

Recurrences

Reference: CLRS Chapter 4

Topics:

- Substitution method
- Recursion-tree method
- Master method

- The analysis of Mergesort from Lecture 2 required us to solve a recurrence.
- Recurrences are a major tool for analysis of algorithms
 - Today: Learn a few methods.
 - » Substitution method
 - » Recursion- tree method
 - » Master method
- Divide and Conquer algorithms which are analyzable by recurrences.

Recall: Mergesort

	MERGESORT
ME	RGE-SORT(A,p,r)
1	if p < r
2	then $q \leftarrow \lfloor (p+r)/2 \rfloor$
3	MERGE-SORT (A, p, q)
4	MERGE-SORT (A, q+1, r)
5	MERGE (A, p, q, r)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

Substitution method

- The most general method:
 - Guess the form of the solution.
 - Verify by induction.
 - Solve for constants.
- **Ex.** T(n) = 4T(n/2) + 100n
 - Assume that $T(1) = \Theta(1)$.
 - Guess $O(n^3)$. (Prove O and Ω separately.)
 - Assume that $T(k) \le ck^3$ for k < n.
 - Prove $T(n) \le cn^3$ by induction.

Example of substitution

- T(n) = 4T(n/2) + 100n
 - $\leq 4c(n/2)^3 + 100n$
 - $= (c /2) n^3 + 100n$
 - $= cn^3 ((c/2)n^3 100n) \quad \leftarrow desired$
 - $\leq cn^3 \leftarrow desired$

• whenever $(c/2)n^3 - 100n \ge 0$, for example, if $c \ge 200$ and $n \ge 1$.

residual

- We must also handle the initial conditions/the boundary conditions, that is, ground the induction with base cases.
- Base: $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

• This bound is not tight!

A tighter upper bound?

- We shall prove that $T(n) = O(n^2)$.
- Assume that $T(k) \le ck^2$ for k < n: T(n) = 4T(n/2) + 100n $\le cn^2 + 100n$
- Which does not imply $T(n) \le cn^2$ for any choice of *c*.

subtleties

- IDEA: Strengthen the induction hypothesis.
 - Subtract a low-order term.
- Assume that $T(k) \le c_1 k^2 c_2 k$ for k < n.
- T(n) = 4T(n/2) + 100n

 $\leq 4(c_1(n/2)^2 - c_2(n/2)) + 100n$ = $c_1n^2 - 2c_2n + 100n$ = $c_1n^2 - c_2n - (c_2n - 100n)$ $\leq c_1n^2 - c_2n$

- The last step holds as long as $c_2 > 100$.
- Pick c₁ big enough to handle the initial conditions.

- Be careful not to misuse asymptotic notation. For example:
 - We can falsely prove T(n) = O(n) by guessing $T(n) \le cn$ for $T(n) = 2T(\lfloor n/2 \rfloor) + n$ $T(n) \le 2c \lfloor n/2 \rfloor + n$ $\le cn + n$ $= O(n) \Leftarrow Wrong!$
 - The error is that we haven't proved the exact form of the inductive hypothesis $T(n) \le cn$.

- Use algebraic manipulation to make an unknown recurrence similar to what you have seen before.
 - Consider $T(n) = 2T(\lfloor n^{1/2} \rfloor) + \lg n$,
 - Rename $m = \lg n$ and we have $T(2^m) = 2T(2^{m/2}) + m$.
 - Set $S(m) = T(2^m)$ and we have $S(m) = 2S(m/2) + m \Rightarrow S(m) = O(m \lg m)$.
 - Changing back from S(m) to T(n), we have $T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$.

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.

• Solve $T(n) = 3T(n/4) + \Theta(n^2)$, we have

T(n)

• Solve $T(n) = 3T(n/4) + \Theta(n^2)$, we have

• Solve $T(n) = 3T(n/4) + \Theta(n^2)$, we have

Construction of recursion tree

Master Method

• It provides a "cookbook" method for solving recurrences of the form:

T(n) = a T(n/b) + f(n)

where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function

Idea of master theorem

• Recursion tree

Three common cases

- Compare f(n) with $n^{\log_b a}$:
 - 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - » f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).
 - Solution: $T(n) = \Theta(n^{\log_b a})$.

Idea of master theorem

• Recursion tree

dian Univer

Three common cases

- Compare f(n) with $n^{\log_b a}$:
 - 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - » f(n) and $n^{\log_b a}$ grow at similar rates.
 - Solution: $T(n) = \Theta(n^{\log_{ba}} \lg^{k+1} n)$.

Idea of master theorem

• Recursion tree

idian Univer

same on each of the $\log_b n$ levels.

Three common cases

- Compare f(n) with $n^{\log_b a}$:
 - 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - » f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),
 - » and f(n) satisfies the regularity condition that $a f(n/b) \le c f(n)$ for some constant c < 1.
 - Solution: $T(n) = \Theta(f(n))$.

Idea of master theorem

• Recursion tree

dian Univer

Examples

- T(n) = 4T(n/2) + n
 - $-a = 4, b = 2, \Rightarrow n^{\log_{ba}} = n^{2}; f(n) = n.$ - CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$ - $\therefore T(n) = \Theta(n^{2})$
- $T(n) = 4T(n/2) + n^2$
 - $-a = 4, b = 2, \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$ - CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, k = 0. - $\therefore T(n) = \Theta(n^2 \lg n)$

Examples

- $T(n) = 4T(n/2) + n^3$
 - $-a = 4, b = 2, \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
 - CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$, for $\varepsilon = 1$ and $4(cn/2)^3 \le cn^3$ (regular cond.) for c = 1/2.

$$- \therefore T(n) = \Theta(n^3)$$

- $T(n) = 4T(n/2) + n^2/\lg n$
 - $-a = 4, b = 2, \Rightarrow n^{\log_b a} = n^2; f(n) = n^3/\lg n.$
 - Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.