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Abstract. Motivated by the revelations of Edward Snowden, post-Snowden cryp-
tography has become a prominent research direction in recent years. In Eurocrypt
2015, Mironov and Stephens-Davidowitz proposed a novel concept named cryp-
tographic reverse firewall (CRF) which can resist exfiltration of secret informa-
tion from an arbitrarily compromised machine. In this work, we continue this line
of research and present generic CRF constructions for several widely used cryp-
tographic protocols based on a new notion named malleable smooth projective
hash function. Our contributions can be summarized as follows.

– We introduce the notion of malleable smooth projective hash function, which
is an extension of the smooth projective hash function (SPHF) introduced by
Cramer and Shoup (Eurocrypt’02) with the new properties of key malleabil-
ity and element rerandomizability. We demonstrate the feasibility of our new
notion using graded rings proposed by Benhamouda et al. (Crypto’13), and
present an instantiation from the k-linear assumption.

– We show how to generically construct CRFs via malleable SPHFs in a mod-
ular way for some widely used cryptographic protocols. Specifically, we pro-
pose generic constructions of CRFs for the unkeyed message-transmission
protocol and the oblivious signature-based envelope (OSBE) protocol of
Blazy, Pointcheval and Vergnaud (TCC’12). We also present a new mal-
leable SPHF from the linear encryption of valid signatures for instantiating
the OSBE protocol with CRFs.

– We further study the two-pass oblivious transfer (OT) protocol and show
that the malleable SPHF does not suffice for its CRF constructions. We then
develop a new OT framework from graded rings and show how to con-
struct OT-CRFs by modifying the malleable SPHF framework. This new
framework encompasses the DDH-based OT-CRF constructions proposed
by Mironov and Stephens-Davidowitz (Eurocrypt’15), and yields a new con-
struction under the k-linear assumption.

Keywords: Cryptographic reverse firewall, malleable smooth projective hash func-
tion, oblivious signature-based envelope, oblivious transfer.



1 Introduction

In the last couple of years, the revelations of Edward Snowden [22, 18] showed that the
intelligence agencies successfully gained access to a massive collection of user sensi-
tive data by undermining security mechanisms via a broad range of techniques, e.g.,
by subverting cryptographic protocols and actively deploying security weaknesses in
the implementations of cryptosystems. The disclosures of Snowden have reawakened
the cryptographic research community to the seriousness of the undermining of cryp-
tographic solutions and standards [23, 8, 7, 6, 13, 24], and led to a new research direc-
tion known as post-Snowden cryptography. The research problem could be generally
summarized by the following question: “How to achieve meaningful security for cryp-
tographic protocols in the presence of an adversary that may arbitrarily tamper with the
victim’s machine?”

Cryptographic Reverse Firewall. Motivated by the aforementioned question, Mironov
and Stephens-Davidowitz [21] recently proposed a novel notion named cryptographic
reverse firewall (CRF) aiming at providing strong security against inside vulnerabilities
such as security backdoors. Informally, a CRF is a machine that sits at the boundary be-
tween the user’s computer and the outside world. It plays as the role of an autonomous
intermediary that intercepts and modifies the machine’s incoming and outgoing mes-
sages to provide security protections even if the user’s machine is compromised. A
cryptographic protocol equipped with a correctly implemented CRF can guarantee that
its security is preserved even if it is run on a compromised machine and the CRF could
also resist exfiltration of secret information from the tampered machine. More specifi-
cally, Mironov and Stephens-Davidowitz defined three desirable properties for an hon-
estly implemented CRF:

- Functionality Maintaining. A CRF should not break the functionality (i.e., correct-
ness) of an honestly implemented protocol.

- Security Preservation. A protocol with a CRF should provide the same security
guarantee as the properly implemented protocol regardless of how the underlying
machine behaves.

