8;8 . (Eq. 5) 

Chiang [30] showed that �� is a linear function of the cumulative probability of surviving to age x, which 

is itself a product of the probabilities �( (note lower-case p here) of surviving each age group from 0 to x: 

 �� � <���=� � <������ 
 ��=��, (Eq. 6a) 

 �� � �� > �(
�?�
(*� . (Eq. 6b) 

In Equation 6a, <� is the length of the age interval, and �� is the average proportion of the interval lived 

by people who die in the interval. These are fixed quantities chosen by the investigator, not random 

variables [1, 30]. In the present analysis, <�  = 1 and �� = 0.5 for every age, corresponding to the use of 

one-year age intervals and the assumption that individuals die, on average, halfway through each single-

year age interval. Then, one can rewrite Equation 3 using survival probabilities, 

 $%�&� � ∑ A<(�� ∏ �C�C*� � <(�(��� ∏ �C�?�C*� 
 �� ∏ �C��C*� D)(*� �1 
 �(��� ∏ �C�?�C*� . (Eq. 7) 

Recalling that ��, <� and �� are constants, Equation 4 can thus be rewritten as 

 -�.�$%�&�� � ∑ /012340E5 6� -�.��(� � /01234075 6� -�.��(�)(*� . (Eq. 8) 

The result is the following formula for the delta-method variance of disease-free life expectancy (see 

[29] and [30] for the complete derivation): 

-�.�$%�&�� � F G��(���� ��1 
 �(<(��1 
 �(� � $%�&(=���-�.��(�H)?�
(*�

� F G��(���� -�.��(�H)
(*� . (Eq. 9) 

The variance of the probability of survival within each interval, -�.��(�, equals the variance of the 

probability of death within each interval, 

 -�.��(� � -�.�1 
 �(� � -�.��(� � �(��1 
 �(�$( , (Eq. 10) 

with $( the observed number of deaths in the interval, based on a manipulation of the formula for the 

variance of an estimated binomial probability [30]. 
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The variance of the estimated age-specific prevalence, -�.����, is also estimated using the delta 

method, since �� is based on fitted values calculated from a non-linear function of the logistic regression 

parameter estimates (using Equation 2). Fitting the model in Equation 1 to the data, I obtain a 3 x 1 

vector of estimated coefficients, 

 IJ � K��"��"��"L. (Eq. 11) 

The variance of the age-specific prevalence will be 

 -�." ���� � GMNMIJHO PQRP!IJ# GMNMIJH, (Eq. 12) 

where SMNMIJTis the gradient vector of ��, that is, a 3 x 1 vector of the partial derivatives of �� with 

respect to each of the three estimated coefficients: 

 

GMNMIJH �
UV
VV
VV
VW ����ΦJ�!1 � exp!ΦJ##�

��� X ����ΦJ�!1 � exp!ΦJ##�
������ X ����ΦJ�!1 � exp!ΦJ##� YZ

ZZ
ZZ
Z[
. (Eq. 13) 

 

The gradient vector is evaluated at each age and sex, with 

 ΦJ � ��" � ��"��� � ��"������. (Eq. 14) 

PQRP!IJ# is the 3 X 3 variance-covariance matrix of the estimated coefficients from the information 

matrix of the logistic model fitted to the data. 

 

Despite Chiang’s conceptualization of every life table as a realization of an underlying, unobserved 

stochastic process [6, 31, 32], it is common in studies of DFLE to consider basic life table quantities to 

have zero variance if they are calculated from deaths and population counts from the entire population 

[33, 34], as is the case with the data in this paper. Nevertheless, I will use Equation 9 with a stochastic 

life table – that is, treating quantities associated with mortality, such as ��, as random variables, 

following Chiang – for the purpose of elucidating the method.  

 

Monte Carlo Simulation 

 

The variance of an estimator is, by definition, the average of squared deviations from the mean of the 

estimator over many independent samples. Monte Carlo simulation (MC), commonly used in studies of 

DFLE [8, 35], uses this definition to estimate the variance of DFLE by simulating many DFLE calculations, 

each obtained from a simulated age schedule of mortality and an independent draw of the estimated 

coefficients (Equation 11), and then calculating the variance of the simulated DFLE calculations. The 

motivation for using MC is that in many applications, obtaining closed-form equation for the variance of 
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an estimator of interest, as was done in Equation 9 above, is impractical or impossible, because the 

output parameter of interest is a non-differentiable function of the data. This is clearly not the case with 

Sullivan’s DFLE, making DFLE a good opportunity to compare the variance estimated by the closed-form 

equation to that obtained via MC. 

