pif@emgn and Analysis of Algorithms

Getting started

Reference:
CLRS Chapter 2

Topics:
e the basic concepts
e asymptotic analysis

Huo Hongwei 1

Algorithms

* Algorithm.

— A well-defined computational procedure that takes
some value,or set of values, as input and produces
some value,or set of values, as output.

Input

Algorithm

+——— Output

— Issues: correctness, efficiency(amount of work done
and space used), storage(simplicity,clarity), optimality

.etc.

Huo Hongwei

T The problem of sorting

* Input: sequence <a,, a,,...,a,> of n natural numbers

* Qutput: permutation <a’;, a’,,...,a’ > such that
a,;<a,<..<a’,

* Example

— Input: <5,2,4,6,1, 3>
— Qutput: <1, 2, 3,4, 5, 6>

Huo Hongwei

X Insertion Sort

INSERTION SORT

INSERTION-SORT(A)
1 for J « 2 to length(A)

2 do key « Al]]
3 I/ insert A[j] into the sorted sequence A[1l..J-1]
4 1«3 -1
5 whille 1 > 0 and A[1] > key
6 do A[1+1] « A[1] // move item back
7 1«1 -1
8 A[1+1] « key //find the insertion position

1 i | n

A; ==
~ N —
key

sorted > |

Huo Hongwei 4

5> Uy :
o Insertion Sort Example
1 23456 1 23456 1 2 345 6
@ 5B 4l6]1]3] © [2]s@6l1]3] (© [2][4][s1]3
N
123456 123456 1234656

(d) |2]4|5|6 [§N 3) |112]4|5/6) |1]/2|4]5|6]3
Mfwljl vaﬂ)

* The operation of INSERTION-SORT on the array A=<5, 2, 4,
6,1, 3>.

Huo Hongwei 5

s@% Analysis of Insertion sort

INSERTION SORT

INSERTION-SORT (A) cost times
1 for J « 2 to length(A) C, n
2 do key « Alj] C, n-1
3 I/ insert A[j] into the sorted
sequence A[1..J-1] O n-1
4 1 « J — 1 C, n-1
5 while i > 0 and A[i] > key C. >t
6 do A[1+1] « A[i] Ce th(’[J
7 1«1 -1 C, zh:z(tl]_)
8 A[1+1l] « key Cg n-1

tj . the number of times the while loop test in line 5 is executed for

that value of |

Huo Hongwei 6

f@% Analysis of Insertion sort

* To compute T(n), the running time of Insertion-sort, we
sum the products of the cost and times columns,
obtaining

T(n)=c,n + c;z(n-l) +c,(n-1) + C5Zjn:2 t +Cq Zj”zz (ti-1)
o X, (=1 c(n-1)

* The best-case occurs if the array is already sorted.
T(n)=c,n + c,(n-1) + c,(n-1) + ¢ (N-1) + c4(n-1)
= (€ +Ct €y + C5+ Cg) N- (CyF €y + C5 + Cy)
— The running time is a linear function of n

Huo Hongwei 7

@% Analysis of Insertion sort

* The worst-case results if the array is in reverse sorted
order —that is, in decreasing order.

T(n)=c,n + c,(n-1) + c,(n-1) + ¢ (N(N+1)/2-1) + c,(n(N-1)/2)
+ ¢, (N(n-1)/2) + c4(n-1)
= (Cs/2 + (/2 + c,/2)Nn?
+(c +C,+CtC/2-c/l2—-c/l2+Ccg)n—(C,+Cy+CctCy)
— The running time is a quadratic function of n

Zjnzz G = Zjnzz J =n(n+1)/2 -1
YN ot-1 = zj.”zz (j-1) = n(n-1)/2

=2

Huo Hongwei 8

Worst -case and Average-case Analysis

* Note:

— Upper bound on the running time for any input
— For some algorithms, worst-case occur fairly often.
»e.g. Searching in a database for a particular piece
of information
— Average case often as bad as worst case (but not
always!)

Huo Hongwei 9

3 @Q‘ Order of Growth

* We will only consider order of growth of running time:

— We can ignore the lower-order terms, since they are
relatively insignificant for very large n.

— We can also ignore leading term’s constant
coefficients, since they are not as important for the
rate of growth in computational efficiency for very
large n.

— We just said that best case was linear in n and
worst/average case quadratic in n.

Huo Hongwei 10

T Designing Algorithms

We discussed insertion sort
— We introduced RAM model of computation
— We analyzed insertion sort in the RAM model

— We discussed how we are normally only interested in
growth of running time:

» Best-case linear in O(n), worst-case quadratic in
O(n?)
Can we design better than n? sorting algorithm?

