Getting started

Reference:

CLRS Chapter 2

Topics:

- the basic concepts
- asymptotic analysis

Algorithms

- Algorithm.
- A well-defined computational procedure that takes some value,or set of values, as input and produces some value, or set of values, as output.

- issues: correctness, efficiency(amount of work done and space used), storage(simplicity,clarity), optimality .etc.

The problem of sorting

- Input: sequence $<a_{1}, a_{2}, \ldots, a_{n}>$ of n natural numbers
- Output: permutation $\left.<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}\right\rangle$ such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$
- Example
- Input: <5, 2, 4, 6, 1, 3>
- Output: <1, 2, 3, 4, 5, 6>

Insertion Sort

Insertion Sort Example

(a) | | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 4 | 6 | 1 | 3 | |
| (4) | | | | | | |
| | | | | | | |

1 2 3 4 5\quad1 2 4 5 6 3

- The operation of INSERTION-SORT on the array $A=<5,2,4$, 6, 1, $3>$.

Analysis of Insertion sort

INSERTION SORT		
INSERTION-SORT(A)	cost	times
1 for $\mathbf{j} \leftarrow 2$ to length(A)	c_{1}	n
2 do key $\leftarrow \mathrm{A}[\mathrm{j}]$	c_{2}	$n-1$
3 // insert $\mathrm{A}[\mathrm{j}]$ into the sorted sequence $\mathrm{A}[1 . . \mathrm{j}-1]$	0	$n-1$
$4 \quad i \leftarrow j-1$	c_{4}	$n-1$
5 while i > 0 and $\mathrm{A}[\mathrm{i}]>$ key	c_{5}	$\sum_{i=2}^{n} t_{j}$
do $A[i+1] \leftarrow A[i]$	c_{6}	$\sum_{i=2}^{n}\left(t_{j}-1\right)$
$i \leftarrow i-1$	c_{7}	$\sum^{n}\left(t_{j}-1\right)$
$8 \quad \mathrm{~A}[\mathrm{i}+1] \leftarrow$ key	c_{8}	${ }_{n-1}{ }_{\overline{1}}$

t_{j} : the number of times the while loop test in line 5 is executed for that value of \boldsymbol{j}

Analysis of Insertion sort

- To compute $T(n)$, the running time of Insertion-sort, we sum the products of the cost and times columns, obtaining

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{8}(n-1)
\end{aligned}
$$

- The best-case occurs if the array is already sorted.

$$
\begin{aligned}
T(n) & =c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{8}(n-1) \\
& =\left(c_{1}+c_{2}+c_{4}+c_{5}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right)
\end{aligned}
$$

- The running time is a linear function of n

Analysis of Insertion sort

- The worst-case results if the array is in reverse sorted order - that is, in decreasing order.

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}(n(n+1) / 2-1)+c_{6}(n(n-1) / 2) \\
& +c_{7}(n(n-1) / 2)+c_{8}(n-1) \\
= & \left(c_{5} / 2+c_{6} / 2+c_{7} / 2\right) n^{2} \\
& +\left(c_{1}+c_{2}+c_{4}+c_{5} / 2-c_{6} / 2-c_{7} / 2+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right)
\end{aligned}
$$

- The running time is a quadratic function of n

$$
\begin{aligned}
& \sum_{j=2}^{n} t_{j}=\sum_{j=2}^{n} j=n(n+1) / 2-1 \\
& \sum_{j=2}^{n} t_{j}-1=\sum_{j=2}^{n}(j-1)=n(n-1) / 2
\end{aligned}
$$

Aorst-case and Average-case Analysis

- Note:
- Upper bound on the running time for any input
- For some algorithms, worst-case occur fairly often. »e.g. Searching in a database for a particular piece of information
- Average case often as bad as worst case (but not always!)

Order of Growth

- We will only consider order of growth of running time:
- We can ignore the lower-order terms, since they are relatively insignificant for very large n.
- We can also ignore leading term's constant coefficients, since they are not as important for the rate of growth in computational efficiency for very large n.
- We just said that best case was linear in n and worst/average case quadratic in n.

Designing Algorithms

- We discussed insertion sort
- We introduced RAM model of computation
- We analyzed insertion sort in the RAM model
- We discussed how we are normally only interested in growth of running time:
»Best-case linear in $O(n)$, worst-case quadratic in O(n^{2})
- Can we design better than n^{2} sorting algorithm?
- We will do so using one of the most powerful algorithm design techniques.

