
Huo Hongwei 1

Design and Analysis of Algorithms

Dynamic Programming
Reference:
CLRS Chapter 15

Topics:
• Dynamic Programming (DP) paradigm
• Assembly-Line Scheduling
• Matrix-Chain Multiplication

Huo Hongwei 2

Optimization Problems

• A design technique, like divide-and-conquer.
• Works bottom-up rather then top-down.
• Useful for optimization problems.

• Four-step method:
1. Characterize the structure of the optimal solution.
2. Recursively define the value of the optimal solution.
3. Compute the value of the solution in a bottom-up

fashion.
4. Construct the optimal solution using the computed

information.

Huo Hongwei 3

Manufacturing problem

• Assembly-Line Scheduling
– Two parallel assembly lines in a factory, lines 1 and 2
– Each line has n stations Si,1…Si,n , i =1, 2
– For each j, S1, j does the same thing as S2, j , but it may

take a different amount of assembly time ai, j

– Transferring away from line i after stage j costs ti, j , i
=1, 2 and j =1, 2, … , n-1

– Also entry time ei and exit time xi at beginning and end

Huo Hongwei 4

Assembly Lines

• n stations on each line: S1,1, . . . , S1,n and S2,1, . . . , S2,n.
• ai,j : time required on line i at station j.
• Entry and exit times: e1, e2, x1, x2.
• Transfer times: ti,j.
• Goal: Find the fastest path through the factory.
• (Trying all possibilities is not tractable.)

x2
e2

a1,1

t2,n-1

a1,2 a1,3 a1,4 a1,na1,n-1

a2,1 a2,2 a2,3 a2,4 a2,na2,n-1

t1,1

t2,1

t1,2

t2,2

t1,3

t2,3

e1 x1t1,n-1chassis
enters

station S1,1 S1,2 S1,3 S1,4 S1, n-1 S1,n

completed
auto

exists
…

station S2,1 S2,2 S2,3 S2,4 S2 ,n-1 S2,n

assembly line 1

assembly line 2

Huo Hongwei 5

Optimal Substructure

• Properties of the optimal solution: consider the fastest way of exiting
station S1,j.
– if j = 1, then there’s only one way,
– if j ≥ 2, then in order to exit station j, we must have

» 1. either gone through station S1,j-1, or
» 2. gone through station S2,j-1 and transferred to S1,j.

– In the first case, we must have used the fastest way of exiting S1,j-

1.
– In the second case, we must have used the fastest way of exiting

S2,j-1.
• Key observation. An optimal solution to the problem (fastest way

through S1,j) contains within it an optimal solution to subproblems
(fastest way through S1,j-1 or S2,j-1). [Optimal substructure]

• It’s easy to write a recursive solution to the problem now.

Huo Hongwei 6

Recursive Formula

• fi[j] = fastest way to exit station Si, j.
• f * = fastest way to exit the assembly-line.
• Clearly f * = min(f1[n] + x1, f2 [n]+x2) and our observations

about the optimal solution lead to
f1[1] = e1 + a1,1
f2[1] = e2 + a2,1

• and for j ≥ 2,
f1[j] = min(f1[j -1] + a1, j , f2[j -1] + t2, j-1 + a1, j)
f2[j] = min(f2[j -1] + a2, j , f1[j -1]+ t1, j-1 + a2, j)

• To construct the optimal solution we keep track of li[j],
the line (1 or 2) whose station j - 1 is used in the fastest
way through Si, j and l, the line whose station n is used.

Huo Hongwei 7

Recursive Formula

• Let fi[j] denote the fastest possible time (which is the values of
optimal solution, optimal substructure) to get the chassis through Si, j

• Have the following formulas:
f1[1] = e1 + a1,1 if j = 1
f1[j] = min(f1[j-1] + a1, j , f2[j-1]+t2, j-1+ a1, j) if j ≥ 2

Using symmetric reasoning, we can get the fastest way through station S2, j

f2[1] = e2 + a2,1 if j = 1
f2[j] = min(f2[j-1] + a2, j , f1[j-1]+t1, j-1+ a2, j) if j ≥ 2

• Total time:
f * = min(f1[n] + x1, f2 [n]+x2)

min(f1[j-1] + a1, j , f2[j-1]+t2, j-1+ a1, j) if j ≥ 2f1[j] =
e1+ a1,1 if j = 1

min(f2[j-1] + a2, j , f1[j-1]+t1, j-1+ a2, j) if j ≥ 2f2[j] =
e2+ a2,1 if j = 1

Huo Hongwei 8

Running time of the recursive solution

• ri (j) = running time to compute fi[j].
• Then, for i = 1, 2,

ri (j) ≥ r1(j - 1) + r2(j - 1) with r1(1) = r2(1) = 1.

• Claim. ri (j) ≥ 2j-1.
• Proof. By induction on j. For the basis, we have ri(1) = 1.

By the induction hypothesis,
ri (j) ≥ 2j-2 + 2j-2 = 2j-1.

• This works because fi[j] depends only on f1[j-1] and f2[j-
1]. (Start by computing f1[1] and f2[1].) It’s easy to see that
we compute f is linear time.

