
Huo Hongwei 1

Design and Analysis of Algorithms

Recurrences
Reference:
CLRS Chapter 4

Topics:
• Substitution method
• Recursion-tree method
• Master method

Huo Hongwei 2

Solving recurrences

• The analysis of Mergesort from Lecture 2 required us to
solve a recurrence.

• Recurrences are a major tool for analysis of algorithms
– Today: Learn a few methods.

» Substitution method
» Recursion- tree method
» Master method

• Divide and Conquer algorithms which are analyzable by
recurrences.

Huo Hongwei 3

Recall: Mergesort

otherwise2T(n/2) + Θ(n)
if n = 1Θ(1)T(n) =

MERGE-SORT(A,p,r)
1 if p < r
2 then q ← ⎣(p+r)/2⎦
3 MERGE-SORT (A, p, q)
4 MERGE-SORT (A, q+1, r)
5 MERGE (A, p, q, r)

MERGESORT

Huo Hongwei 4

Substitution method

• The most general method:
– Guess the form of the solution.
– Verify by induction.
– Solve for constants.

• Ex. T(n) = 4T(n/2) + 100n
– Assume that T(1) = Θ(1).
– Guess O(n3). (Prove O and Ω separately.)
– Assume that T(k) ≤ ck3 for k < n.
– Prove T(n) ≤ cn3 by induction.

Huo Hongwei 5

Example of substitution

• T(n) = 4T(n/2) + 100n
≤ 4c(n/2)3 + 100n
= (c /2) n3 + 100n
= cn3 – ((c /2) n3 – 100n)
≤ cn3

• whenever (c/2)n3 –100n ≥0, for example, if c ≥ 200 and n ≥ 1.

desired – residual
desired

residual

Huo Hongwei 6

Example (continued)

• We must also handle the initial conditions/the boundary
conditions, that is, ground the induction with base cases.

• Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable
constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big
enough.

• This bound is not tight!

Huo Hongwei 7

A tighter upper bound?

• We shall prove that T(n) = O(n2).
• Assume that T(k) ≤ ck2 for k < n:

T(n) = 4T(n/2) + 100n
≤ cn2 + 100n

•
• Which does not imply T(n) ≤ cn2 for any choice of c.

Making a good guess

Huo Hongwei 8

A tighter upper bound?

• IDEA: Strengthen the induction hypothesis.
– Subtract a low-order term.

• Assume that T(k) ≤ c1k2 – c2k for k < n.
• T(n) = 4T(n/2) + 100n

≤ 4(c1(n/2)2 – c2 (n/2)) + 100n
= c1n2 – 2c2 n+ 100n
= c1n2 – c2 n – (c2 n -100n)
≤ c1n2 – c2 n

• The last step holds as long as c2 > 100.
• Pick c1 big enough to handle the initial conditions.

subtleties

Huo Hongwei 9

Avoiding Pitfalls

• Be careful not to misuse asymptotic notation. For
example:
– We can falsely prove T(n) = O(n) by guessing T(n) ≤ cn

for T(n) = 2T(⎣n/2⎦) + n
T(n) ≤ 2c ⎣n/2⎦ + n

≤ cn + n
= O(n) ⇐ Wrong!

– The error is that we haven’t proved the exact form of
the inductive hypothesis T(n) ≤ cn.

Huo Hongwei 10

Changing Variables

• Use algebraic manipulation to make an unknown
recurrence similar to what you have seen before.
– Consider T(n) = 2T(⎣n1/2⎦) + lg n ,

– Rename m = lg n and we have
T(2m) = 2T(2m/2) + m .

– Set S(m) = T(2m) and we have
S(m) = 2S(m/2) + m ⇒ S(m) = O(m lg m) .

– Changing back from S(m) to T(n), we have
T(n) = T(2m) = S(m) = O(m lg m) = O(lg n lg lg n) .

Huo Hongwei 11

Recursion- tree method

• A recursion tree models the costs (time) of a recursive
execution of an algorithm.

• The recursion tree method is good for generating
guesses for the substitution method.

• The recursion-tree method can be unreliable, just like any
method that uses ellipses (…).

• The recursion-tree method promotes intuition, however.

