
Huo Hongwei 1

Design and Analysis of Algorithms

Getting started
Reference:
CLRS Chapter 2

Topics:
• the basic concepts
• asymptotic analysis

Huo Hongwei 2

Algorithms

• Algorithm.
– A well-defined computational procedure that takes

some value,or set of values, as input and produces
some value,or set of values, as output.

– issues: correctness, efficiency(amount of work done
and space used), storage(simplicity,clarity), optimality
.etc.

AlgorithmInput Output

Huo Hongwei 3

The problem of sorting

• Input: sequence <a1, a2,…,an> of n natural numbers

• Output: permutation <a’1, a’2,…,a’n> such that
a’1≤ a’2 ≤ … ≤ a’n

• Example
– Input: <5, 2, 4, 6, 1, 3>
– Output: <1, 2, 3, 4, 5, 6>

Huo Hongwei 4

Insertion Sort

INSERTION-SORT(A)
1 for j ← 2 to length(A)
2 do key ← A[j]
3 // insert A[j] into the sorted sequence A[1..j-1]
4 i ← j – 1
5 while i > 0 and A[i] > key
6 do A[i+1] ← A[i] // move item back
7 i ← i – 1
8 A[i+1] ← key //find the insertion position

INSERTION SORT

i j

key
sorted

A:
1 n

Huo Hongwei 5

Insertion Sort Example

• The operation of INSERTION-SORT on the array A = < 5, 2, 4,
6, 1, 3 >.

5 2 4 6 1 3
1 2 3 4 5 6

(a) 2 5 4 6 1 3
1 2 3 4 5 6

(b) 2 4 5 6 1 3
1 2 3 4 5 6

(c)

2 4 5 6 1 3
1 2 3 4 5 6

(d) 1 2 4 5 6 3
1 2 3 4 5 6

(e) 1 2 4 5 6 3
1 2 3 4 5 6

(f)

Huo Hongwei 6

Analysis of Insertion sort

INSERTION-SORT(A) cost times

1 for j ← 2 to length(A) c1 n
2 do key ← A[j] c2 n-1
3 // insert A[j] into the sorted

sequence A[1..j-1] 0 n-1
4 i ← j – 1 c4 n-1
5 while i > 0 and A[i] > key c5
6 do A[i+1] ← A[i] c6
7 i ← i – 1 c7
8 A[i+1] ← key c8 n-1

INSERTION SORT

n∑ j=2
tj

n∑ j=2
(tj –1)

tj : the number of times the while loop test in line 5 is executed for
that value of j

n∑ j=2
(tj –1)

Huo Hongwei 7

Analysis of Insertion sort

• To compute T(n), the running time of Insertion-sort, we
sum the products of the cost and times columns,
obtaining

T(n)=c1n + c2(n-1) + c4(n-1) + c5 + c6

+c7 + c8(n-1)

• The best-case occurs if the array is already sorted.
T(n)=c1n + c2(n-1) + c4(n-1) + c5 (n-1) + c8(n-1)

= (c1 + c2+ c4 + c5 + c8) n- (c2+ c4 + c5 + c8)
– The running time is a linear function of n

n∑ j=2
tj

n∑ j=2
(tj –1)

n∑ j=2
(tj –1)

Huo Hongwei 8

Analysis of Insertion sort

• The worst-case results if the array is in reverse sorted
order – that is, in decreasing order.
T(n)= c1n + c2(n-1) + c4(n-1) + c5 (n(n+1)/2-1) + c6(n(n-1)/2)

+ c7 (n(n-1)/2) + c8(n-1)
= (c5/2 + c6/2 + c7/2)n2

+ (c1 + c2 + c4+ c5/2 – c6/2 – c7/2 + c8) n – (c2 + c4 + c5+ c8)
– The running time is a quadratic function of n

n∑ j=2
tj =

n∑ j=2
j = n(n+1)/2 -1

n∑ j=2
tj -1 =

n∑ j=2
(j–1) = n(n-1)/2

Huo Hongwei 9

Worst-case and Average-case Analysis

• Note:
– Upper bound on the running time for any input
– For some algorithms, worst-case occur fairly often.

» e.g. Searching in a database for a particular piece
of information

– Average case often as bad as worst case (but not
always!)

Huo Hongwei 10

Order of Growth

• We will only consider order of growth of running time:
– We can ignore the lower-order terms, since they are

relatively insignificant for very large n.
– We can also ignore leading term’s constant

coefficients, since they are not as important for the
rate of growth in computational efficiency for very
large n.

