Besign and Analysis of Algorithms

Dynamic Programming

Reference:
CLRS Chapter 15

Topics:

- Dynamic Programming (DP) paradigm
- Assembly-Line Scheduling
- Matrix-Chain Multiplication

Optimization Problems

- A design technique, like divide-and-conquer.
- Works bottom-up rather then top-down.
- Useful for optimization problems.
- Four-step method:

1. Characterize the structure of the optimal solution.
2. Recursively define the value of the optimal solution.
3. Compute the value of the solution in a bottom-up fashion.
4. Construct the optimal solution using the computed information.

Manufacturing problem

- Assembly-Line Scheduling
- Two parallel assembly lines in a factory, lines 1 and 2
- Each line has n stations $S_{i, 1} \ldots S_{i, n}, i=1,2$
- For each $j, S_{1, j}$ does the same thing as $S_{2, j}$, but it may take a different amount of assembly time $a_{i, j}$
- Transferring away from line i after stage j costs $t_{i, j}, i$ $=1,2$ and $j=1,2, \ldots, n-1$
- Also entry time e_{i} and exit time x_{i} at beginning and end

Assembly Lines

- n stations on each line: $S_{1,1}, \ldots, S_{1, n}$ and $S_{2,1}, \ldots, S_{2, n}$.
- $a_{i, j}$: time required on line i at station j.
- Entry and exit times: $e_{1}, e_{2}, x_{1}, x_{2}$.
- Transfer times: $t_{i, j}$.
- Goal: Find the fastest path through the factory.
- (Trying all possibilities is not tractable.)

Optimal Substructure

- Properties of the optimal solution: consider the fastest way of exiting station $S_{1, j}$.
- if $j=1$, then there's only one way,
- if $j \geq 2$, then in order to exit station j, we must have
» 1. either gone through station $S_{1, j-1}$, or
" 2. gone through station $S_{2, j-1}$ and transferred to $S_{1, j^{*}}$
- In the first case, we must have used the fastest way of exiting $S_{1, j,}$

1 -

- In the second case, we must have used the fastest way of exiting $S_{2, j-1}$.
- Key observation. An optimal solution to the problem (fastest way through $S_{1, j}$) contains within it an optimal solution to subproblems (fastest way through $S_{1, j-1}$ or $S_{2, j-1}$). [Optimal substructure]
- It's easy to write a recursive solution to the problem now.

Recursive Formula

- $f_{i}[j]=$ fastest way to exit station $S_{i, j^{*}}$
- f * $=$ fastest way to exit the assembly-line.
- Clearly $f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)$ and our observations about the optimal solution lead to

$$
\begin{gathered}
f_{1}[1]=e_{1}+a_{1,1} \\
f_{2}[1]=e_{2}+a_{2,1}
\end{gathered}
$$

- and for $j \geq 2$,

$$
\begin{aligned}
f_{1}[j] & =\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right) \\
f_{2}[j] & =\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)
\end{aligned}
$$

- To construct the optimal solution we keep track of $l_{i}[j]$, the line (1 or 2) whose station \boldsymbol{j} - 1 is used in the fastest way through $S_{i, j}$ and l, the line whose station n is used.

Recursive Formula

- Let $f_{i}[j]$ denote the fastest possible time (which is the values of optimal solution, optimal substructure) to get the chassis through $S_{i, j}$
- Have the following formulas:

$$
f_{1}[j]=\left\{\begin{array}{lr}
e_{1}+a_{1,1} & \text { if } j=1 \\
\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right) & \text { if } j \geq 2
\end{array}\right.
$$

Using symmetric reasoning, we can get the fastest way through station $S_{2, j}$

$$
f_{2}[j]= \begin{cases}e_{2}+a_{2,1} & \text { if } j=1 \\ \min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right) & \text { if } j \geq 2\end{cases}
$$

- Total time:

$$
f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)
$$

Ruinning time of the recursive solution

- $r_{i}(j)=$ running time to compute $f_{i}[j]$.
- Then, for $i=1,2$,
$r_{i}(j) \geq r_{1}(j-1)+r_{2}(j-1)$ with $r_{1}(1)=r_{2}(1)=1$.
- Claim. $r_{i}(j) \geq 2^{j-1}$.
- Proof. By induction on j. For the basis, we have $r_{i}(1)=1$. By the induction hypothesis,

$$
r_{i}(j) \geq 2^{j-2}+2^{j-2}=2^{j-1}
$$

- This works because $f_{i}[j]$ depends only on $f_{1}[j-1]$ and $f_{2}[j$ 1]. (Start by computing $f_{1}[1]$ and $f_{2}[1]$.) It's easy to see that we compute f is linear time.