Huo Hongwei 12

The Construction of a Recursion Tree
• Solve T(n) = 3T(n/4) + Θ(n2), we have

T(n)

Huo Hongwei 13

The Construction of a Recursion Tree
• Solve T(n) = 3T(n/4) + Θ(n2), we have

cn2

n
4T() n

4T()n
4T()

Huo Hongwei 14

The Construction of a Recursion Tree
• Solve T(n) = 3T(n/4) + Θ(n2), we have

cn2

n
4c()2 n

4c()2 n
4c()2

n
16T() n

16T()n
16T() n

16T() n
16T()n

16T()n
16T() n

16T()n
16T()

Huo Hongwei 15

Construction of recursion tree

The fully expanded tree has lg4 n +1 levels, i.e., it has height lg4 n.

n / 4k

cn2

c(n/4)2

T(1) T(1) T(1) T(1) T(1) T(1) T(1)

cn2

3/16 cn2

(3/16)2 cn2

…

Total: O(n2)

c(n/4)2 c(n/4)2

c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2…

T(1) … T(1) T(1) Θ(n)log43

nlog43

lg4n

geometric series

Huo Hongwei 16

Master Method
• It provides a “cookbook” method for solving recurrences

of the form:
T(n) = a T(n/b) + f(n)

where a ≥ 1 and b > 1 are constants and f(n) is an
asymptotically positive function

Huo Hongwei 17

Idea of master theorem
• Recursion tree

f (n/b)f (n/b) f (n/b)

Τ (1)

…

…

f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

#leaves = ah

= alogbn

= nlogba

nlogbaΤ (1)

Huo Hongwei 18

Three common cases

• Compare f(n) with nlogba:
– 1. f(n) = O(nlogba-ε) for some constant ε > 0.

» f(n) grows polynomially slower than nlogba (by an nε

factor).
– Solution: T(n)= Θ(nlogba).

Huo Hongwei 19

Idea of master theorem
• Recursion tree

f (n/b)f (n/b) f (n/b)

Τ (1)

…

…

f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

CASE 1: The weight increases geometrically from
the root to the leaves. The leaves hold a
constant fraction of the total weight.

nlogbaΤ (1)

Θ(nlogba)

Huo Hongwei 20

Three common cases

• Compare f(n) with nlogba:
– 2. f(n)= Θ(nlogba lgkn) for some constant k ≥ 0.

» f(n) and nlogba grow at similar rates.
– Solution: T(n)= Θ(nlogba lgk+1 n).

Huo Hongwei 21

Idea of master theorem
• Recursion tree

f (n/b)f (n/b) f (n/b)

Τ (1)

…

…

f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

CASE 2: (k = 0)The weight is approximately the
same on each of the logbn levels.

nlogbaΤ (1)

Θ(nlogba lg n)

Huo Hongwei 22

Three common cases

• Compare f(n) with nlogba:
– 3. f(n)= Ω(nlogba+ε) for some constant ε > 0.

» f(n) grows polynomially faster than nlogba (by an nε

factor),
» and f(n) satisfies the regularity condition that

a f(n/b) ≤ c f(n) for some constant c < 1.
– Solution: T(n)= Θ(f(n)).

Huo Hongwei 23

Idea of master theorem
• Recursion tree

f (n/b)f (n/b) f (n/b)

Τ (1)

…

…

f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

CASE 3: The weight decreases geometrically from
the root to the leaves. The root holds a
constant fraction of the total weight.

nlogbaΤ (1)

Θ(f(n))

Huo Hongwei 24

Examples

• T(n) = 4T(n/2) + n
– a = 4, b = 2, ⇒ nlogba = n2 ; f(n) = n.
– CASE 1: f(n) = O(n2- ε) for ε =1.
– ∴ T(n) = Θ(n2)

• T(n) = 4T(n/2) + n2

– a = 4, b = 2, ⇒ nlogba = n2 ; f(n) = n2.
– CASE 2: f(n) = Θ(n2 lg0 n), that is, k = 0.
– ∴ T(n) = Θ(n2 lg n)

Huo Hongwei 25

Examples

• T(n) = 4T(n/2) + n3

– a = 4, b = 2, ⇒ nlogba = n2 ; f(n) = n3.
– CASE 3: f(n) = Ω(n2+ε), for ε = 1 and 4(cn/2)3 ≤ cn3 (regular

cond.) for c = 1/2.
– ∴ T(n) = Θ(n3)

• T(n) = 4T(n/2) + n2/lg n
– a = 4, b = 2, ⇒ nlogba = n2 ; f(n) = n3 /lg n.
– Master method does not apply. In particular, for every

constant ε > 0, we have nε = ω(lg n).

