> Unj”e

s?’glféesign and Analysis of Algorithms

Dynamic Programming

Reference:
CLRS Chapter 15

Topics:

 Dynamic Programming (DP) paradigm
« Assembly-Line Scheduling

* Matrix-Chain Multiplication

Huo Hongwei 1

T Optimization Problems

A design technique, like divide-and-conquer.
Works bottom-up rather then top-down.
Useful for optimization problems.

Four-step method.:
1. Characterize the structure of the optimal solution.
2. Recursively define the value of the optimal solution.

3. Compute the value of the solution in a bottom-up
fashion.

4. Construct the optimal solution using the computed
iInformation.

Huo Hongwei 2

3 @ Manufacturing problem

* Assembly-Line Scheduling
— Two parallel assembly lines in a factory, lines 1 and 2
— Each line has n stations §,...S ,,1=1,2

— For each |, S, ; does the same thing as S, ;, but it may
take a different amount of assembly time 3, ;

— Transferring away from line I after stage j costs t; , |
=1,2and =12, ...,n-1

— Also entry time e and exit time x; at beginning and end

Huo Hongwei 3

station S, ; S, 3,3 S4 S, n1

n stations on each line: S;,,...,S,,and S,,, ...,
a; : time required on line i at station |.

Entry and exit times: e, e, X;, X..

Transfer times: t; ;.

Goal: Find the fastest path through the factory.
(Trying all possibilities is not tractable.)

Huo Hongwei

@\

completed
auto
exists

T Optimal Substructure

* Properties of the optimal solution: consider the fastest way of exiting
station S, ;.
— if | =1, then there’s only one way,
— if j > 2, then in order to exit station |, we must have
» 1. either gone through station S, ;, or
» 2. gone through station S, ; and transferred to S, ;.
— In the first case, we must have used the fastest way of exiting S, ;.

L
— In the second case, we must have used the fastest way of exiting

S
* Key observation. An optimal solution to the problem (fastest way
through S,;) contains within it an optimal solution to subproblems

(fastest way through S, or S, ;). [Optimal substructure]
®* |t’s easy to write a recursive solution to the problem now.

Huo Hongwei

T Recursive Formula

* fi[J] =fastest way to exit station S ;.
e f* =fastest way to exit the assembly-line.

* Clearly f* =min(f,[n] +x,, f,[n]+Xx,) and our observations
about the optimal solution lead to

[l =e+a,
ol =e+ay,
* and for | > 2,
Bl =min(fy[)-1 +a;, f[]-1]+t,;,+a;;)
Bl =min(t,[) -1 +a,;, f,[)-1]+t ,+a,;)
®* To construct the optimal solution we keep track of |[j],

the line (1 or 2) whose station - 1is used in the fastest
way through S ; and [, the line whose station n is used.

Huo Hongwei 6

ﬁeg Recursive Formula

* Letf[j] denote the fastest possible time (which is the values of
optimal solution, optimal substructure) to get the chassis through S,

* Have the following formulas:
. et a if =1
U= min(f 01 +ay), £l j-2+, ;) if 22

. e+ a,, if =1
foll] = ’
21 = min(f,[J-1] +a,;, Ty J-1]+t 1 tay;) 1T =2

* Total time:
f* =min(fy[n] +x;, f,[n]+x)

Huo Hongwei 7

N Unj”e

< @nning time of the recursive solution

® r:(J) =running time to compute fj].
* Then, fori=1,2,
()2 y(j - 1) +ry(j - 1) with ry(1) =r,(1) = 1.

* Claim.r,(j) > 2L
* Proof. By induction on |. For the basis, we have r,(1) = 1.
By the induction hypothesis,

()2 22+ 22 =21,

* This works because f[]] depends only on f,[J-1] and f] }-
1]. (Start by computing f,[1] and f,[1].) It’'s easy to see that
we compute fis linear time.

Huo Hongwei 8

PN A better computation

* We can do much better if we compute the f,[j] values in a
different order from the recursive way.

— By computing the f[j] values in order of increasing
station numbers | —left to right in Fig.15.2(b)

— It’s running time is linear in n, that is, ©(n).