We will do so using one of the most powerful algorithm
design techniques.

Huo Hongwei 11

X Divide-and-Conquer

® Recursive In structure

* To solve P:
— Divide P into smaller problems P, P,, ..., P,.

— Conquer by solving the (smaller) subproblems
recursively.

— Combine the solutions to P, P,, ..., P, Into the solution
for P.

Huo Hongwei 12

T Merge Sort Algorithm

* Using divide-and-conquer, we can obtain a merge-sort
algorithm

— Divide: Divide the n elements into two subsequences
of n/2 elements each.

— Conquer: Sort the two subsequences recursively.

— Combine: Merge the two sorted subsequences to
produce the sorted answer.

* Assume we have procedure MERGE(A, p, g, r) which
merges sorted A[p...q] with sorted A[g+1..r] in (r - p) time.

Huo Hongwei 13

Yo Merge-Sort (A, p, 1)

INPUT: a sequence of n numbers stored in array A
OuUTPUT: an ordered sequence of n numbers

MERGESORT

MERGE-SORT(A,p,r)

1 1f p<r

then q « L(p+r)/2]
MERGE-SORT (A, p, Q)
MERGE-SORT (A, g+1, r)
MERGE (A, p, g,)

a &~ WD

Huo Hongwei 14

MERGE(A, p, g,)
N, < gq-p+l;
n, <« r-qg;
create arrays L[1..n,+1] and R[1..n,+1]
for 1 « 1 to n,
do L[1] « Alp + 1-1]}
for J « 1 to n,
do R[J1 < Alq + J]
L[n,+1] <« o
R[N,+1] « o //set sentinel
101 « 1
11 jJ « 1
12 for K « p to r
13 do 1f L[1] < R[]j]

©OCooO~NOUILPS, WN P

14 then A[K] « L[1]
15 1«1 +1
16 else A[K] <« R[J]

17 j«j+1

Huo Hongwei

15

k@ Action of Merge Sort

/ merge \

2 7 1 3 6

/ merge \ / merge
4 3

2 S 1 2 6

merge %erge mer% %erge
2

S 2 4 I 1 3

6

initial sequence

Huo Hongwei 16

& Un.ip

N : c :
< @Analysis divide-and-conquer algorithms

® Let T(n) be the running time on a problem of size n.

— Suppose that our division of the problem yields a
subproblems, each of which is 1/b the size of the
original.

— D(n) the time to divide the problem into subproblems

— C(n) the time to combine the solutions to subproblems
Into the solution to the original problem

T(n)={ O(1) ifn<c
aT(n/b) + D(n) + C(n) otherwise

Recurrence Equation

Huo Hongwei 17

T Mergesort Analysis

* How long does mergesort take?
— Bottleneck = merging (and copying).
» merging two files of size n/2 requires n comparisons
— T(n) = comparisons to mergesort n elements.
» to make analysis cleaner, assume nis a power of 2

0(1) ifn=1,
2T(n/2) + ©(n) otherwise

Sorting both halves merging

T(n)=

* Claim. T(n)=nlg,n.
— Note: same number of comparisons for ANY file.
» even already sorted

— We'll prove several different ways to illustrate standard
techniques.

Huo Hongwei

¢Eroof by Picture of Recursion Tree

T(n) — ®(1) If n= 1.,
2T(n/2) + ¢cn otherwise

Sorting both halves merging

T(n)

Huo Hongwei 19

@e@roof by Picture of Recursion Tree

T(n) — ®(1) If n= 1.,
2T(n/2) + ¢cn otherwise

Sorting both halves merging

c(n)

/\

T(n/2) T(n/2)

Huo Hongwei 20

@e@roof by Picture of Recursion Tree

T(n) = 6(1) ifn=1.,
2T(n/2) + ¢cn otherwise

Sorting both halves merging

cn

/\

cn/2 cn/2

NN

T(n/4) T(n/4) T(n/4) T(n/4)

Huo Hongwei 21

Unj
S

@,
g Yo

cn
cn/2 cn/2
cn/4 cn/4 cn/4
C C C C C C C

Construction of recursion tree

2(n /2)
A(n 14)

2k (n / 2%)

chn

Total: cnlgn + c¢n

The fully expanded tree has Ig n +1 levels, i.e., it has height Ig n, and
each level contributes a total cost of cn. The total cost is ®(n Ig n).

Huo Hongwei

22