- Exfiltration Resistance. A CRF should resist exfiltration so that a compromised
implementation cannot leak any information to the outside world.
The above three properties deserve further interpretation. A good cryptographic pro-

tocol should be functional and secure regardless of the existence of the CRF when the
protocol implementation is correct. That is, the user does not rely solely on the CRF
for security but only requires it to preserve security. In particular, the CRF shares no
secret with the protocol party, and thus even if the CRF is not functioning, an honestly
implemented protocol would remain secure. This is one significant difference between
the CRF and the prior work. On the other hand, when the protocol implementation is
tampered but the CRF is implemented correctly, the CRF could provide the user with
the desired security guarantee. In short, a protocol with CRF satisfies the security re-
quirement as long as either the protocol implementation is not tampered or the CRF is
implemented correctly.

The CRF could be viewed as a modern take on a line of work that received consider-
able attention in the 80s and 90s [10, 28]. It provides a general framework for building
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cryptographic schemes that remain secure when run on a compromised machine. The
use of rerandomization to “sanitize” messages by the CRF is seemingly similar to the
prior work, e.g., divertible protocols [10] and collusion-free protocols [19, 3]. As sum-
marized by Mironov and Stephens-Davidowitz in [21], the CRF is a generalization of
these prior notions and models.
Motivations of This Work. In this work, we further explore the construction of CRFs.
Unlike prior work that relies on concrete techniques and thus appears complicated, our
goal is to develop generic paradigms for constructing CRFs in a conceptually simple
and modular way. From a theoretical point of view, a generic paradigm can modularly
explain concrete CRF constructions and their underlying design principles. From a prac-
tical point of view, a generic CRF construction based on abstract building blocks enables
more concrete instantiations to be built for better security and/or efficiency. In fact, our
work (partially) answers an open question raised by Mironov and Stephens-Davidowitz
in [21]. Particularly, they stated that “the “holy grail” would be a full characterization
of functionalities and security properties for which reverse firewall exists”.

1.1 Overview of Our Contributions

We introduce the notion of malleable smooth projective hash function, which is a new
extension of the conventional SPHF. A malleable SPHF is a special SPHF which is of
additional properties, namely projection key malleablility and element re-randomizability.
Using this notion, we obtain generic CRF constructions for some widely used crypto-
graphic protocols. Before we describe our results, we present an overview of the mal-
leable smooth projective hash function.

Malleable Smooth Projective Hash Function. We first briefly recall the classical defi-
nition of the smooth projective hash function (SPHF) (also known as hash proof system)
introduced by Cramer and Shoup [12].
CLASSICAL DEFINITION. An SPHF requires the existence of a domain X and an un-
derlying NP language L, where elements of L form a subset of X , i.e., L ⊂ X . The
key property of SPHF is that the hash value of any element C ∈ L can be computed
by using either a secret hashing key hk, or a public projection key hp with the witness
to the fact that C ∈ L. However, the projection key gives almost no information about
the hash value of any element in X \ L. Moreover, we say that the subset membership
problem is hard if the distribution of L is computationally indistinguishable from X \L.
NEW PROPERTIES. In addition to the above properties of a regular SPHF, we define
two new properties for a malleable SPHF as follows.

- Projection Key Malleability. This property captures that,
• Key Indistinguishability: any projection key hp can be re-randomized to an

independent projection key h̃p using a uniformly chosen randomness r̃; and
• Projection Consistency: the hash value difference of any element due to the

above key re-randomization is computable using r̃.
- Element Re-randomizability. This property captures that,
• Element Indistinguishability: any element C can be re-randomized to another

independent element C̃ using a uniformly chosen witness w̃; and
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• Rerandomization Consistency: the hash value difference between C and C̃ un-
der the same hashing key is computable using the associated projection key
with w̃; and

• Membership Preservation: the re-randomization of an element does not change
its membership (i.e., C̃ ∈ L ⇐⇒ C ∈ L).

A SIMPLE EXAMPLE. We provide a very simple example of our new notion. We remark
that such a simple example is just for a quick understanding of the properties captured
by our malleable SPHF. The construction would be more complicated from other as-
sumptions. The basic SPHF below is exactly the one of Cramer and Shoup for the DDH
language in [12]. Let g1, g2 be two generators of a cyclic group G of prime order p. Let

X = G1×2 and L = {(gr1, gr2) ∈ X | r ∈ Zp}. The hashing key is hk = (α1, α2)
$← Z2

p

and the associated projection key is hp = gα1
1 gα2

2 . For any element C = (u1, u2) ∈ X ,
the hash value under hk is hv = uα1

1 uα2
2 .

