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Design and Analysis of Algorithms

Dynamic Programming  
Reference:
CLRS Chapter 15

Topics:
• Elements of DP Algorithms
• Longest Common Subsequence
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Elements of DP Algorithms

• Optimal substructure(principle of optimality)
– An optimal solution to the problem contains within its 

optimal solutions to subproblems.
• Optimal substructure varies across problem domains in 

two ways:
– How many subproblems are used in an optimal 

solution to the original problem
– How many choices we have in determining which 

subproblem(s) to use in an optimal solution.



Huo Hongwei 3

Elements of DP Algorithms

• In assembly-line scheduling
– We had Θ(n) subproblems overall and only two 

choices to examine for each, yielding a Θ(n) running 
time.

– f * = min( f1[n] + x1,  f2 [n]+x2)• For matrix-chain multiplication 
– There were Θ(n2) subproblems overall, and in each we 

had at most n –1 choices, giving an O(n3) running time.

min( f1[ j-1] + a1, j ,  f2[ j-1]+t2, j-1+ a1, j ) if  j ≥ 2f1[j] =
e1+ a1,1 if  j = 1

min { m[i, k] + m[k + 1, j] + pi-1 pk pj } if i < jm[i, j] =
if i = j0

i<k<j
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Optimal substructure

• Optimal substructure does not apply to all optimization 
problems.

• Example. Given a directed graph G = (V, E), and a pair of 
vertices u and v:
– Shortest path find a path u ~> v with the fewest edges.
– Longest path find a path u ~> v with the most edges.

• Shortest path has optimal substructure.

Proof. If there’s a shorter path from u to w, call it p’1, then 
p’1p2 contains a shorter path than p1p2 from u to v, which 
contradicts the assumption.  

u w v

p

p1 p2
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Optimal substructure

• Longest path does not have optimal substructure.

• Longest path from q to t: q → r → t.
• Longest path from r to t: r → q → s → t, which is not contained in the 

longest path from q to t.
• Difference between shortest and longest path:

– Shortest path has independent subproblem (solution to one 
problem does not depend on the other).

– If (p1 = uw)(p2 = wv) is a shortest path, then p1 and p2 cannot share 
any vertex other than w.

q r

s t
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Recursive Matrix Chain

• To illustrate the overlapping-subproblem property, 
consider the CMM problem recursive algorithm.

T(n)= ∑ (T(k) + T(n- k) + 1) +1= Ω(2n) see p3461≤k<n

RECURSIVE-MATRIX-CHAIN(p,i,j)
1  if i = j
2    then return 0
3  m[i,i] ← ∞
4  for k ← i to j-1
5 do q ← RECURSIVE-MATRIX-CHAIN(p,i,k)

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j)
+ pi-1 pk pj

6        if q < m[i,j]
7 then m[i,j] ← q
8  return m[i,j]

RECURSIVE MATRIX-CHAIN MULTIPLICATION
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Elements of DP Algorithms

• Overlapping subproblems
– The recursion tree for the computation of RECURSIVE-

MATRIX-CHAIN(p, 1, 4).

3..3

1..31..1 2..4 1..2

4..42..2 3..4 2..3 1..1 2..2

3..3 4..4

2..3

2..2 3..3

1..2

1..1 2..23..32..2

1..1

3..4

3..3 4..4

1..4

4..4
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Techniques for DP Algorithms

• Reconstructing an optimal solution 
– We often store which choice we made in each 

subproblem in a table.
» In assembly-line scheduling, we store in li[j] the 

station preceding Si,j. Reconstructing the 
predecessor stations takes only O(1) time per 
station, even without the li[j].

» For matrix-chain multiplication, we maintain the s[i, 
j] table, after filling in the table m[i, j] which contains 
optimal subproblems costs. The table s[i, j] saves us 
a significant amount of work when reconstructing 
…. Why ?
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Top Down Recursive VS Bottom Up DP

• Bottom-up dynamic programming algorithm
– More efficient

» regular pattern of table access can be exploited to 
reduce time or space

» take advantage of the overlapping-subproblems 
property.

• Top-down recursive algorithm
» repeatedly resolve each subproblem each time it 

appears in the recursion tree.
» recursion overhead
» Only work when the total number of subproblems in 

the recursion is small.
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Memoization

• A variation of dynamic programming
– offers the efficiency of the usual dynamic 

programming approach while maintaining a top-down 
strategy.