 

To generate simulated age schedules of mortality for each sex and year, I fit a Gompertz function [1, 36] 

to the observed age-specific mortality rates: 

 ���� � \ X exp ����. (Eq. 15) 

Each observed mortality rate contributes $� observations to the regression that fits the Gompertz 

function, where $� is the number of deaths observed in the population at age x. This repeating of 

observations is sometimes called frequency weighting and reflects the fact that each mortality rate 

arises from a large number of observations in the population. The resulting vector of estimated 

parameters, A\] �̂D, and its associated variance-covariance matrix are then used as the mean and 

covariance matrix of a bivariate Normal distribution from which the elements of a new A\] �̂D are drawn. 

Using the newly drawn A\] �̂D, age-specific mortality rates are calculated using Equation 15, and �� and �� are calculated using the standard procedures [1]. The process is repeated m independent times, 

resulting in m vectors of A\] �̂D and thus m schedules of �� and ��. 

 

Separately, the disease prevalence model in Equation 1 is fitted to the data once. The resulting IJ vector 

and  PQRP!IJ# matrix are then used as the mean and covariance matrix of a trivariate Normal 

distribution from which the elements of a new IJ vector are drawn. Using the newly drawn IJ, age- and 

sex-specific fitted prevalence values are calculated using Equation 2. Then the elements of a new IJ 

vector are drawn and the process is repeated m independent times, resulting in m vectors of IJ and thus 

m age-specific prevalence schedules. 

 

This simulation process mimics the observational data, whereby disease prevalence data is obtained 

separately from mortality data, and only then are the two inputs combined. Each of the m prevalence 

schedules is paired with one of the m �� columns, and DFLE is calculated using Sullivan’s formula for the 

m pairs, 

 $%�&_ �C � ∑ �(C)(*� �1 
 �(C���C ;  a � 1,2, … , �. (Eq. 16) 

The estimated DFLE in the population is the average DFLE from these m simulations, $%�&�ddddddddd_ . The Monte 

Carlo-based variance estimate is  

 -�." �$%�&�� � 1� F�$%�&_ �C 
 $%�&�ddddddddd_ ��e
C*� , (Eq. 17) 

with a indexing each independent draw. I will use m=1,000, a common value in the literature [8]. 

 

Bootstrapping 

 

Like MC, bootstrapping involves simulating many estimated values of DFLE and considering the variance 

of DFLE to be the average of squared deviations from the average simulated DFLE (Equation 17). 

However, the simulated DFLEs do not arise from independent draws of parameters that define regular 
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age patterns of mortality and disease, as in MC. Rather, in bootstrapping, the simulated DFLEs arise from 

independently drawn samples of data [9, 37].   

 

Bootstrapping relies on sampling theory, whereby the subjects in a sample survey, when properly 

weighted, represent the population to which the parameters pertain. For disease prevalence, the N 

subjects that were actually sampled, and their characteristics – that is, the actual NHANES data set – are 

referred to as the empirical sample. Since the empirical sample represents the population, one can draw 

a large number of new samples from the empirical sample that will on average, based on the law of 

large numbers, also represent the population. One draws N subjects, with replacement1F

1
, from the 

empirical sample, generating a simulated sample. Then one fits the model in Equation 1 to the 

simulated sample, and the fitted prevalence values are calculated using Equation 2. The process is 

repeated m times, starting by drawing N subjects afresh, with replacement, from the empirical sample. 

The result is m independent estimates of prevalence for each age.  

 

To generate simulated age schedules of mortality for each sex and year, I consider the empirical life 

table quantities for each age x: Nx, the size of the population age x, and qx, the probability of death at 

age x. For each age, I draw deaths from a binomial distribution [6] with parameters n = NX and p = qX. 

From the distribution of sampled deaths over all ages, I calculate the life table �� and �� in the usual way 

[1]. The process is repeated m independent times, resulting in m schedules of �� and ��. 