- Choose r̃ = (β1, β2)
$← Z2

p, and compute h̃p = hp · (gβ1

1 gβ2

2 ) = gα1+β1

1 gα2+β2

2 . h̃p
is independent from hp and its associated hashing key is h̃k = (α1 + β1, α2 + β2).
The hash value of element C under h̃k is h̃v = uα1+β1

1 uα2+β2

2 = hv · uβ1

1 u
β2

2 , and
hence the hash value difference is computable using r̃.

- Choose w̃ = η
$← Zp and compute C̃ = (u1g

η
1 , u2g

η
2 ). The hash value of C̃ under

hk is h̃v = (u1g
η
1 )
α1(u2g

η
2 )
α2 = hv · (hp)η , and hence the hash value difference is

computable using w̃ (with hp). One can easily verify that C̃ ∈ L ⇐⇒ C ∈ L.

MORE CONSTRUCTIONS OF MALLEABLE SPHFS. To illustrate the feasibility of our
new notion, we propose a generic construction of malleable SPHFs based on graded
rings [9], which could be viewed as a common formalization for cyclic groups, bilinear
groups, and multilinear groups. We rigorously prove that under some conditions, graded
ring implies malleable SPHFs. Particularly, we rely on Katz and Vaikuntanathan [17]
type SPHFs (KV-SPHF) where the projection key is independent from the element, as
in many cases the linkability between the projection key and the element would make it
difficult for a CRF to resist exfiltration and meanwhile maintain functionality. We will
make this point clearer in our CRF constructions. We then provide a malleable SPHF
instantiation of our generic framework from the k-linear assumption.

Generic CRF Constructions via Malleable SPHFs. We show how to generically con-
struct CRFs via malleable SPHFs for some widely used protocols. Essentially, our CRF
constructions rely on the key indistinguishability and the element indistinguishability
properties of the underlying malleable SPHF for the security preservation and exfiltra-
tion resistance, and rely on the projection consistency, rerandomization consistency and
membership preservation of the malleable SPHF for the functionality maintaining.

MESSAGE TRANSMISSION PROTOCOL. We first show as a warm up CRF construc-
tions for the unkeyed message-transmission protocol. That is, both the sender and re-
ceiver have neither a shared secret key nor each other’s public key. We remark that our
framework can be seen as a generic construction of semantically secure public-key en-
cryption scheme (with trusted setup) that is both key malleable and re-randomizable
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defined in [14], and hence provides a more intuitive way to build two-round message-
transmission protocols with CRFs. The idea we illustrate via this simple protocol acts
as a steppingstone toward other more complicated protocols.
OBLIVIOUS SIGNATURE-BASED ENVELOPE PROTOCOL. We also study the CRF con-
structions for another useful protocol, namely Oblivious Signature-Based Envelope
(OSBE), which was proposed by Li, Du and Boneh [20] and later enhanced by Blazy,
Pointcheval and Vergnaud [11]. An OSBE protocol allows a user Alice to send an en-
velope, which encapsulates her private message, to another user Bob in such a way that
Bob will be able to recover the private message if and only if Bob has possessed a cre-
dential, e.g., a signature on an agreed-upon message from the certification authority.
OSBE has been found useful in a growing number of protocols and applications such
as Secret Handshakes [5] and Password-Based Authenticated Key-Exchange [15]. We
show that the SPHF-based construction of OSBE in [11] is CRF-ready if the underly-
ing SPHF is malleable. Surprisingly, we find that their proposed OSBE instantiation
from linear encryption of Waters signature [25] could be extended to be malleable for
the CRF instantiations. One should note that the extension does not strictly follow the
aforementioned generic framework of constructing malleable SPHF from graded rings.
This also shows more possibilities for constructing malleable SPHFs.

