
Huo Hongwei 1

Design and Analysis of Algorithms

Dynamic Programming
Reference:
CLRS Chapter 15

Topics:
• Elements of DP Algorithms
• Longest Common Subsequence

Huo Hongwei 2

Elements of DP Algorithms

• Optimal substructure(principle of optimality)
– An optimal solution to the problem contains within its

optimal solutions to subproblems.
• Optimal substructure varies across problem domains in

two ways:
– How many subproblems are used in an optimal

solution to the original problem
– How many choices we have in determining which

subproblem(s) to use in an optimal solution.

Huo Hongwei 3

Elements of DP Algorithms

• In assembly-line scheduling
– We had Θ(n) subproblems overall and only two

choices to examine for each, yielding a Θ(n) running
time.

– f * = min(f1[n] + x1, f2 [n]+x2)• For matrix-chain multiplication
– There were Θ(n2) subproblems overall, and in each we

had at most n –1 choices, giving an O(n3) running time.

min(f1[j-1] + a1, j , f2[j-1]+t2, j-1+ a1, j) if j ≥ 2f1[j] =
e1+ a1,1 if j = 1

min { m[i, k] + m[k + 1, j] + pi-1 pk pj } if i < jm[i, j] =
if i = j0

i<k<j

Huo Hongwei 4

Optimal substructure

• Optimal substructure does not apply to all optimization
problems.

• Example. Given a directed graph G = (V, E), and a pair of
vertices u and v:
– Shortest path find a path u ~> v with the fewest edges.
– Longest path find a path u ~> v with the most edges.

• Shortest path has optimal substructure.

Proof. If there’s a shorter path from u to w, call it p’1, then
p’1p2 contains a shorter path than p1p2 from u to v, which
contradicts the assumption.

u w v

p

p1 p2

Huo Hongwei 5

Optimal substructure

• Longest path does not have optimal substructure.

• Longest path from q to t: q → r → t.
• Longest path from r to t: r → q → s → t, which is not contained in the

longest path from q to t.
• Difference between shortest and longest path:

– Shortest path has independent subproblem (solution to one
problem does not depend on the other).

– If (p1 = uw)(p2 = wv) is a shortest path, then p1 and p2 cannot share
any vertex other than w.

q r

s t

Huo Hongwei 6

Recursive Matrix Chain

• To illustrate the overlapping-subproblem property,
consider the CMM problem recursive algorithm.

T(n)= ∑ (T(k) + T(n- k) + 1) +1= Ω(2n) see p3461≤k<n

RECURSIVE-MATRIX-CHAIN(p,i,j)
1 if i = j
2 then return 0
3 m[i,i] ← ∞
4 for k ← i to j-1
5 do q ← RECURSIVE-MATRIX-CHAIN(p,i,k)

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j)
+ pi-1 pk pj

6 if q < m[i,j]
7 then m[i,j] ← q
8 return m[i,j]

RECURSIVE MATRIX-CHAIN MULTIPLICATION

Huo Hongwei 7

Elements of DP Algorithms

• Overlapping subproblems
– The recursion tree for the computation of RECURSIVE-

MATRIX-CHAIN(p, 1, 4).

3..3

1..31..1 2..4 1..2

4..42..2 3..4 2..3 1..1 2..2

3..3 4..4

2..3

2..2 3..3

1..2

1..1 2..23..32..2

1..1

3..4

3..3 4..4

1..4

4..4

Huo Hongwei 8

Techniques for DP Algorithms

• Reconstructing an optimal solution
– We often store which choice we made in each

subproblem in a table.
» In assembly-line scheduling, we store in li[j] the

station preceding Si,j. Reconstructing the
predecessor stations takes only O(1) time per
station, even without the li[j].

» For matrix-chain multiplication, we maintain the s[i,
j] table, after filling in the table m[i, j] which contains
optimal subproblems costs. The table s[i, j] saves us
a significant amount of work when reconstructing
…. Why ?

Huo Hongwei 9

Top Down Recursive VS Bottom Up DP

• Bottom-up dynamic programming algorithm
– More efficient

» regular pattern of table access can be exploited to
reduce time or space

» take advantage of the overlapping-subproblems
property.

• Top-down recursive algorithm
» repeatedly resolve each subproblem each time it

appears in the recursion tree.
» recursion overhead
» Only work when the total number of subproblems in

the recursion is small.

Huo Hongwei 10

Memoization

• A variation of dynamic programming
– offers the efficiency of the usual dynamic

programming approach while maintaining a top-down
strategy.

• Ideas:
– to memoization the natural, but inefficient , recursive

algorithm.
– A memoized recursive algorithm maintains an entry in

a table for the solution to each subproblem.
– Initially contain a special value to indicate that the

entry has yet to be filled in. when the subproblem is
first encountered during the execution of the recursive
algorithm, its solution is computed and then stored in
the table.