 

Each of the m prevalence schedules is paired with one of the m life tables, and, using Equation 16, m 

values of DFLE are generated. The estimated DFLE in the population is the average DFLE from these m 

simulated samples, $%�&�ddddddddd_ . The bootstrapped variance of DFLE is that given in Equation 17. I will again 

use m=1,000 [9]. 

 

Since bootstrapping is based on the idea that the empirical sample represents the population, it is 

important that the procedure by which we generate the simulated samples mimic the sampling 

procedure in the original sample survey [38]. Due to concern for the confidentiality of subjects, NHANES 

does not publish sufficient information to reconstruct its sampling procedure fully. Instead, for each 

subject, it provides a sampling weight along with a “pseudo-stratum” and “pseudo-PSU (primary 

sampling unit)”, or cluster, which, when used together, generate variance estimates that are 

approximately equal to those obtained when internal NHANES researchers use all sampling information 

[19, 39]. Since I am using public NHANES data, I will conduct the resampling as follows [40]. First, I divide 

the empirical sample into strata using the “pseudo-stratum” indicator for each observation. Then within 

each stratum, I sample J clusters with replacement, with J equal to the number of clusters (“pseudo-

PSUs”) in each stratum in the empirical sample. (In the NHANES public data, J is almost always 2 or 3.) 

Finally, I sample n observations (persons) with replacement from within each of the J chosen clusters, 

                                                           
1
 The justification for sampling with replacement is as follows. Suppose I take a simple random sample of 100 

people from the population of the United States. The population is so big, and the sample so small, that after I 

have sampled the first of my 100 people, the probability of being chosen for the remaining individuals in the 

sample frame remains basically unchanged: it was 100/(population of the United States) and is now 99/(population 

of the United States minus 1). Now suppose I am trying to draw a subsample of 25 people from my original sample 

of 100 people. Initially, each sampled person’s probability of being in my subsample is 25/100. After I have drawn 

one person, the probability of being in my subsample for everyone else is now 24/99, which is not the same as 

25/100. Thus, in the subsampling case, a unit’s probability of being chosen depends on whether another unit was 

chosen, and the observations are not independent. To avoid this problem, we sample with replacement, so that 

after the first person is chosen, the probability of being chosen in the next draw is still 25/100 for everyone. 
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with n equal to the number of observations in the given cluster. Thus, any given bootstrapped sample 

will likely have repeat clusters and repeat observations, just as a bootstrapped sample based on an 

empirical simple random sample will have some repeat observations. The number of (non-unique) 

observations in a given bootstrapped sample will be  

 fg � F F <Ch
i

C*�
j

h*� , (Eq. 18) 

with j indexing clusters, s indexing strata, and b indexing bootstrap simulations. As with analytic 

calculation of variances, the clustering of observations in PSUs will increase the bootstrapped variance 

relative to resampling every individual observation independently. 

 

A major advantage of bootstrapped variances is that they are nonparametric, meaning they do not rely 

on any assumption about the joint distribution of the elements of IJ and do not impose a functional 

form on the age schedule of mortality rates, as MC does. The advantage of MC is that if the assumed 

distributions of IJ and of the mortality rates is approximately correct, resulting variance estimates will be 

smaller than when using bootstrapping (i.e. an efficiency gain).  

 

The methods described above are conducted separately for the 2000 and 2010 data. I used R (R core 

team, Vienna, Austria) for all computations. Computer code for all analysis is available upon request.  

 

Results 

 

Results based on the delta method are shown in Table 1. Each panel shows the following quantities for 

the given sex and year at selected ages: life expectancy (column labeled “LE”), diabetes-free life 

expectancy (column labeled “DFLE”), diabetes prevalence (“Prevalence”), estimated variance of DFLE 

(“Var.DFLE”), the value of the first summation term in Equation 9 (“1
st

 term”), estimated variance in 

diabetes prevalence (“Var.Prev”), and the estimated standard error of estimated DFLE (“SE.DFLE”). A 

comparison of panels A and B reveals important changes that occurred to U.S. males during the 2000s. 

First, life expectancy at adult ages rose by approximately 2.5 to 3 years (depending on the age) over the 

course of the decade. However, diabetes-free life expectancy barely rose at all. DFLE at age 20 rose by 

about 0.02 of a year, and DFLE at age 50 rose by about 0.33 of a year. The small gain in DFLE relative to 

LE indicates that, on average, the years of life gained over the decade were mostly spent with diabetes. 

