& Un.ip

¥ @Design and Analysis of Algorithms

Recurrences

Reference:
CLRS Chapter 4

Topics:

e Substitution method

e Recursion-tree method
 Master method

Huo Hongwei 1

X Solving recurrences

* The analysis of Mergesort from Lecture 2 required us to
solve arecurrence.

* Recurrences are a major tool for analysis of algorithms
— Today: Learn a few methods.
» Substitution method
»Recursion- tree method
»Master method

* Divide and Conquer algorithms which are analyzable by
recurrences.

Huo Hongwei 2

X Recall: Mergesort

MERGESORT

MERGE-SORT(A,p,I)

1 1f p<r

then q « L(p+r)/2]
MERGE-SORT (A, p, Q)
MERGE-SORT (A, g+1, r)
MERGE (A, p, q, 1)

a ~ WD

©(1) ifn=1

T(n) = _
") 2T(n/2) + ®(n) otherwise

Huo Hongwei 3

Substitution method

* The most general method:

Guess the form of the solution.
Verify by induction.
Solve for constants.

* EX.T(n)=4T(n/2) + 100n

Assume that T(1) = ®(1).

Guess O(n®). (Prove O and Q separately.)
Assume that T(k) <ck?3 for k <n.

Prove T(n) <cn3 by induction.

Huo Hongwei

Unj
&

s@% Example of substitution

* T(n) = 4T(n/2) + 100n
< 4c(n/2)3 +100n
= (c /2) n3 + 100N
=cn®—((c/2) n°-100n) “—desired - residual
<Cn® —(desired

* whenever (c/2)n®-100n >0, for example, if c>200 and n > 1.

residual

Huo Hongwei

X Example (continued)

* \We must also handle the initial conditions/the boundary
conditions, that is, ground the induction with base cases.

* Base: T(n) =0O(1) for all n<n,, where n,is a suitable
constant.

* For1<n<ny, wehave“®(1)" <cn3, if we pick c big
enough.

®* This bound is not tight!

Huo Hongwei 6

X A tighter upper bound?

* We shall prove that T(n) = O(n?).
* Assume that T(k) < ck? for k <n: Making a good guess
T(n) =4T(n/2) + 100N
<cn?+100n

* Which does not imply T(n) < cn? for any choice of c.

Huo Hongwei 7

“@% Atighter upper bound?

~ subtleties
* |IDEA: Strengthen the induction hypothesis.

— Subtract a low-order term.
* Assume that T(k) <c,k?-ck for k <n.
* T(n)=4T(n/2) + 100N
< 4(c,(n/2)?> - ¢, (n/2)) + 100N
= ¢,N?% — 2¢, n+ 100n
=¢,n*-c,n—(c,n-100n)
<cn?—=c,n

* The last step holds as long as ¢, > 100.
* Pick c, big enough to handle the initial conditions.

Huo Hongwei 8

*@ Avoiding Pitfalls

® Be careful not to misuse asymptotic notation. For
example:

— We can falsely prove T(n) = O(n) by guessing T(n) <cn
for T(n) = 2T(Ln/2]) + n

T(n)< 2cLn/2] +n
< cn+n
=0(n) <= Wrong!

— The error is that we haven’t proved the exact form of
the inductive hypothesis T(n) <cn.

Huo Hongwei 9

X Changing Variables

®* Use algebraic manipulation to make an unknown
recurrence similar to what you have seen before.

— Consider T(n) = 2T(LnY2]) + Ig n,

— Rename m=Ign and we have
T(2™) = 2T(2™2) + m .

— Set S(m) =T(2M) and we have
S(m) =2S(m/2) + m = S(m) =O(m Ig m) .

— Changing back from S(m) to T(n), we have
T(N)=T(2™ =S(M)=0(mlIgm)=0(Ilgnlglgn).

Huo Hongwei 10

T Recursion- tree method

®* Arecursion tree models the costs (time) of a recursive
execution of an algorithm.

* Therecursion tree method is good for generating
guesses for the substitution method.

* Therecursion-tree method can be unreliable, just like any
method that uses ellipses (...).

* The recursion-tree method promotes intuition, however.