Huo Hongwei 11

Memoized ver. of Recursive-Matrix-Chain

MEMOIZED-MATRIX-CHAIN(p)
1 n ← length[p]-1
2 for i ← 1 to n
3 do for j ← i to n
4 do m[i,j] ← ∞
5 return LOOKUP-CHAIN(p,1,n)

MEMOIZED MATRIX-CHAIN

LOOKUP-CHAIN(p,i,j)
1 if m[i,j] < ∞
2 then return m[i,j]
3 if i=j
4 then m[i,j] ← 0
5 else for k ← i to j-1
6 do q ← LOOKUP-CHAIN(p,i,k)

+LOOKUP-CHAIN(p,k+1,j)+ pi-1 pk pj
7 if q < m[i,j]
8 then m[i,j] ← q
9 return m[i,j]

LOOKUP-CHAIN

Huo Hongwei 12

Top Down Memoi. VS Bottom Up DP

• Bottom-up dynamic programming
– all subproblems must be solved
– regular pattern of table access can be exploited to

reduce time or space
• Top-down + memoization

– solve only subproblems that are definitely required
– recursion overhead

• Both methods solve the matrix-chain multiplication
problem in O(n3) and take advantage of the overlapping-
subproblems property.

Huo Hongwei 13

Longest Common Subsequence

• In biological applications, we often want to compare the
DNA of two (or more) different organisms.

• A strand of DNA consists of a string of molecules called
bases, where the possible bases are adenine, guanine,
cytosine, and thymine (A, G, C, T).

• Comparison of two DNA strings
S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S2=GTCGTTCGGAATGCCGTTGCTCTGTAAA
S3=GTCGTCGGAAGCCGCCGAA

Huo Hongwei 14

Longest Common Subsequence

• Similarity can be defined in different ways:
– Two DNA strands are similar if one is a substring of

the other.
– Two strands are similar if the number of changes

needed to turn one into the other is small.
– There is a third strand S3 in which the bases in S3

appear in each of S1 and S2; these bases must appear
in the same order, but not necessarily consecutively.
The longer the strand S3 we can find, the more similar
S1 and S2 are. (we focus on this)

Huo Hongwei 15

Dynamic programming for LCS

• Longest common subsequence(LCS)
– Given two sequences x[1..m] and y[1..n], find a longest

subsequence common to then both.
“a” not “the”

x: A B C B D A B

y: B D C A B A
BCBA
LCS(x, y) =

functional notation,
but not a function

Huo Hongwei 16

Brute-force LCS algorithm

• Check every subsequence of x[1..m] to see if it is also a
subsequence of y[1..n].

• Analysis
– Checking = O(n) time per subsequence.
– 2m subsequences of x (each bit-vector of length m

determines a distinct subsequence of x).
– Worst-case running time = O(n2m)

= exponential time

Huo Hongwei 17

Towards a better algorithm

• Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

• Notation: Denote the length of a sequence s by |s|.

• Strategy: Consider prefixes of x and y.
– Define c[i, j] = |LCS(x[1..i]), y[1..j])|.
– Then, c[m, n] = |LCS(x, y)|.

Huo Hongwei 18

Optimal substructure

• Notation. Xi = <x1, . . . , xi>.
• Theorem. Let Z = <z1, z2, … , zk> be any LCS of X = <x1, x2, …

, xm> and Y = <y1, y2, … , yn> .
– If xm = yn

» then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1

– If xm ≠ yn

» then zk ≠ xm implies that Z is an LCS of Xm-1 and Y
– If xm ≠ yn

» then zk ≠ yn implies that Z is an LCS of X and Yn-1

• Proof.

Huo Hongwei 19

Recursive formulation

• Theorem.

Proof. Case x[i] = y[j]:

Let z[1..k] = LCS(x[1..i]), y[1..j]), where c[i, j] = k. Then z[k] =
x[i]), or else z could be extended. Thus, z[1..k-1] = is CS of
x[1..i-1] and y[1..j-1].

max (c[i, j–1], c[i –1, j]) otherwise
c[i, j] =

c[i –1, j–1] + 1 if i, j > 0 and xi = yj

1 2 j= n
y: …

1 2 i m
x: …

Huo Hongwei 20

Proof(continued)

• Claim: z[1..k-1] = LCS(x[1..i-1]), y[1..j-1]).
Suppose w is a longer CS of x[1..i-1]) and y[1..j-1], that
is, |w| > k –1. Then, cut and paste: w||z[k] (w
concatenated with z[k]) is a common subsequence of
x[1..i]) and y[1..j] with |w||z[k]| > k. Contradiction, proving
the claim.

Thus, c[i –1, j–1] = k-1, which implies that c[i, j] = c[i –1, j–1]
+1.

Other cases are similar.