This fact is reflected in the diabetes prevalence estimates, which are higher at every age in 2010 than in 

2000. Finally, the small DFLE gains were smallest at young ages and largest at old ages, indicating that 

the increase in diabetes prevalence at the youngest ages played an especially important role in 

contributing to the smallness of the DFLE gain. 

 

Turning to the columns showing the variance of DFLE and its components, one notes that the value of 

the first term in Equation 9 is always extremely small. Because the life tables used the entire U.S. 

population, their effective “sample size” was extremely large and variances of life-table quantities were 

tiny. At every age, the vast majority of the variance in DFLE arose from variance in the estimated 

prevalence, represented by the second term in Equation 9. We also see that the variance of DFLE was 

higher in 2010 than in 2000. Variance was higher in 2010 because longer survivorship at every age in 

2010 compared to 2000 raises the value of the /35;86�
 factor in Equation 9, raising the value of the second 

term in the variance equation for 2010 relative to 2000. The /;5;86�
part of the first term is also higher in 
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2010 due to better survivorship, but the variance in survivorship probability -�.��(� is so miniscule that 

it renders the changes in /;5;86�
basically meaningless. 

 

One finds similar results when comparing U.S. females in 2000 versus 2010. Although they enjoyed gains 

in life expectancy of 2 to 3.5 years over the course of the 2000s, the gains in DFLE were very small. 

Estimated DFLE at age 20 was actually lower in 2010 than 2000, though each year’s estimate is within 

one standard error of the other year’s estimate. On average, the additional years of life gained during 

the 2000s were spent almost entirely with diabetes, due to increased prevalence at all ages. As with 

men, the small increase in estimated DFLE was smallest at young ages (negative at age 20) and largest at 

old ages.  

 

Patterns of variance are also similar for females as for males. Almost all the variance in estimated DFLE 

comes from variance in estimated prevalence, since the variances associated with mortality were so 

small. Variance of DFLE was larger in 2010 than in 2000.  

 

Table 2 shows results when using Monte Carlo simulation. Differences in LE, DFLE, and estimated 

diabetes prevalence between 2000 and 2010 for men and women follow the same patterns here as 

when using the delta method. Specifically, large increases in LE occurred over the decade for both sexes, 

but DFLE barely changed, especially at younger ages, due to higher diabetes prevalence at all ages. Since 

prevalence is modeled the same way (Equation 1) in both tables, this similarity in results is also to be 

expected; however, because the estimated prevalence in Table 2 is calculated as the mean of the 

simulations, some variation could arise due to differences in sampling error between the two methods. 

And in fact we see that for a given sex/year, DFLE at the oldest ages is smaller when using the delta 

method (Table 1) than when using MC (Table 2).  

 

When one compares the variances shown in Table 2 to those in Table 1, one finds that the variance of 

DFLE tends to be higher for a given sex/year/age when using MC than when using the delta method. The 

higher variances of DFLE appear to arise primarily because the variance in life expectancy is higher when 

using MC than when using the delta method. For almost all year/sex/age combinations, the delta-

method variance from the life table (“1
st

 term”) is smaller than the MC-based variance in LE, but the 

delta method variance in prevalence is larger than the MC-based variance in prevalence. Also, whereas 

the delta method generated variances that were larger in 2010 than in 2000 for a given age/sex, MC 

generated variances that were larger in 2000 than in 2010 for a given age/sex. 

 

Table 3 shows results when using bootstrapping. Bootstrapped estimates of LE, DFLE, and diabetes 

prevalence are very similar to MC-based estimates, leading to a now-familiar result: Between 2000 and 

2010, LE increased by almost three years for both men and women, but DFLE barely increased at all, 

especially at the youngest ages. However, for any given year/sex/age combination, the bootstrapped 

variances of DFLE and of diabetes prevalence are about ten times the corresponding variances from MC. 

For example, the estimated variance in DFLE at age 20 for males in 2000 was 0.392 when using MC and 

4.677 when using bootstrapping. This large increase in the variance of DFLE when moving from MC to 

the bootstrap is reflected in the variance in prevalence, which is about ten times larger for a given 

age/sex/year in Table 3 than in Table 2. This result illustrates the efficiency disadvantage associated 

with the bootstrap. 