] 12 3 45 6

f,[119(18/20/24/32|35| {+ _ag
f,[j]112]16|22] 25/30|37

Huo Hongwei 9

1 f,[1] <« e, + a4
2 F,[1] < e, + ay 4
3 for J « 2 to n

4 do 1f f[J-1]+a, ;
5 then f,[]]
6 1,[i]
7 else T[]l
8 1,[i]
9

10 then T,[j1
11 1,[i]
12 else T,[]j1
13 1,[i]

16 I~ =1

18 I* =2

ASSEMBLY-LINE SCHEDULING ALGORITHM
| FASTEST-WAY(a,t,e,x,n)

< RL,0O-11+t, ; ,+a;
“— fl[j—1]+a1,j

«~ 1
e
e

it f,[)-1]+a, ; < f,0-1] +t, ; ,+a, ;

<« fz[j—1]+a2,j

«— 2

<« fl[j—1]+t1,j_1+a2,j
«— 1

14 1f f[n] + x; £ £,[n] + X,
15 then ¥+ = f,[n] + X,

17 else * = f,[n] + X,

Huo Hongwei

10

> Unj”e

< @ % Construct an optimal solution

* To keep track of how to construct an optimal solution,

— Define |[j] to be the line number 1 or 2, whose station |
—1lis used in a fastest way through station S, for i =1,
2and =23, ...,n.

— Define |* to be the line whose station nis used in a
fastest way through the entire factory.

Huo Hongwei 11

‘&‘ Unj N

g‘% Construct an optimal solution

station S, S 3

N completed
auto
/' exigts

station S, S, SHA S, S s S

j 123456 j 23456
f,[j119118/2024/32|35| tx —ag l.[j][1]2]2][1]2|«_q
f,[j]112/16|22/25/30|37 [j]lL12[1]2]2

Huo Hongwei 12

,é;&‘

@ % Constructing the fastest way

K]

Ungy,

PRINT STATION

)

PRINT-STATIONS(l,n)

11« |"

2 print“line” 1 “,station” n

3 for J « n downto 2

4 do 1 « |,[J]

print“line” 1 “, station” j-1

In the example described above, PRINT-STATIONS would produce

the output
line 1, station 6
line 2, station 5
line 2, station 4
line 1, station 3
line 2, station 2
linel, station 1

Huo Hongwei

RECURSIVE PRINT STATION

RECURSIVE-PRINT-STATIONS(l,1,})

1 1f jJj = 0 then return

2 RECURSIVE-PRINT-STATIONS(,!| . [J1,.3-1)
3 print“line” 1 “,station” j

Note: To print out all the stations,
call RECURSIVE-PRINT-STATIONS(l,I*,n)

13

Uni,,
,&‘&\ Q

3 @ Matrix-chain multiplication

* Goal. Given a sequence of matrices A, A,, ... , A, find an
optimal order of multiplication.

* Multiplying two matrices of dimension px gand qxr,
takes time which is dominated by the number of scalar
multiplication, which is par.

* Generally. A has dimension p,_; x p; and we’d like to
minimize the total number of scalar multiplications.

Huo Hongwei 14

T Example
° A= A A, Ag A,
10 x 20 2050 50x1 1 x 100

° Order1 A x (A, x(A3xA,))
Cost(A; xA,) =50 x 1 x 100
Cost(A, x (A; x A,)) =20 x 50 x 100
Cost(A; x (A, x (A3 xA,))) =10 x 20 x 100
Total Cost = 125000
* Order 2 (A x (A, xAy)) xA,
Cost(A, xA3;) =20x50x1
Cost(A; x (A, xA;))=10x20x1
Cost((A; x (A, xA3)) xA,)=10x1x100
Total Cost = 2200

Huo Hongwei

15

> Unjt’e&

ﬁ“’ég Brute force method

* What if we check all possible ways of multiplying? How many ways
of parenthesizing are there?

* P(n): number of way of parenthesizing. Then P(1) =1 and for n> 2,

(1 If n=1
P — < n-1
(n) Y PP(-K) if n>2
\ k=1
* Fact 1 n
P(n) = 2n+1(A J: Q(4v/ns)

* These numbers are called Catalan numbers. There are about 65
combinatorial interpretations in Stanley, Enumerative Combinatorics,
Vol. 2.

Huo Hongwei 16

T Optimal substructure

* Notation. A ;represents A, ... A;.

* Any parenthesization of A ; where | <] must split into two
products of the form A, ,and A, ; .