CRF Constructions for Oblivious Transfer Protocol. Another major contribution of
our work is the CRF construction for the oblivious transfer (OT) protocol, which has
been widely adopted as a basic tool by many cryptographic systems. Although our CRF
constructions are inspired by our generic framework of malleable SPHF from graded
rings, there is some substantive difference between them.

In this work, we start with the OT framework of Halevi and Kalai [16], which relies
on a special SPHF. The basic idea is that: (1) the receiver picks and sends to the sender
two elements Cb ∈ L, C1−b ∈ X\L (b ∈ {0, 1} is the choice bit); (2) the sender
generates two hashing key pairs and computes the hash values of C0 and C1 (using
the secret hashing keys) to conceal its two message M0 and M1 respectively, and then
sends the two concealed messages with projection keys to the receiver; (3) the receiver
recovers Mb by computing the hash value of Cb (using the projection key with the
witness to the fact Cb ∈ L). Noting that a malicious receiver might choose both Cb and
C1−b from the language L, the underlying SPHF is required to be verifiably smooth
such that the sender can verify at least one of (C0, C1) is not in the language.
DIFFICULTIES. It seems that we could extend the underlying SPHF of the HK-OT con-
struction to be malleable so that the framework could admit CRFs. However, we found
that it is actually not the case and the extension is not trivial at all.

- The required SPHF here is not a classical one as it must be verifiably smooth.
Under the HK-OT framework, this is usually guaranteed by the verifiable linkability
betweenC0 andC1 chosen by the receiver. However, a tampered implementation of
the receiver may leak secret information to the outside world via the linkability. A
desirable CRF for the receiver should be able to rerandomize (C0, C1) to a uniform
tuple (C̃0, C̃1) to resist exfiltration. However, the rerandomization would break the
linkability of the tuple and lead to protocol failure.

- The receiver freshly generates the element basis underlying the SPHF at the be-
ginning of each protocol session, which means we have to deal with an untrusted
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setup. Since the element basis (e.g., g1, g2 ∈ G for the DDH tuple generation) is
chosen by the receiver per session, a tampered receiver may maliciously choose
some “bad” basis in order to compromise the security or leak secret information to
the outside. Therefore, the CRF should be able to rerandomize the element basis to
preserve security and resist exfiltration, while still maintain the protocol function-
ality. This, unfortunately, could not be trivially realized by the malleable SPHF.

OUR SOLUTION. In order to resolve the problem, we first propose a special OT con-
struction from graded rings. Particularly, the receiver sends to the sender only one ele-
ment, based on which the sender could generate an element pair so that the verifiable
smoothness can be guaranteed by the sender itself. We then propose CRF construc-
tions for such an OT protocol. Our central idea mainly follows the generic framework
of malleable SPHF from graded rings except that we require the receiver’s CRF could
also rerandomize the element basis chosen by the receiver. We show that the CRF could
still achieve all the properties when the transformation matrix for rerandomizing the el-
ement basis meets some requirements. The modified semi-generic framework narrows
the possible instantiations of the HK-OT framework. However, we show that the CRF
construction following our framework not only captures the prior work [21], which is
the only known OT-CRF to date, but also can yield new constructions under weaker
assumptions. In particular, we present new CRF constructions based on the k-linear
assumption, which is weaker than the DDH assumption underlying the OT-CRF con-
struction in [21].