 

Discussion 
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This paper explored three methods for estimation of variance of diabetes-free life expectancy (DFLE): 

the delta method, Monte Carlo simulation (MC), and bootstrapping. While all three methods produced 

similar point estimates of DFLE, the patterns of estimated variance differed somewhat. The delta 

method produced the lowest variances for any given year/sex/age combination, while bootstrapping 

produced the highest variances. A comparison of MC to bootstrapping also illustrated the loss of 

efficiency associated with using a nonparametric method, though the magnitude of the efficiency loss is 

still strikingly large. The variance of estimated age-specific disease prevalence was also surprisingly small 

when using the delta method and MC, given the relatively small sample size of NHANES. 

 

A recent paper used the National Health Interview Survey (NHIS) to compare DFLE in 1980-89 to that in 

2000-2004 [11]. The authors found that over the period in question, DFLE at age 18 declined for both 

men and women, and DFLE at age 60 remained essentially unchanged. My results paint a similarly grim 

picture, with nearly all mortality improvements balanced by increases in diabetes prevalence.  

Substantively, what this paper adds is an update based on more recent trends, the use of measured data 

to avoid the problem of changes in diagnosis standards, and estimates of variance and standard errors 

associated with DFLE. Methodologically, the contribution of the paper is to illustrate how three methods 

of variance estimation work and how results using each method compare to each other, using a simple 

but commonly used application in population health research. There have been recent advances in the 

study of stochastic life table quantities; most build on one or more of the methods described here [41–

45]. 

 

The substantive results should be interpreted cautiously. Specifically, Sullivan’s DFLE is a cross-sectional 

quantity: it illustrates the mortality and health status of the U.S. adult population at two points in time 

and quantifies the extent to which growth in diabetes-prevalence has, in a sense, “cancelled out” 

declines in mortality over the last decade. It thus relates to the major question in demography and 

epidemiology about whether population-level gains in survivorship are being enjoyed in a healthy state 

or an unhealthy state [46, 47]. But as a cross-sectional measure, it does not necessarily reflect the actual 

life-course experience of any specific cohort. It is entirely possible that any given cohort of Americans is 

living more years in a healthy state than the cohorts that preceded it. 
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Notes for all tables: 

LE = Life expectancy; DFLE = Diabetes-free life expectancy; Prevalence = prevalence of diabetes; Var.DFLE = estimated 

variance of DFLE; 1
st

 term = first summation term in Equation 9 in text; Var.LE = estimated variance of LE; Var.Prev = 

estimated variance of diabetes prevalence; SE.DFLE = estimated standard error of DFLE = square root of estimated 

variance. Source: Author’s calculations from Human Mortality Database and National Health and Nutrition Examination 

Surveys, 1999-2000 and 2009-2010. 
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Table 1. Life expectancy and diabetes-free life expectancy at selected ages (Delta method) 

 