Huo Hongwei 21

Dynamic-programming hallmark#1

If z = LCS(x, y), then any prefix of z is an
LCS of a prefix of x and a prefix of y.

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

Huo Hongwei 22

Recursive algorithm for LCS

• Worst-case: x[i] ≠ y[j], in which case the algorithm
evaluates two subproblems, each with only one
parameter decremented.

LCS(x,y,i,j)
1 if x[i] = y[j]

2 then c[i,j] ← LCS(x,y,i-1,j-1)+1
3 else c[i,j] ← max{LCS(x,y,i-1,j),
4 LCS(x,y,i,j-1)}

RECURSIVE for LCS

Huo Hongwei 23

Recursive tree

• Lots of repeated subproblems.
• Height = m + n ⇒ work potentially exponential, but we’re

solving subproblems already solved.
• Instead of re-computing, store in a table.

same
subproblem

3,4

3,3

2,31,4 2,3 3,2

2,4

1,3 2,2 1,3 2,2

m+n

m = 3, n = 4:

Huo Hongwei 24

Dynamic-programming hallmark#2

The number of distinct LCS subproblems
for two strings m and n is only mn.

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

Huo Hongwei 25

Dynamic programming algorithm
• LCS-LENGTH(X,Y)
{ m = length[X];
n = length[Y];

for i=1 to m

c[i,0]=0;

for j=0 to n
c[0,j]=0;

for i=1 to m
for j=1 to n
if xi=yj {c[i,j]=c[i-1,j-1]+1; b[i,j]=“ ”;}

else if c[i-1,j]≥c[i,j-1]
{c[i,j]=c[i-1,j]; b[i,j]=“↑”;}

else {c[i,j]=c[i,j-1]; b[i,j]=“←”;}
return c and b

}

LCS-LENGTH(X,Y)
1 m ← length[X]
2 n ← length[Y]
3 for i ← 1 to m
4 do c[i,0] ← 0
5 for j ← 0 to n
6 do c[0,j] ← 0
7 for i ← 1 to m
8 do for j ← 1 to n
9 do if x[i] = y[j]
10 then c[i,j] ← c[i-1,j-1]+1
11 b[i,j] ←“ ”
12 else if c[i-1,j] ≥ c[i,j-1]
13 then c[i,j] ← c[i-1,j]
14 b[i,j] ← “↑”
15 else c[i,j] ← c[i,j-1]
16 b[i,j] ← “←”
17 return c and b

COMPUTING the LENGTH of LCS

Huo Hongwei 26

Computing the length of an LCS

• The sequences are X = <A, B, C, B, D, A, B> and Y = <B, D,
C, A, B, A>

0 0 0 0 0 0 0

0 0 0 1 1 10

0 1 1 2 211

0 1 1 2 222

0 1 1 2 2 33

30 1 2 2 2 3

40 1 2 2 3 4

0 1 2 2 3 3 4

B
0

xi

yii
j

C B A

B

C

B

A

D A

A

D

B

1 2 3 4 5 6

0
1

2

3

4

5

6

7

Compute c[i, j] row by
row for i = 1..m, j = 1..n.

Time = Θ(mn).

Reconstruct LCS by
tracing backwards.

Space = Θ(mn).

Huo Hongwei 27

Constructing an LCS

• The procedure takes time O(m + n).

PRINT-LCS(b,X,i,j)
1 if i = 0 or j = 0
2 then return
3 if b[i,j] = “ ”
4 then PRINT-LCS(b,X,i-1,j-1)
5 print x[i]

6 else if b[i,j] = “↑”
7 then PRINT-LCS(b,X,i-1,j)
8 else PRINT-LCS(b,X,i,j-1)

CONSTRUCTING an LCS

Huo Hongwei 28

Memoization algorithm

• Memoization: After computing a solution to a
subproblem, store it in a table. Subsequence calls check
the table to avoid redoing work.

MEMOI-LCS(X,Y,i,j)
1 if c[i,j] = NIL
2 then if x[i] = y[j]
3 then c[i,j] ← MEMOI-LCS(X,Y,i-1,j-1)+1
4 else c[i,j] ← max{MEMOI-LCS(X,Y,i-1,j),
5 MEMOI-LCS(X,Y,i,j-1)}
6 return c[i,j]

COMPUTING the LENGTH of LCS

same
as
before

Huo Hongwei 29

Memoization algorithm

• Assuming that initially ∀i, j: c[i, j] = NIL, to get the length
of LCS of X and Y, MEMOI-LCS(X, Y, length[X], length[Y])
should be called.

• Time = Θ(mn) = constant work per table entry.
• Space = Θ(mn).

MEMOIZED-LCS(X,Y)
1 for i ← 1 to m
2 do for j ← i to n
3 do c[i,j] ← NIL
4 return MEMOI-LCS(X,Y,m,n)

COMPUTING the LENGTH of LCS