A better computation

- We can do much better if we compute the $f_{i}[j]$ values in a different order from the recursive way.
- By computing the $f_{i}[j]$ values in order of increasing station numbers j - left to right in Fig.15.2(b)
- It's running time is linear in n, that is, $\Theta(n)$.

$$
\begin{array}{c|c|c|c|c|c|}
j & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\
\hline
\end{array}
$$

ASSEMBLY-LINE SCHEDULING ALGORITHM

```
FASTEST-WAY ( \(a, t, e, x, n\) )
\(1 \mathrm{f}_{1}[1] \leftarrow \mathbf{e}_{1}+\mathrm{a}_{1,1}\)
\(2 f_{2}[1] \leftarrow e_{2}+a_{2,1}\)
3 for \(j \leftarrow 2\) to \(n\)
4 do if \(f_{1}[j-1]+a_{1, j} \leq f_{2}[j-1]+t_{2, j-1}+a_{1, j}\)
\(5 \quad\) then \(f_{1}[j] \leftarrow f_{1}[j-1]+a_{1, j}\)
                                \(l_{1}[j] \leftarrow 1\)
        else \(f_{1}[j] \leftarrow f_{2}[j-1]+t_{2, j-1}+a_{1, j}\)
        \(l_{1}[j] \leftarrow 2\)
9 if \(f_{2}[j-1]+a_{2, j} \leq f_{1}[j-1]+t_{1, j-1}+a_{2, j}\)
        then \(f_{2}[j] \leftarrow \mathbf{f}_{2}[j-1]+a_{2, j}\)
        \(l_{2}[j] \leftarrow 2\)
        else \(f_{2}[j] \leftarrow f_{1}[j-1]+t_{1, j-1}+a_{2, j}\)
        \(l_{2}[j] \leftarrow 1\)
14 if \(f_{1}[n]+x_{1} \leq f_{2}[n]+x_{2}\)
15 then \(f *=f_{1}[n]+x_{1}\)
\(16 \quad 1 *=1\)
17 else \(f *=f_{2}[n]+x_{2}\)
\(18 \quad 1 *=2\)
```


Construct an optimal solution

- To keep track of how to construct an optimal solution,
- Define $l_{i}[j]$ to be the line number 1 or 2 , whose station j -1 is used in a fastest way through station $S_{i, j}$, for $i=1$, 2 and $j=2,3, \ldots, n$.
- Define l^{*} to be the line whose station n is used in a fastest way through the entire factory.

Construct an optimal solution

Constructing the fastest way

PRINT STATION

```
PRINT-STATIONS (l,n)
1 i \leftarrow | *
2 print "line" i ",station" n
3 for j \leftarrow n downto 2
4 do i }\leftarrow\mp@subsup{l}{i}{[j]
5 print "line" i ",station' j-1
```

- In the example described above, PRINT-STATIONS would produce the output
line 1, station 6
line 2, station 5
line 2, station 4
line 1, station 3
line 2, station 2
line1, station 1

RECURSIVE PRINT STATION

```
RECURSIVE-PRINT-STATIONS (l,i,j)
1 if j = O then return
2 RECURSIVE-PRINT-STATIONS (l, li[j],j-1)
3 print "line" i ",station" j
Note: To print out all the stations,
    call RECURSIVE-PRINT-STATIONS (l,l*,n)
```


Matrix-chain multiplication

- Goal. Given a sequence of matrices $A_{1}, A_{2}, \ldots, A_{n}$, find an optimal order of multiplication.
- Multiplying two matrices of dimension $p \times q$ and $q \times r$, takes time which is dominated by the number of scalar multiplication, which is pqr.
- Generally. A_{i} has dimension $p_{i-1} \times p_{i}$ and we'd like to minimize the total number of scalar multiplications.

Example

- $A=A_{1}$
$A_{2} \quad A_{3}$
A_{4} $10 \times 20 \quad 20 \times 50 \quad 50 \times 1 \quad 1 \times 100$
- Order $1 A_{1} \times\left(A_{2} \times\left(A_{3} \times A_{4}\right)\right)$

$$
\begin{aligned}
& \operatorname{Cost}\left(A_{3} \times A_{4}\right)=50 \times 1 \times 100 \\
& \operatorname{Cost}\left(A_{2} \times\left(A_{3} \times A_{4}\right)\right)=20 \times 50 \times 100 \\
& \operatorname{Cost}\left(A_{1} \times\left(A_{2} \times\left(A_{3} \times A_{4}\right)\right)\right)=10 \times 20 \times 100
\end{aligned}
$$

Total Cost $=125000$

- Order $2\left(A_{1} \times\left(A_{2} \times A_{3}\right)\right) \times A_{4}$
$\operatorname{Cost}\left(A_{2} \times A_{3}\right)=20 \times 50 \times 1$
$\operatorname{Cost}\left(A_{1} \times\left(A_{2} \times A_{3}\right)\right)=10 \times 20 \times 1$
$\operatorname{Cost}\left(\left(A_{1} \times\left(A_{2} \times A_{3}\right)\right) \times A_{4}\right)=10 \times 1 \times 100$
Total Cost $=2200$