A) U.S. Males, Year 2000 

     Age LE DFLE Prevalence Var.DFLE 1st term Var.Prev SE.DFLE 

20 54.675 49.327 0.017 0.020 7.86E-07 0.00002 0.141 

30 45.336 39.613 0.029 0.020 4.51E-07 0.00003 0.140 

40 36.051 30.178 0.047 0.019 4.51E-07 0.00007 0.138 

50 27.235 21.210 0.077 0.018 5.44E-07 0.00016 0.135 

60 19.102 13.063 0.123 0.016 6.69E-07 0.00040 0.127 

70 12.077 6.346 0.190 0.012 3.23E-07 0.00108 0.111 

80 6.226 1.861 0.282 0.007 4.88E-08 0.00303 0.081 

85 3.455 0.623 0.337 0.004 0 0.00482 0.065 

        B) U.S. Males, Year 2010 

     Age LE DFLE Prevalence Var.DFLE 1st term Var.Prev SE.DFLE 

20 57.372 49.345 0.022 0.030 5.99E-07 0.00001 0.172 

30 48.067 39.691 0.037 0.030 4.90E-07 0.00002 0.172 

40 38.772 30.364 0.062 0.029 4.17E-07 0.00003 0.172 

50 29.887 21.547 0.103 0.029 4.59E-07 0.00006 0.171 

60 21.833 13.624 0.164 0.028 4.29E-07 0.00018 0.168 

70 14.639 7.125 0.252 0.026 3.26E-07 0.00067 0.161 

80 8.756 2.646 0.366 0.021 9.19E-08 0.00224 0.146 

85 6.576 1.320 0.430 0.019 0 0.00349 0.137 

        C) U.S. Females, Year 2000 

     Age LE DFLE Prevalence Var.DFLE 1st term Var.Prev SE.DFLE 

20 59.234 54.436 0.013 0.016 3.48E-07 0.00001 0.126 

30 49.504 44.619 0.021 0.016 2.85E-07 0.00001 0.125 

40 39.917 34.970 0.034 0.015 3.51E-07 0.00003 0.124 

50 30.653 25.627 0.056 0.015 4.75E-07 0.00006 0.123 

60 21.937 16.844 0.091 0.014 7.35E-07 0.00013 0.120 

70 14.117 9.120 0.144 0.013 4.55E-07 0.00039 0.113 

80 7.223 3.225 0.220 0.009 1.09E-07 0.00132 0.096 

85 3.975 1.257 0.267 0.007 0 0.00239 0.084 

 

       D) U.S. Females, Year 2010 

     Age LE DFLE Prevalence Var.DFLE 1st term Var.Prev SE.DFLE 

20 62.127 54.368 0.017 0.026 2.61E-07 0.00001 0.160 

30 52.416 44.610 0.029 0.026 3.07E-07 0.00002 0.160 

40 42.831 35.067 0.049 0.025 3.53E-07 0.00004 0.159 

50 33.606 25.895 0.081 0.025 4.23E-07 0.00007 0.158 

60 24.906 17.386 0.131 0.024 4.40E-07 0.00012 0.155 

70 16.960 9.970 0.205 0.023 4.72E-07 0.00027 0.151 

80 10.287 4.312 0.307 0.020 1.92E-07 0.00077 0.142 

85 7.664 2.391 0.367 0.019 0 0.00131 0.137 
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Table 2. Life expectancy and diabetes-free life expectancy at selected ages (Monte Carlo simulations) 

 

A) U.S. Males, 2000 

      Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 54.064 48.932 0.018 0.392 5.15E-06 0.00002 0.62590 

30 44.337 39.399 0.029 0.357 4.59E-06 0.00003 0.59734 

40 34.895 30.254 0.047 0.310 3.77E-06 0.00006 0.55656 

50 25.984 21.778 0.077 0.250 2.74E-06 0.00012 0.50049 

60 17.975 14.366 0.123 0.182 1.69E-06 0.00025 0.42710 

70 11.322 8.460 0.190 0.114 6.97E-07 0.00053 0.33720 

80 6.403 4.382 0.282 0.056 1.75E-07 0.00111 0.23620 

85 4.649 3.081 0.337 0.033 3.49E-06 0.00153 0.18278 

 
       B) U.S. Males, 2010 

      Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 56.933 49.122 0.022 0.176 2.25E-06 0.00001 0.4195 

30 47.246 39.672 0.037 0.173 1.95E-06 0.00001 0.4162 

40 37.848 30.643 0.062 0.168 1.54E-06 0.00002 0.4097 

50 28.963 22.311 0.102 0.157 1.07E-06 0.00004 0.3966 

60 20.921 15.047 0.164 0.137 6.12E-07 0.00009 0.3707 

70 14.151 9.273 0.252 0.105 2.15E-07 0.00025 0.3246 

80 9.182 5.396 0.366 0.067 2.88E-07 0.00062 0.2593 

85 7.679 4.370 0.431 0.052 2.45E-06 0.00087 0.2272 

 
       C) U.S. Females, 2000 

     Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 58.441 53.854 0.013 0.224 5.73E-06 0.00001 0.4734 

30 48.523 44.090 0.021 0.209 5.39E-06 0.00001 0.4572 

40 38.733 34.544 0.035 0.188 4.72E-06 0.00003 0.4330 

50 29.247 25.432 0.057 0.158 3.60E-06 0.00005 0.3977 

60 20.419 17.141 0.091 0.121 2.13E-06 0.00010 0.3477 

70 12.856 10.267 0.144 0.079 7.48E-07 0.00024 0.2819 

80 7.435 5.563 0.221 0.044 3.68E-07 0.00059 0.2094 

85 6.066 4.439 0.268 0.034 5.65E-06 0.00091 0.1831 

 
       D) U.S. Females, 2010 

     Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 61.614 54.049 0.017 0.177 1.99E-06 0.00001 0.4210 