– We just said that best case was linear in n and
worst/average case quadratic in n.

Huo Hongwei 11

Designing Algorithms

• We discussed insertion sort
– We introduced RAM model of computation
– We analyzed insertion sort in the RAM model
– We discussed how we are normally only interested in

growth of running time:
» Best-case linear in O(n), worst-case quadratic in

O(n2)
• Can we design better than n2 sorting algorithm?
• We will do so using one of the most powerful algorithm

design techniques.

Huo Hongwei 12

Divide-and-Conquer

• Recursive in structure

• To solve P:
– Divide P into smaller problems P1, P2, …, Pk.
– Conquer by solving the (smaller) subproblems

recursively.
– Combine the solutions to P1, P2, …, Pk into the solution

for P.

Huo Hongwei 13

Merge Sort Algorithm

• Using divide-and-conquer, we can obtain a merge-sort
algorithm
– Divide: Divide the n elements into two subsequences

of n/2 elements each.
– Conquer: Sort the two subsequences recursively.
– Combine: Merge the two sorted subsequences to

produce the sorted answer.

• Assume we have procedure MERGE(A, p, q, r) which
merges sorted A[p...q] with sorted A[q+1..r] in (r - p) time.

Huo Hongwei 14

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MERGE-SORT(A,p,r)
1 if p < r
2 then q ← ⎣(p+r)/2⎦
3 MERGE-SORT (A, p, q)
4 MERGE-SORT (A, q+1, r)
5 MERGE (A, p, q, r)

MERGESORT

Huo Hongwei 15

Merge
MERGE(A, p, q, r)
1 n1 ← q-p+1;
2 n2 ← r-q;
3 create arrays L[1..n1+1] and R[1..n2+1]
4 for i ← 1 to n1
5 do L[i] ← A[p + i-1]
6 for j ← 1 to n2
7 do R[j] ← A[q + j]
8 L[n1+1] ← ∞
9 R[n2+1] ← ∞ //set sentinel
10 i ← 1
11 j ← 1
12 for k ← p to r
13 do if L[i] < R[j]
14 then A[k] ← L[i]
15 i ← i + 1
16 else A[k] ← R[j]
17 j ← j + 1

MERGE

Huo Hongwei 16

Action of Merge Sort

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge merge merge merge

mergemerge

merge

initial sequence

Huo Hongwei 17

Analysis divide-and-conquer algorithms

• Let T(n) be the running time on a problem of size n.
– Suppose that our division of the problem yields a

subproblems, each of which is 1/b the size of the
original.

– D(n) the time to divide the problem into subproblems
– C(n) the time to combine the solutions to subproblems

into the solution to the original problem

Recurrence Equation

otherwiseaT(n/b) + D(n) + C(n)
if n < cΘ(1)T(n) =

Huo Hongwei 18

Mergesort Analysis

• How long does mergesort take?
– Bottleneck = merging (and copying).

» merging two files of size n/2 requires n comparisons
– T(n) = comparisons to mergesort n elements.

» to make analysis cleaner, assume n is a power of 2

• Claim. T(n) = n lg2 n.
– Note: same number of comparisons for ANY file.

» even already sorted
– We'll prove several different ways to illustrate standard

techniques.

otherwise2T(n/2) + Θ(n)
if n = 1,Θ(1)T(n) =

Sorting both halves merging

Huo Hongwei 19

Proof by Picture of Recursion Tree

otherwise2T(n/2) + cn
if n = 1,Θ(1)T(n) =

Sorting both halves merging

T(n)

Huo Hongwei 20

Proof by Picture of Recursion Tree

otherwise2T(n/2) + cn
if n = 1,Θ(1)T(n) =

Sorting both halves merging

c(n)

T(n/2)T(n/2)

Huo Hongwei 21

Proof by Picture of Recursion Tree

otherwise2T(n/2) + cn
if n = 1,Θ(1)T(n) =

Sorting both halves merging

cn

cn/2cn/2

T(n/4)T(n/4)T(n/4) T(n/4)

Huo Hongwei 22

Construction of recursion tree
cn

cn/2cn/2

cn/4cn/4cn/4 cn/4

c c c c c c c c

n / 2k

lgn

n

2(n /2)

4(n /4)

2k (n / 2k)

cn

. . .

. . .

Total: cn lgn + cn

The fully expanded tree has lg n +1 levels, i.e., it has height lg n, and
each level contributes a total cost of cn. The total cost is Θ(n lg n).