* Optimal substructure. If the optimal parenthesization
splits the product as A; , and A, ;, then
parenthesizations within A , and A,,; ; must each be
optimal.

—We apply cut-and-paste argument to prove the
optimal substructure property.

Huo Hongwei 17

X Unj”e

s?@&n optimal parenthesization’s structure

* |If the optimal parenthesization of A; x A, x ... x A, IS split
between A, and A, ,, then

optimal parenthesization (optimal parenthesization

for for Ay x ... x A,
Al x A, x ..o x A, optimal parenthesization
for A x ... x A,

\

® The only uncertainty is the value of k

— Try all possible values of k. The one that returns the
minimum is the right choice.

Huo Hongwei 18

ﬁ@g A recursive solution

* Define mli, j] as the minimum number of scalar

multiplications needed to compute the matrix product A, ..

(We want the value of m[1, n].)
— If i =], there is nothing to do, so that m[i, i] = 0.

— Otherwise, suppose that the optimal parenthesization
split the product as A; , and A, ;.

* (AL A, A; A As Ag)

m[1,3] m[4,6]
(AL Ay Az) (A A As)
Po X P3 P3 X Pe

m[1,3] + m[4’6] + p0p3p6

Huo Hongwei 19

)

-*é‘% A recursive formulation

* We would like to find the split that uses the minimum
number of multiplications. Thus,

(0 if i=]
m[I’J]:{min_{m[i,k]+m[k+1,j]+pi-1pkpj} ifi<]

I <k<j

— m[i, k] = optimal cost for A; x ... x A,
— m[k+1, j] = optimal cost for A,y x ... x A,
PePcP = costfor (A x ... x A) X (Apg X ... x A))

* To obtain the actual parenthesization, keep track of the
optimal k for each pair (i, }) as dI, j].

Huo Hongwei 20

Un1 Ve,

@‘% Computing the Optimal Costs

* min{mi, k] + m[k +1, |] +p,; pp; }

I <k<j

T(n) > 1+1§k (T(k) + T(n-Kk) + 1) =Q(2"), for n >1

— The recursive solution takes exponential time. (Easy proof by

induction.) 1 2 3 4 5 6
1/ 0

®* Instead, use adynamic program to fill in a table m[i]} o

— Start by setting m[i,i]=0fori=1,...,n. 3 0

— Then compute m[1, 2], m2,3],....m[n-1,n]. 4 0

— Then m[1, 3], M[2,4],..., mn-2,n],... 5 0

— ...soontill we can compute m[1, n]. 6| |- o
* Theinput asequence p=<p, Py --- , P>, We Use an auxiliary table g1

.. n, 1..n] that records which index of k achieved the optimal cost in
computing m[i, j].

Huo Hongwei 21

> Uni”e

= @Matrix-Chain Multiplication DP Algo.

MATRIX-CHAIN MULTIPLICATION DP

MATRIX-CHAIN-ORDER(p)

1 n « length[p]-1

2 for 1 « 1 ton

3 do m[i,1] « O

4 for | « 2 ton

) do for 1 « 1 to n-l+1

6 do J « 1 + 1 -1

7 mii,jJ] « «

8 for K « 1 to j-1

9 do q « mLi,K] + m[k+1,5] + p;i_; Pe P;
10 1T g < m[i,]j]

11 then m[1,jJ] <« ¢

12 s[i,J] « K

13 return m and s

© O(nS)

Huo Hongwei 22

matrix dimension

w

> > > > >
o o1 A~

Huo Hongwei

30x 35
35 x 15
15x 5
5x 10
10 x 20
20 x 25

23

Un1 Ve,

@‘% Construct an Optimal Solution

* The final matrix multiplication in computing A, , optimally
IS A g1 Aq1n+1.n- SIL 91, n]] determines the last matrix
multiplication in computing A, g4,y and §91, n]+1, n]
determines the last matrix multiplication in computing

As[l, nj+1.n-

PRINT-OPTIMAL-PARENS

PRINT-OPTIMAL-PARENS(S, i,j)
it i=j
then print “A”,
else print “(”
PRINT-OPTIMAL-PARENS(s, i,s[i,J])
PRINT-OPTIMAL-PARENS(s,s[i,j]1+1,]j)
print “)”

o 01~ WNPRP

Huo Hongwei 24