Brute force method

- What if we check all possible ways of multiplying? How many ways of parenthesizing are there?
- $P(n)$: number of way of parenthesizing. Then $P(1)=1$ and for $n \geq 2$,

$$
P(n)= \begin{cases}1 & \text { if } n=1 \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text { if } n \geq 2\end{cases}
$$

- Fact

$$
\boldsymbol{P}(n)=\frac{1}{2 n+1}\binom{2 n}{n}=\Omega\left(4^{n} / \boldsymbol{n}^{1.5}\right)
$$

- These numbers are called Catalan numbers. There are about 65 combinatorial interpretations in Stanley, Enumerative Combinatorics, Vol. 2.

Optimal substructure

- Notation. $A_{i . . j}$ represents $A_{i} \ldots A_{j}$.
- Any parenthesization of $A_{i . . j}$ where $i<j$ must split into two products of the form $A_{i . . k}$ and $A_{k+1 . j}$.
- Optimal substructure. If the optimal parenthesization splits the product as $A_{i . . k}$ and $A_{k+1 . j}$, then parenthesizations within $A_{i . . k}$ and $A_{k+1 . j}$ must each be optimal.
- We apply cut-and-paste argument to prove the optimal substructure property.

An optimal parenthesization's structure

- If the optimal parenthesization of $A_{1} \times A_{2} \times \ldots \times A_{n}$ is split between A_{k} and A_{k+1}, then
optimal parenthesization
for
$A_{1} \times A_{2} \times \ldots \times A_{n}$
optimal parenthesization for $A_{1} \times \ldots \times A_{k}$
optimal parenthesization for $A_{k+1} \times \ldots \times A_{n}$
- The only uncertainty is the value of k
- Try all possible values of k. The one that returns the minimum is the right choice.

A recursive solution

- Define $m[i, j]$ as the minimum number of scalar multiplications needed to compute the matrix product $A_{i . j j^{*}}$ (We want the value of $m[1, n]$.)
- If $i=j$, there is nothing to do, so that $m[i, i]=0$.
- Otherwise, suppose that the optimal parenthesization split the product as $A_{i . . k}$ and $A_{k+1 . j j^{*}}$
- ($\left.\begin{array}{llllll}A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_{6}\end{array}\right)$

$$
\left.\begin{array}{cccc}
m[1,3] & & m[4,6] \\
\left(\begin{array}{ccc}
A_{1} & A_{2} & A_{3}
\end{array}\right) & \left(A_{4}\right. & A_{5} & A_{6}
\end{array}\right)
$$

A recursive formulation

- We would like to find the split that uses the minimum number of multiplications. Thus,

$$
m[i, j]= \begin{cases}0 & \text { if } i=j \\ \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j\end{cases}
$$

- $m[i, k]=$ optimal cost for $A_{i} \times \ldots \times A_{k}$
$-m[k+1, j]=$ optimal cost for $A_{k+1} \times \ldots \times A_{j}$
$-p_{i-1} p_{k} p_{j}=$ cost for $\left(A_{i} \times \ldots \times A_{k}\right) \times\left(A_{k+1} \times \ldots \times A_{j}\right)$
- To obtain the actual parenthesization, keep track of the optimal k for each pair (i, j) as $s[i, j]$.

Computing the Optimal Costs

- $\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}$

$$
T(n) \geq 1+\sum_{1 \leq k<n}(T(k)+T(n-k)+1)=\Omega\left(2^{n}\right), \text { for } n>1
$$

- The recursive solution takes exponential time. (Easy proof by induction.)

- The input a sequence $p=\left\langle p_{0}, p_{1}, \ldots, p_{n}\right\rangle$, we use an auxiliary table $s[1$.. $n, 1 . . n$] that records which index of k achieved the optimal cost in computing $m[i, j]$.

Matrix-Chain Multiplication DP Algo.

- $\mathrm{O}\left(n^{3}\right)$

Example: DP for CMM

- The optimal solution is $\left(\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right) s\right.$

Construct an Optimal Solution

- The final matrix multiplication in computing $A_{1 . . n}$ optimally is $A_{1 . . s[1, n]} A_{s[1, n]+1 . . n}$. $s[1, s[1, n]]$ determines the last matrix multiplication in computing $A_{1 . s[1, n]}$ and $s[s[1, n]+1, n]$ determines the last matrix multiplication in computing $A_{s[1, n]+1 . . n}$.

PRINT-OPTIMAL-PARENS
PRINT-OPTIMAL-PARENS (s, i, j)
1 if $i=j$
2 then print " $A "_{i}$
3 else print "("
4 PRINT-OPTIMAL-PARENS (s,i,s[i,j])
5 PRINT-OPTIMAL-PARENS ($s, s[i, j]+1, j)$
6 print ")"