30 51.729 44.370 0.029 0.160 1.82E-06 0.00002 0.4004 

40 41.995 34.966 0.049 0.139 1.52E-06 0.00003 0.3727 

50 32.584 26.066 0.081 0.114 1.08E-06 0.00005 0.3375 

60 23.822 18.044 0.131 0.087 5.68E-07 0.00008 0.2956 

70 16.254 11.441 0.206 0.062 1.66E-07 0.00013 0.2482 

80 10.779 6.974 0.308 0.040 3.95E-07 0.00026 0.2002 

85 9.446 5.969 0.368 0.034 2.76E-06 0.00038 0.1839 
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Table 3. Life expectancy and diabetes-free life expectancy at selected ages (Bootstrapping) 

 

A) U.S. Males, 2000 

      Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 54.675 49.332 0.020 4.677 5.21E-05 0.00030 2.1625 

30 45.335 40.162 0.030 4.340 4.48E-05 0.00047 2.0832 

40 36.051 31.157 0.047 3.863 4.02E-05 0.00077 1.9655 

50 27.235 22.748 0.075 3.266 3.36E-05 0.00135 1.8071 

60 19.102 15.205 0.120 2.507 2.59E-05 0.00271 1.5832 

70 12.077 8.982 0.189 1.613 1.30E-05 0.00624 1.2702 

80 6.227 4.241 0.286 0.664 5.01E-06 0.01402 0.8150 

85 3.455 2.271 0.343 0.234 1.36E-05 0.01959 0.4836 

 
       B) U.S. Males, 2010 

      Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 57.372 49.135 0.024 5.138 4.71E-05 0.00026 2.2667 

30 48.067 40.021 0.039 4.897 4.13E-05 0.00044 2.2129 

40 38.772 31.085 0.063 4.502 3.36E-05 0.00074 2.1219 

50 29.887 22.752 0.103 3.950 2.71E-05 0.00130 1.9875 

60 21.833 15.476 0.167 3.218 2.08E-05 0.00260 1.7940 

70 14.639 9.429 0.259 2.197 1.25E-05 0.00583 1.4822 

80 8.756 5.041 0.379 1.096 9.87E-06 0.01188 1.0470 

85 6.576 3.654 0.444 0.667 3.63E-05 0.01544 0.8169 

 
       C) U.S. Females, 2000 

     Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 59.234 54.274 0.014 4.276 3.89E-05 0.00016 2.0678 

30 49.504 44.697 0.022 4.048 3.66E-05 0.00026 2.0120 

40 39.917 35.341 0.035 3.724 3.25E-05 0.00043 1.9296 

50 30.653 26.423 0.056 3.265 2.91E-05 0.00080 1.8071 

60 21.937 18.217 0.092 2.620 2.13E-05 0.00171 1.6186 

70 14.117 11.130 0.148 1.760 9.03E-06 0.00430 1.3266 

80 7.224 5.327 0.231 0.727 3.62E-06 0.01080 0.8525 

85 3.975 2.854 0.282 0.254 8.64E-06 0.01606 0.5040 

 
       D) U.S. Females, 2010 

     Age LE DFLE Prevalence Var.DFLE Var.LE Var.Prev SE.DFLE 

20 62.127 54.230 0.018 4.9330 3.02E-05 0.00016 2.2210 

30 52.416 44.708 0.030 4.7547 2.61E-05 0.00027 2.1805 

40 42.831 35.430 0.049 4.4777 2.31E-05 0.00046 2.1161 

50 33.606 26.671 0.080 4.0655 1.94E-05 0.00082 2.0163 

60 24.906 18.683 0.131 3.4209 1.60E-05 0.00168 1.8496 

70 16.960 11.801 0.209 2.4493 9.35E-06 0.00409 1.5650 

80 10.287 6.562 0.317 1.2931 7.89E-06 0.00951 1.1372 

85 7.664 4.760 0.379 0.782 2.34E-05 0.01332 0.8844 

 


	University of Pennsylvania
	ScholarlyCommons
	4-27-2015

	Variance Estimation for a Complex Life Table Quantity: Disease-free Life Expectancy
	Ezra Fishman
	Variance Estimation for a Complex Life Table Quantity: Disease-free Life Expectancy
	Abstract
	Keywords
	Disciplines
	Comments


	Microsoft Word - 442187-convertdoc.input.429839.UI3Px.docx