Huo Hongwei 11

& Un.ip

¢ $lte Construction of a Recursion Tree

* Solve T(n) =3T(n/4) + ®(n?), we have
T(n)

Huo Hongwei 12

"”@Tﬁ Construction of a Recursion Tree

* Solve T(n) =3T(n/4) + ®(n?), we have
cn?

e

) T(3) T(Z)

Huo Hongwei 13

-&Unjp

k@&‘re Construction of a Recursion Tree

* Solve T(n) = 3T(n/4) + ®(n?), we have

cn?
T
¢(7)’ ¢(7)’ ¢(7)’

/1IN /1IN /1IN

T(l%)T(l%) T(l%) T(l%)T(l%) T(%)T(%)T(l%) T(l%)

Huo Hongwei

. & Un.ip%‘

;?@ % Construction of recursion tree

A

cn? cn2
c(n/4)? c(n/4)? c(n/4)2 3/16 cn?
c(n/16)2 c¢(n/16)2 c(n/16)2 ... c(n/16)> c(n/16)> c(n/16)? |(3/16)*cn?
lg,n
n/ 4k
T(1) T(i) T(i) T(.l) T(1) T(1) T(1) T(i) T(i) T(l)L ®(n'09:3)
N %
1003 Total: O(n?)

geometric series
The fully expanded tree has Ig, n +1 levels, i.e., it has height Ig, n.

Huo Hongwei 15

Unj
S

T Master Method

* |t provides a “cookbook” method for solving recurrences
of the form:

T(n) =a T(n/b) + f(n)

wherea>1and b > 1 are constants and f(n) is an
asymptotically positive function

Huo Hongwei 16

Unj
S

T ldea of master theorem
® Recursion tree
| f(n) é‘ """"""""""""""""" f(n)
/M
f (n/b) f(n/b) - f(n/b) a f (n/b)
h = log,n /\/L_>\a
f(n/b?) f(n/b2) - f@bd) a’ f (n/b?)
/
/.
VRS #leaves = a" nlogba 7°(1)
= alo9pbn

Huo Hongwei

= nlogba

17

& Three common cases

* Compare f(n) with n'ogoa;
— 1. f(n) = O(n'o%a-¢) for some constant € > 0.

» f(n) grows polynomially slower than nlo%? (by an n¢
factor).

— Solution: T(n)= ©(n'o%a),

Huo Hongwei 18

& Unl I'Q!.

*@ ldea of master theorem

® Recursion tree

f(n) . f(n)
/M
f(n/b) f(n/b) - f(n/b) a f (n/b)
h = log,n / \/~—>\a
f(n/b?) f(n/b? - f(n?) a’ f (n/b?)
/

/. nlogbaT(l)

T(l) logpa
®(n'o9ba)

CASE 1: The weight increases geometrically from
the root to the leaves. The leaves hold a
constant fraction of the total weight.

Huo Hongwei 19

X Three common cases

Compare f(n) with nlogba:

— 2. f(n)= ®(n'o%a|gkn) for some constant k > 0.

» f(n) and n'o%a grow at similar rates.
— Solution: T(n)= ®(n'o%a [gk+ln),

Huo Hongwei

20

f(n) . f (n)
/M
f(nb) f(n/b) - f(n/b) a f (n/b)
h = log,n / \/~—>\a
f(n/b?) f(n/b? - f(n?) a’ f (n/b?)
/
/. nlogbaT(l)
(1)

@(n'ogva |g n)
CASE 2: (k =0)The weight is approximately the
same on each of the log,n levels.

Huo Hongwei 21

& Three common cases

* Compare f(n) with nlogba:
— 3. f(n)= Q(n'o%a+s) for some constant € > 0.

» f(n) grows polynomially faster than n'o%2 (by an n¢
factor),

» and f(n) satisfies the regularity condition that
a f(n/b) < c f(n) for some constant c < 1.

— Solution: T(n)= O(f(n)).

Huo Hongwei 22

& Unl I'Q!.

*@ ldea of master theorem

® Recursion tree

f(n) . f (n)
/M
f(nb) f(n/b) - f(n/b) a f (n/b)
h = log,n / \/~—>\a
f(n/b?) f(n/b? - f(n?) a’ f (n/b?)
/
/. nlogbaT(l)
(1)
O(t(n))

CASE 3: The weight decreases geometrically from
the root to the leaves. The root holds a
constant fraction of the total weight.

Huo Hongwei 23

X Examples

* T(n)=4T(n/2) +n
—a=4,b=2,= nlgwa=n2; f(n) =n.
— CASE 1: f(n) = O(n# ¢) for ¢=1.
— .. T(n) =0(n?)

* T(n)=4T(n/2) + n?
—a=4,b=2, = nlga=n2: f(n) =n2
— CASE 2: f(n) = ®(n?1g°n), that is, k = 0.
— .. T(n) =06(n%lg n)

Huo Hongwei

24

X Examples

°* T(n)=4T(n/2) + n3
—a=4,b=2,= nlogba=n2: f(n) = ns,
— CASE 3: f(n) = Q(n?*¢), for ¢ = 1 and 4(cn/2)? < cn3 (regular
cond.) for c = 1/2.

— .. T(n) = 6(nd)

* T(n)=4T(n/2) + n?/lg n
—a=4,b=2,=nlga=n2: f(n) =n3/lg n.
— Master method does not apply. In particular, for every
constant € > 0, we have n¢ = w(lg n).

Huo Hongwei 25