1.2 Related Work

Comparisons with Other SPHF Variants . SPHF was originally introduced by Cramer
and Shoup [12]. Since its introduction, it has been widely used for constructions of
many cryptographic primitives, including authenticated key exchange [15, 17], oblivi-
ous transfer [16], zero-knowledge arguments [2, 9, 1] and so on. Here we mainly intro-
duce the work that are closely related to our notion of malleable SPHF. Hoeteck Wee
defined a notion of homomorphic SPHF for achieving key-dependent message security
[26]. That is, the combination of hash values of two elements equal to the hash value
of the combination of these two elements. One may note that their notion is somewhat
similar to the sub-property of rerandomization consistency captured by the element re-
randomizability of our malleable SPHF. However, their definition is solely based on
the secret hashing key while ours uses the projection key to calculate the hash value
difference. We should clarify that our defined property is not always the case especially
for those SPHFs where the projection key depends on the element. Yang et al. [27]
introduced the notion of updatable hash proof system (UHPS) for constructing public
key encryption schemes that are secure against continuous memory attacks. The UHPS
requires that the secret hashing key could be updated homomorphically. In fact, they
mainly consider a special case in which a secret hashing key can be freshly updated
while the associated projection key keeps the same.
Other CRF Constructions. Mironov and Stephens-Davidowitz [21] showed how to
construct CRFs for a 1-out-of-2 oblivious protocol based on the DDH assumption and
also proposed a protocol for private function evaluation. They also provided a generic
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way to prevent a tampered machine from leaking information to an eavesdropper via any
protocol. Ateniese, Magri, and Venturi [4] continued the study on signatures and con-
structed the CRF to protect signatures schemes against algorithm substitution attacks.
Recently, Dodis, Mironov and Stephens-Davidowitz [14] considered CRF construtions
for message-transmission protocols. They proposed a rich collection of solutions that
vary in efficiency, security, and setup assumptions in the classical setting. It is worth not-
ing that the studied message-transmission protocol in our work belongs to the so-called
unkeyed setting in their work. Our framework can be viewed as a generic construction
of the semantically secure public-key encryption scheme (with a trusted setup) that is
both key malleable and re-randomizable defined in [14].

2 Preliminaries

2.1 Cryptographic Reverse Firewalls

In general, a cryptographic protocol P must satisfy functionality (i.e., correctness) re-
quirement F , which places constraints on the output of the parties executing P for
particular input, and security requirement S, which places constraints on the message
distribution conditioned on specific input. Below we briefly recall the definition of re-
verse firewalls from [21]. We refer the reader to [21] for more detailed discussions.

Definition 1 (Cryptographic Reverse Firewall (CRF)). A cryptographic reverse fire-
wall is a stateful algorithmW that takes as input its state and a message and outputs
an updated state and message. For simplicity, we do not write the state ofW explicitly.
For a party P and reverse firewallW , we defineW ◦P as the “composed” party where
W is applied to the incoming and outgoing messages of P. When the composed party
engages in a protocol, the state of W is initialized to the public parameters. If W is
meant to be composed with a party P, we call it a reverse firewall for P.

One should note thatW has access to all public parameters, but not the private input
or the output of P. In reality, W can be regarded as an “active router” that sits at the
boundary between P’s private network and the outside world and modifies the messages
that P sends and receives. The party P of course does not want a reverse firewall to ruin
its protocol’s functionality when its internal implementation is correct. Following [21]
we require that reverse firewalls should be “stackable”, which means the composition
of multiple reverse firewallsW ◦W ◦ · · · ◦W ◦P should still maintain the functionality
of the protocol. The following definition captures this property.

Definition 2 (Functionality-maintaining CRFs). For any reverse firewallW and any
party P, let W1 ◦ P = W ◦ P, and for k ≥ 2, let Wk ◦ P = W ◦ (Wk−1 ◦ P).
For a protocol P that satisfies some functionality requirements F , we say that a reverse
firewallW maintainsF for P in P ifWk ◦P maintainsF for P in P for any polynomial
bounded k ≥ 1. When F ,P,P are clear, we simply say thatW maintains functionality.

Following the notations in [21], we use P to represent arbitrary adversarial imple-
mentations of party P and P̂ to represent the functionality-maintaining adversarial im-
plementations. For a protocol P with party P, we write PP→P̂ to represent the protocol
where the role of party P is replaced by party P̂.
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A reverse firewall should also preserve the security of the underlying protocol, even
in the presence of compromise. The strongest notion requires that the protocol in which
party P is replaced withW◦P for an arbitrarily corrupted party P still preserves the se-
curity while the weaker notion only considers tampered implementations that maintain
functionality. The below definition captures this property.

Definition 3 (Security-preserving CRFs). For a protocol P that satisfies some secu-
rity requirements S and functionality F and a reverse firewallW ,

- W strongly preserves S for P in P if the protocol PP→W◦P satisfies S; and
- W weakly preserves S for P in P if the protocol PP→W◦P̂ satisfies S.