Huo Hongwei 9

A better computation

• We can do much better if we compute the fi[j] values in a
different order from the recursive way.
– By computing the fi[j] values in order of increasing

station numbers j – left to right in Fig.15.2(b)
– It’s running time is linear in n, that is, Θ(n).

9 18 20 24 32 35
12 16 22 25 30 37

1 2 3 4 5 6j
f1[j]
f2[j]

f * =38

Huo Hongwei 10

FASTEST-WAY(a,t,e,x,n)
1 f1[1] ← e1 + a1,1
2 f2[1] ← e2 + a2,1
3 for j ← 2 to n
4 do if f1[j-1]+a1,j ≤ f2[j-1]+t2,j-1+a1,j
5 then f1[j] ← f1[j-1]+a1,j
6 l1[j] ← 1
7 else f1[j] ← f2[j-1]+t2,j-1+a1,j
8 l1[j] ← 2
9 if f2[j-1]+a2,j ≤ f1[j-1] +t1,j-1+a2,j
10 then f2[j] ← f2[j-1]+a2,j
11 l2[j] ← 2
12 else f2[j] ← f1[j-1]+t1,j-1+a2,j
13 l2[j] ← 1
14 if f1[n] + x1 ≤ f2[n] + x2
15 then f* = f1[n] + x1
16 l* = 1
17 else f* = f2[n] + x2
18 l* = 2

ASSEMBLY-LINE SCHEDULING ALGORITHM

Huo Hongwei 11

Construct an optimal solution

• To keep track of how to construct an optimal solution,
– Define li[j] to be the line number 1 or 2, whose station j

–1 is used in a fastest way through station Si,j, for i = 1,
2 and j = 2, 3, …, n.

– Define l* to be the line whose station n is used in a
fastest way through the entire factory.

Huo Hongwei 12

Construct an optimal solution

S2 ,5

S1, 5 S1,6

S2,6

completed
auto

exists
chassis
enters

station S1,1 S1,2 S1,3 S1,4

station S2,1 S2,2 S2,3 S2,4

assembly line 1

assembly line 2

24

7

1

9 3 4 48

8 5 6 4 75

2

2

3

1

1

2

2 34

2

3

l * =11 2 1 1 2
1 2 1 2 2

2 3 4 5 6j
l1[j]
l2[j]

9 18 20 24 32 35
12 16 22 25 30 37

1 2 3 4 5 6j
f1[j]
f2[j]

f * =38

Huo Hongwei 13

Constructing the fastest way

• In the example described above, PRINT-STATIONS would produce
the output
line 1, station 6
line 2, station 5
line 2, station 4
line 1, station 3
line 2, station 2
line1, station 1

PRINT-STATIONS(l,n)
1 i ← l *
2 print “line” i “,station” n
3 for j ← n downto 2
4 do i ← l i[j]
5 print “line” i “, station” j-1

PRINT STATION

RECURSIVE-PRINT-STATIONS(l,i,j)
1 if j = 0 then return
2 RECURSIVE-PRINT-STATIONS(l,l i[j],j-1)
3 print “line” i “, station” j

Note: To print out all the stations,
call RECURSIVE-PRINT-STATIONS(l,l*,n)

RECURSIVE PRINT STATION

Huo Hongwei 14

Matrix-chain multiplication

• Goal. Given a sequence of matrices A1, A2, … , An, find an
optimal order of multiplication.

• Multiplying two matrices of dimension p × q and q × r,
takes time which is dominated by the number of scalar
multiplication, which is pqr.

• Generally. Ai has dimension pi-1 × pi and we’d like to
minimize the total number of scalar multiplications.

Huo Hongwei 15

Example

• A = A1 A2 A3 A4
10 × 20 20 × 50 50 × 1 1 × 100

• Order 1 A1 × (A2 × (A3 × A4))
Cost(A3 × A4) = 50 × 1 × 100
Cost(A2 × (A3 × A4)) = 20 × 50 × 100
Cost(A1 × (A2 × (A3 × A4))) = 10 × 20 × 100

Total Cost = 125000
• Order 2 (A1 × (A2 × A3)) × A4

Cost(A2 × A3) = 20 × 50 × 1
Cost(A1 × (A2 × A3)) = 10 × 20 × 1
Cost((A1 × (A2 × A3)) × A4) = 10 × 1 × 100

Total Cost = 2200

Huo Hongwei 16

Brute force method

• What if we check all possible ways of multiplying? How many ways
of parenthesizing are there?

• P(n): number of way of parenthesizing. Then P(1) = 1 and for n ≥ 2,

• Fact
P(n) = = Ω(4n/n1.5)

• These numbers are called Catalan numbers. There are about 65
combinatorial interpretations in Stanley, Enumerative Combinatorics,
Vol. 2.

if n ≥ 2∑ P(k)P(n- k)
P(n) =

if n = 11

k =1

n-1









+ n

n
n

2
12

1

Huo Hongwei 17

Optimal substructure

• Notation. Ai..j represents Ai … Aj.
• Any parenthesization of Ai..j where i < j must split into two

products of the form Ai..k and Ak+1..j .