• Ideas: 
– to memoization the natural, but inefficient , recursive 

algorithm.
– A memoized recursive algorithm maintains an entry in 

a table for the solution to each subproblem. 
– Initially contain a special value to indicate that the 

entry has yet to be filled in. when the subproblem is 
first encountered during the execution of the recursive 
algorithm, its solution is computed and then stored in 
the table. 
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Memoized ver. of Recursive-Matrix-Chain

MEMOIZED-MATRIX-CHAIN(p)
1 n ← length[p]-1
2  for i ← 1 to n
3 do for j ← i to n
4 do m[i,j] ← ∞
5  return LOOKUP-CHAIN(p,1,n)

MEMOIZED MATRIX-CHAIN

LOOKUP-CHAIN(p,i,j)
1  if m[i,j] < ∞
2    then return m[i,j]
3  if i=j
4    then m[i,j] ← 0
5    else for k ← i to j-1
6 do q ← LOOKUP-CHAIN(p,i,k)

+LOOKUP-CHAIN(p,k+1,j)+ pi-1 pk pj
7                if q < m[i,j]
8 then m[i,j] ← q
9  return m[i,j]

LOOKUP-CHAIN
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Top Down Memoi. VS Bottom Up DP

• Bottom-up dynamic programming
– all subproblems must be solved
– regular pattern of table access can be exploited to 

reduce time or space
• Top-down + memoization

– solve only subproblems that are definitely required
– recursion overhead

• Both methods solve the matrix-chain multiplication 
problem in O(n3) and take advantage of the overlapping-
subproblems property.



Huo Hongwei 13

Longest Common Subsequence

• In biological applications, we often want to compare the 
DNA of two (or more) different organisms.  

• A strand of DNA consists of a string of molecules called 
bases, where the possible bases are adenine, guanine, 
cytosine, and thymine (A, G, C, T).

• Comparison of two DNA strings
S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S2=GTCGTTCGGAATGCCGTTGCTCTGTAAA
S3=GTCGTCGGAAGCCGCCGAA
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Longest Common Subsequence

• Similarity can be defined in different ways:
– Two DNA strands are similar if one is a substring of 

the other.
– Two strands are similar if the number of changes 

needed to turn one into the other is small.
– There is a third strand S3 in which the bases in S3

appear in each of S1 and S2; these bases must appear 
in the same order, but not necessarily consecutively.  
The longer the strand S3 we can find, the more similar 
S1 and S2 are. (we focus on this)
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Dynamic programming for LCS

• Longest common subsequence(LCS)
– Given two sequences x[1..m] and y[1..n], find a longest 

subsequence common to then both.
“a” not “the”

x: A    B    C    B    D    A    B

y: B    D    C    A    B    A
BCBA 
LCS(x, y) =

functional notation, 
but not a function
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Brute-force LCS algorithm

• Check every subsequence of x[1..m] to see if it is also a 
subsequence of y[1..n].

• Analysis
– Checking = O(n) time per subsequence.
– 2m subsequences of x (each bit-vector of length m

determines a distinct subsequence of x).
– Worst-case running time = O(n2m)

= exponential time
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Towards a better algorithm

• Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

• Notation: Denote the length of a sequence s by |s|.

• Strategy: Consider prefixes of x and y.
– Define c[i, j] = |LCS(x[1..i]), y[1..j])|.
– Then, c[m, n] = |LCS(x, y)|.
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Optimal substructure

• Notation. Xi = <x1, . . . , xi>.
• Theorem. Let Z = <z1, z2, … , zk> be any LCS of X = <x1, x2, …

, xm> and Y = <y1, y2, … , yn> .
– If xm = yn

» then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1

– If xm ≠ yn

» then zk ≠ xm implies that Z is an LCS of Xm-1 and Y
– If xm ≠ yn

» then zk ≠ yn implies that Z is an LCS of X and Yn-1

• Proof.
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Recursive formulation

• Theorem.

Proof. Case x[i] = y[j]:

Let z[1..k] = LCS(x[1..i]), y[1..j]), where c[i, j] = k. Then z[k] =
x[i]), or else z could be extended. Thus, z[1..k-1] = is CS of 
x[1..i-1] and y[1..j-1].

max (c[i, j–1], c[i –1, j]) otherwise
c[i, j] =

c[i –1, j–1] + 1 if i, j > 0 and xi = yj

1 2 j= n
y: …

1 2 i m
x: …
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Proof(continued)

• Claim: z[1..k-1] = LCS(x[1..i-1]), y[1..j-1]).
Suppose w is a longer CS of x[1..i-1]) and y[1..j-1], that 
is, |w| > k –1. Then, cut and paste: w||z[k] (w
concatenated with z[k]) is a common subsequence of 
x[1..i]) and y[1..j] with |w||z[k]| > k. Contradiction, proving 
the claim. 

Thus, c[i –1, j–1] = k-1, which implies that c[i, j] = c[i –1, j–1]
+1.

Other cases are similar.   
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Dynamic-programming hallmark#1

If z = LCS(x, y), then any prefix of z is an 
LCS of a prefix of x and a prefix of y.