Divide-and-Conquer

- Recursive in structure
- To solve P:
- Divide P into smaller problems $P_{1}, P_{2}, \ldots, P_{k}$.
- Conquer by solving the (smaller) subproblems recursively.
- Combine the solutions to $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{k}$ into the solution for P.

Merge Sort Algorithm

- Using divide-and-conquer, we can obtain a merge-sort algorithm
- Divide: Divide the n elements into two subsequences of $n / 2$ elements each.
- Conquer: Sort the two subsequences recursively.
- Combine: Merge the two sorted subsequences to produce the sorted answer.
- Assume we have procedure $\operatorname{Merge}(A, p, q, r)$ which merges sorted $A[p . . q]$ with sorted $A[q+1 . . r]$ in $(r-p)$ time.

Merge-Sort (A, p, r)

InPUT: a sequence of n numbers stored in array A
OutPut: an ordered sequence of n numbers

```
MERGESORT
MERGE-SORT(A,p,r)
1 if p < r
2 then q
3 MERGE-SORT (A, p, q)
4 MERGE-SORT (A, q+1, r)
5 MERGE (A, p, q, r)
```

$\operatorname{MERGE}(A, p, q, r)$
$1 \mathrm{n}_{1} \leftarrow \mathrm{q}-\mathrm{p}+1$;
$2 n_{2} \leftarrow r-q$;
3 create arrays $L\left[1 . . n_{1}+1\right]$ and $R\left[1 . . n_{2}+1\right]$
4 for $i \leftarrow 1$ to n_{1}
5 do $L[i] \leftarrow A[p+i-1]$
6 for $\mathrm{j} \leftarrow 1$ to n_{2}
7 do $R[j] \leftarrow A[q+j]$
$8 \mathrm{~L}\left[\mathrm{n}_{1}+1\right] \leftarrow \infty$
$9 \quad R\left[n_{2}+1\right] \leftarrow \infty \quad / /$ set sentinel
10 i $\leftarrow 1$
$11 \mathrm{j} \leftarrow 1$
12 for $k \leftarrow p$ to r
13 do if L[i] $\leq R[j]$
$14 \quad$ then $A[k] \leftarrow L[i]$
$15 \quad i \leftarrow i+1$
$16 \quad$ else $A[k] \leftarrow R[j]$
17
$\mathbf{j} \leftarrow \mathbf{j}+1$

Action of Merge Sort

Analysis divide-and-conquer algorithms

- Let $T(n)$ be the running time on a problem of size n.
- Suppose that our division of the problem yields a subproblems, each of which is $1 / b$ the size of the original.
$-D(n)$ the time to divide the problem into subproblems
- C(n) the time to combine the solutions to subproblems into the solution to the original problem

$$
T(n)=\left\{\begin{array}{cl}
\Theta(1) & \text { if } n \leq c \\
a T(n / b)+D(n)+C(n) & \text { otherwise }
\end{array}\right.
$$

Recurrence Equation

Mergesort Analysis

- How long does mergesort take?
- Bottleneck = merging (and copying).
» merging two files of size $n / 2$ requires n comparisons
$-T(n)=$ comparisons to mergesort n elements.
» to make analysis cleaner, assume n is a power of 2

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1, \\
\underbrace{2 T(n / 2)}+\underbrace{\Theta(n)} & \text { otherwise }
\end{array}\right.
$$

Sorting both halves merging

- Claim. $T(n)=n \lg _{2} n$.
- Note: same number of comparisons for ANY file. » even already sorted
- We'll prove several different ways to illustrate standard techniques.

$$
T(n)= \begin{cases}\begin{array}{l}
\Theta(1) \\
\underbrace{2 T(n / 2)}_{\text {Sorting both halves merging }}+\underbrace{c n}_{\text {if } n=1}
\end{array} \text { otherwise }\end{cases}
$$

$$
T(n)
$$

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {Sorting both halves }}+\underbrace{c n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Rroof by Picture of Recursion Tree

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {Sorting both halves }}+\underbrace{c n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Construction of recursion tree

Total: cn lgn + cn
The fully expanded tree has $\lg n+1$ levels, i.e., it has height $\lg n$, and each level contributes a total cost of $c n$. The total cost is $\Theta(n \lg n)$.