• Optimal substructure. If the optimal parenthesization
splits the product as Ai..k and Ak+1..j, then
parenthesizations within Ai..k and Ak+1..j must each be
optimal.
– We apply cut-and-paste argument to prove the

optimal substructure property.

Huo Hongwei 18

An optimal parenthesization’s structure

• If the optimal parenthesization of A1 × A2 × … × An is split
between Ak and Ak+1, then

optimal parenthesization optimal parenthesization
for for A1 × … × Ak

A1 × A2 × … × An optimal parenthesization
for Ak+1 × … × An

• The only uncertainty is the value of k
– Try all possible values of k. The one that returns the

minimum is the right choice.

Huo Hongwei 19

A recursive solution

• Define m[i, j] as the minimum number of scalar
multiplications needed to compute the matrix product Ai..j.
(We want the value of m[1, n].)
– If i = j, there is nothing to do, so that m[i, i] = 0.
– Otherwise, suppose that the optimal parenthesization

split the product as Ai..k and Ak+1..j.

• (A1 A2 A3 A4 A5 A6)
m[1,3] m[4,6]

(A1 A2 A3) (A4 A5 A6)
p0 × p3 p3 × p6

m[1,3] + m[4,6] + p0p3p6

Huo Hongwei 20

A recursive formulation

• We would like to find the split that uses the minimum
number of multiplications. Thus,

– m[i, k] = optimal cost for Ai × … × Ak

– m[k+1, j] = optimal cost for Ak+1 × … × Aj

– pi-1 pk pj = cost for (Ai × … × Ak) × (Ak+1 × … × Aj)

• To obtain the actual parenthesization, keep track of the
optimal k for each pair (i, j) as s[i, j].

min { m[i, k] + m[k + 1, j] + pi-1 pk pj } if i < jm[i, j] =
if i = j0

i ≤k<j

Huo Hongwei 21

Computing the Optimal Costs

• min { m[i, k] + m[k +1, j] + pi-1 pk pj }
i ≤k<j

T(n) ≥ 1+ ∑ (T(k) + T(n- k) + 1) = Ω(2n), for n >1
1 ≤k<n

– The recursive solution takes exponential time. (Easy proof by
induction.)

• Instead, use a dynamic program to fill in a table m[i, j]:
– Start by setting m[i, i] = 0 for i = 1, . . . , n.
– Then compute m[1, 2], m[2, 3], . . ., m[n - 1, n].
– Then m[1, 3], m[2, 4], . . . , m[n - 2, n], . . .
– . . . so on till we can compute m[1, n].

• The input a sequence p = < p0, p1, … , pn>, we use an auxiliary table s[1
.. n, 1.. n] that records which index of k achieved the optimal cost in
computing m[i, j].

0
0
0
0
0
0

0
0
0
0
0

0
0
0
0

0
0
0

0
0 06

5
4
3
2
1

1 2 3 4 5 6

Huo Hongwei 22

Matrix-Chain Multiplication DP Algo.

• O(n3)

MATRIX-CHAIN-ORDER(p)
1 n ← length[p]-1
2 for i ← 1 to n
3 do m[i,i] ← 0
4 for l ← 2 to n
5 do for i ← 1 to n–l +1
6 do j ← i + l – 1
7 m[i,j] ← ∞
8 for k ← i to j-1
9 do q ← m[i,k] + m[k+1,j] + pi-1 pk pj
10 if q < m[i,j]
11 then m[i,j] ← q
12 s[i,j] ← k
13 return m and s

MATRIX-CHAIN MULTIPLICATION DP

Huo Hongwei 23

Example: DP for CMM

• The optimal solution is ((A1(A2A3))((A4A5)A6)

15,125

10,500
5,375

3,500

5,000

0

11,875
9,375

7,875
15,750

0

7,125
2,500

1,000

0

4,375
750

0
2,625

00

m

A1 A2 A3 A4 A5 A6

j i

1
2

3
4

5
6

3
2

1

6
5

4

3

3
3

5

5

3
3

1
1

3
3

4

3
32

s

j i

2
3

4
5

6

3
2

1

5
4

matrix dimension
A1 30 × 35
A2 35 × 15
A3 15 × 5
A4 5 × 10
A5 10 × 20
A6 20 × 25

Huo Hongwei 24

Construct an Optimal Solution

• The final matrix multiplication in computing A1.. n optimally
is A1..s[1, n] As[1, n]+1.. n . s[1, s[1, n]] determines the last matrix
multiplication in computing A1..s[1,n] and s[s[1, n]+1, n]
determines the last matrix multiplication in computing
As[1, n]+1.. n .

PRINT-OPTIMAL-PARENS(s,i,j)
1 if i=j
2 then print “A”i
3 else print “(”
4 PRINT-OPTIMAL-PARENS(s,i,s[i,j])
5 PRINT-OPTIMAL-PARENS(s,s[i,j]+1,j)
6 print “) ”

PRINT-OPTIMAL-PARENS

