Recurrences

Reference:
CLRS Chapter 4

Topics:

- Substitution method
- Recursion-tree method
- Master method

Solving recurrences

- The analysis of Mergesort from Lecture 2 required us to solve a recurrence.
- Recurrences are a major tool for analysis of algorithms
- Today: Learn a few methods.
»Substitution method
» Recursion- tree method
» Master method
- Divide and Conquer algorithms which are analyzable by recurrences.

Recall: Mergesort

MERGESORT

MERGE-SORT($A, p, r)$
1 if $p<r$
2 then $q \leftarrow\lfloor(p+r) / 2\rfloor$
3 MERGE-SORT (A, p, q)
4 MERGE-SORT ($A, q+1, r$)
5 MERGE (A, p, q, r)

$$
T(n)=\left\{\begin{array}{cl}
\Theta(1) & \text { if } n=1 \\
2 T(n / 2)+\Theta(n) & \text { otherwise }
\end{array}\right.
$$

Substitution method

- The most general method:
- Guess the form of the solution.
- Verify by induction.
- Solve for constants.
- Ex. $T(n)=4 T(n / 2)+100 n$
- Assume that $T(1)=\Theta(1)$.
- Guess $O\left(n^{3}\right)$. (Prove O and Ω separately.)
- Assume that $T(k) \leq c k^{3}$ for $k<n$.
- Prove $T(n) \leq c n^{3}$ by induction.

Example of substitution

- $T(n)=4 T(n / 2)+100 n$

$$
\begin{aligned}
& \leq 4 c(n / 2)^{3}+100 n \\
& =(c / 2) n^{3}+100 n \\
& =c n^{3}-\left((c / 2) n^{3}-100 n\right) \quad \leftarrow_{\text {desired }}-\text { residual } \\
& \leq c n^{3} \longleftarrow \text { desired }
\end{aligned}
$$

- whenever (c/2) $n^{3}-100 n \geq 0$, for example, if $c \geq 200$ and $n \geq 1$. residual

Example (continued)

- We must also handle the initial conditions/the boundary conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1)$ " $\leq c n^{3}$, if we pick c big enough.
- This bound is not tight!

A tighter upper bound?

- We shall prove that $T(n)=\mathbf{O}\left(n^{2}\right)$.
- Assume that $T(k) \leq c k^{2}$ for $k<n$:

Making a good guess

$$
\begin{aligned}
T(n) & =4 T(n / 2)+100 n \\
\leq & c n^{2}+100 n
\end{aligned}
$$

- Which does not imply $T(n) \leq c n^{2}$ for any choice of c.

A tighter upper bound?

subtleties

- IDEA: Strengthen the induction hypothesis.
- Subtract a low-order term.
- Assume that $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.
- $T(n)=4 T(n / 2)+100 n$

$$
\begin{aligned}
& \leq 4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+100 n \\
& =c_{1} n^{2}-2 c_{2} n+100 n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-100 n\right) \\
& \leq c_{1} n^{2}-c_{2} n
\end{aligned}
$$

- The last step holds as long as $c_{2}>100$.
- Pick c_{1} big enough to handle the initial conditions.

Avoiding Pitfalls

- Be careful not to misuse asymptotic notation. For example:
- We can falsely prove $T(n)=O(n)$ by guessing $T(n) \leq c n$ for $T(n)=2 T(\lfloor n / 2\rfloor)+n$

$$
\begin{aligned}
T(n) & \leq 2 c\lfloor n / 2\rfloor+n \\
& \leq c n+n \\
& =O(n) \Leftarrow \text { Wrong! }
\end{aligned}
$$

- The error is that we haven't proved the exact form of the inductive hypothesis $T(n) \leq c n$.

Changing Variables

- Use algebraic manipulation to make an unknown recurrence similar to what you have seen before.
- Consider $\left.T(n)=2 T\left(n^{1 / 2}\right\rfloor\right)+\lg n$,
- Rename $m=\lg n$ and we have

$$
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

- Set $S(m)=T\left(2^{m}\right)$ and we have

$$
S(m)=2 S(m / 2)+m \Rightarrow S(m)=O(m \lg m) .
$$

- Changing back from $S(m)$ to $T(n)$, we have

$$
T(n)=T\left(2^{m}\right)=S(m)=O(m \lg m)=O(\lg n \lg \lg n) .
$$

Recursion- tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.

ZTHe Construction of a Recursion Tree

- Solve $T(n)=3 T(n / 4)+\Theta\left(n^{2}\right)$, we have $T(n)$

ZThe Construction of a Recursion Tree

- Solve $T(n)=3 T(n / 4)+\Theta\left(n^{2}\right)$, we have

Z

- Solve $T(n)=3 T(n / 4)+\Theta\left(n^{2}\right)$, we have

Construction of recursion tree

The fully expanded tree has $\lg _{4} n+1$ levels, i.e., it has height $\lg _{4} n$.

Master Method

- It provides a "cookbook" method for solving recurrences of the form:

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1$ and $b>1$ are constants and $f(n)$ is an asymptotically positive function

Idea of master theorem

- Recursion tree

Three common cases

- Compare $f(n)$ with $n^{\log g} a$:
- 1. $f(n)=O\left(n^{\log b a-\varepsilon}\right)$ for some constant $\varepsilon>0$.
» $f(n)$ grows polynomially slower than $n^{\log b a}$ (by an n^{ε} factor).
- Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

Idea of master theorem

- Recursion tree

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

Three common cases

- Compare $f(n)$ with $n^{\log _{b} a}$:
- 2. $f(n)=\Theta\left(n^{\log b a} \lg k n\right)$ for some constant $k \geq 0$.
» $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.
- Solution: $T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)$.

Idea of master theorem

- Recursion tree

CASE 2: $(k=0)$ The weight is approximately the same on each of the $\log _{b} n$ levels.

Three common cases

- Compare $f(n)$ with $n^{\log _{b} a}$:
- 3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.
" $f(n)$ grows polynomially faster than $n^{\log b a}$ (by an n^{ε} factor),
» and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
- Solution: $T(n)=\Theta(f(n))$.

Idea of master theorem

- Recursion tree

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

Examples

- $T(n)=4 T(n / 2)+n$
$-a=4, b=2, \Rightarrow n^{\log b a}=n^{2} ; f(n)=n$.
- CASE 1: $f(n)=O\left(n^{2-\varepsilon}\right)$ for $\varepsilon=1$.
$-\therefore T(n)=\Theta\left(n^{2}\right)$
- $T(n)=4 T(n / 2)+n^{2}$
$-a=4, b=2, \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{2}$.
- CASE 2: $f(n)=\Theta\left(n^{2} \lg ^{0} n\right)$, that is, $k=0$.
$-\therefore T(n)=\Theta\left(n^{2} \lg n\right)$

Examples

- $T(n)=4 T(n / 2)+n^{3}$
$-a=4, b=2, \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{3}$.
- CASE 3: $f(n)=\Omega\left(n^{2+\varepsilon}\right)$, for $\varepsilon=1$ and $4(c n / 2)^{3} \leq c n^{3}$ (regular cond.) for $c=1 / 2$.
$-\therefore T(n)=\Theta\left(n^{3}\right)$
- $T(n)=4 T(n / 2)+n^{2} / l g n$
$-a=4, b=2, \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{3} / \lg n$.
- Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\lg n)$.