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.
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Recursive algorithm for LCS

• Worst-case: x[i] ≠ y[j], in which case the algorithm 
evaluates two subproblems, each with only one 
parameter decremented.

LCS(x,y,i,j)
1 if x[i] = y[j]

2     then c[i,j] ← LCS(x,y,i-1,j-1)+1
3 else c[i,j] ← max{LCS(x,y,i-1,j),
4 LCS(x,y,i,j-1)}

RECURSIVE  for  LCS
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Recursive tree

• Lots of repeated subproblems.
• Height = m + n ⇒ work potentially exponential, but we’re 

solving subproblems already solved.
• Instead of re-computing, store in a table.

same 
subproblem

3,4

3,3

2,31,4 2,3 3,2

2,4

1,3 2,2 1,3 2,2

m+n

m = 3, n = 4:
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Dynamic-programming hallmark#2

The number of distinct LCS subproblems 
for two strings m and n is only mn.

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated  many times.



Huo Hongwei 25

Dynamic programming algorithm
• LCS-LENGTH(X,Y)
{ m = length[X];
n = length[Y];

for i=1 to m

c[i,0]=0;

for j=0 to n
c[0,j]=0;

for i=1 to m
for j=1 to n
if xi=yj {c[i,j]=c[i-1,j-1]+1; b[i,j]=“ ”;}

else if c[i-1,j]≥c[i,j-1] 
{c[i,j]=c[i-1,j]; b[i,j]=“↑”;}

else {c[i,j]=c[i,j-1]; b[i,j]=“←”;}
return c and b

}

LCS-LENGTH(X,Y)
1  m ← length[X]
2  n ← length[Y]
3  for i ← 1 to m
4     do c[i,0] ← 0
5  for j ← 0 to n
6     do c[0,j] ← 0
7  for i ← 1 to m
8     do for j ← 1 to n
9          do if x[i] = y[j]
10              then c[i,j] ← c[i-1,j-1]+1 
11                    b[i,j] ←“ ”
12               else if c[i-1,j] ≥ c[i,j-1]
13                       then c[i,j] ← c[i-1,j]
14                            b[i,j] ← “↑”
15                       else c[i,j] ← c[i,j-1]
16                            b[i,j] ← “←”
17 return c and b

COMPUTING the LENGTH of LCS
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Computing the length of an LCS

• The sequences are X = <A, B, C, B, D, A, B> and Y = <B, D, 
C, A, B, A>

0 0 0 0 0 0 0

0 0 0 1 1 10

0 1 1 2 211

0 1 1 2 222

0 1 1 2 2 33

30 1 2 2 2 3

40 1 2 2 3 4

0 1 2 2 3 3 4

B
0

xi

yii
j

C B A

B

C

B

A

D A

A

D

B

1 2 3 4 5 6

0
1

2

3

4

5

6

7

Compute c[i, j] row by 
row for i = 1..m, j = 1..n.

Time = Θ(mn). 

Reconstruct LCS by 
tracing backwards.

Space = Θ(mn). 
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Constructing an LCS

• The procedure takes time O(m + n).

PRINT-LCS(b,X,i,j)
1 if i = 0 or j = 0
2   then return
3 if b[i,j] = “ ”
4   then PRINT-LCS(b,X,i-1,j-1)
5     print x[i]

6 else if b[i,j] = “↑”
7    then PRINT-LCS(b,X,i-1,j)
8 else PRINT-LCS(b,X,i,j-1)

CONSTRUCTING  an  LCS
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Memoization algorithm

• Memoization: After computing a solution to a 
subproblem, store it in a table. Subsequence calls check 
the table to avoid redoing work.

MEMOI-LCS(X,Y,i,j)
1 if c[i,j] = NIL
2   then if x[i] = y[j]
3          then c[i,j] ← MEMOI-LCS(X,Y,i-1,j-1)+1
4          else c[i,j] ← max{MEMOI-LCS(X,Y,i-1,j),
5 MEMOI-LCS(X,Y,i,j-1)}
6 return c[i,j] 

COMPUTING  the LENGTH  of  LCS

same 
as 
before
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Memoization algorithm

• Assuming that initially ∀i, j: c[i, j] = NIL, to get the length 
of LCS of X and Y, MEMOI-LCS(X, Y, length[X], length[Y])
should be called.

• Time = Θ(mn) = constant work per table entry.
• Space = Θ(mn).

MEMOIZED-LCS(X,Y)
1  for i ← 1 to m
2 do for j ← i to n
3 do c[i,j] ← NIL
4  return MEMOI-LCS(X,Y,m,n)

COMPUTING  the LENGTH  of  LCS