When P,F ,S,P are clear, we simple say thatW strongly preserves security or weakly
preserves security.

As introduced in [21], we also need the notion of exfiltration resistance. Intuitively,
a reverse firewall is exfiltration resistant if “no corrupted implementation of P can leak
information through the firewall.” We define this notion using the game LEAK which
is presented in Fig. 1. Intuitively, the game asks the adversary to distinguish between
a tampered implementation and an honest implementation. An exfiltration-resistant re-
verse firewall therefore prevents an adversary from even learning whether a party has
been compromised, let alone leaking information.

Proc. LEAK(P,P1,P2,W, `)
(P1,P2, I)← A(1`)

b
$← {0, 1}

If b = 1,P∗ ←W ◦ P1

Else, P∗ ←W ◦ P1

T ∗ ← PP1→P∗,P2→P2
(I)

b∗ ← A(T ∗, stP2 )
Output (b = b∗)

Fig. 1. LEAK(P,P1,P2,W, `), the exfiltration resistance security game for a reverse firewallW
for party P1 in protocol P against party P2. A is the adversary, ` the security parameter, stP2

the
state of P2 after the run of the protocol, I valid input for P , and T ∗ is the transcript of running
protocol PP1→P∗,P2→P2

(I).

The advantage of any adversary A in the game LEAK is defined as

AdvLEAKA,W (`) = Pr[LEAK(P,P1,P2,W, `) = 1]− 1/2.

Definition 4 (Exfiltration-resistant CRFs). For a protocol P that satisfies functional-
ity F and a reverse firewallW ,

- W is strongly exfiltration-resistant for party P1 against party P2 in protocol P if
for any PPT adversary A, AdvLEAKA,W (`) is negligible in the security parameter `;
and
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- W is weakly exfiltration-resistant for party P1 against party P2 in protocol P , if
for any PPT adversary A, AdvLEAKA,W (`) is negligible in the security parameter `
provided that P1 maintains F for P1.
When P,F ,P1 are clear, we simple say that W is strongly exfiltration-resistant

against P2 or weakly exfiltration-resistant against P2. In the special case when P2 is
empty, we say thatW is exfiltration-resistant against eavesdroppers.

2.2 Smooth Projective Hash Function

An SPHF is based on a domain X and an NP language L, where L contains a subset
of the elements of the domain X , i.e., L ⊂ X . An SPHF system over a language
L ⊂ X , onto a set Y , is defined by the following five algorithms (SPHFSetup,HashKG,
ProjKG,Hash,ProjHash):

- SPHFSetup(1`) : The SPHFSetup algorithm takes as input a security parameter `,
generates the global parameters param and the description of an NP language L,
outputs pp = (L, param) as the public parameter.

- HashKG(pp) : The HashKG algorithm generates a hashing key hk;
- ProjKG(pp, hk, C) : The ProjKG algorithm derives the projection key hp from the

hashing key hk and possibly an element C;
- Hash(pp, hk, C) : The Hash algorithm takes as input an element C and the hashing

key hk, outputs the hash value hv ∈ Y;
- ProjHash(pp, hp, C, w) : The ProjHash algorithm takes as input the projection key
hp and an element C with the witness w to the fact that C ∈ L, outputs the hash
value hv ∈ Y .
SPHFs could be classified into two types according to whether ProjKG takes an

element as input. The Gennaro and Lindell [15] type (GL-SPHF) allows hp to depend
on C while the Katz and Vaikuntanathan [17] type (KV-SPHF) does not. As shown
later, our proposed new SPHF falls in the KV-SPHF category.

An SPHF should satisfy the following two properties.

Correctness. Formally, for any element C ∈ L with w the witness, we have

Pr

hv 6= hv′ :

pp
$← SPHFSetup(1`);

hk
$← HashKG(pp); hp← ProjKG(pp, hk);

hv← Hash(pp, hk, C);
hv′ ← ProjHash(pp, hp, C, w)

 ≤ negl(`).

Smoothness. For any C ∈ X\L, the following two distributions are statistically indis-
tinguishable,
V1 = {(pp, C, hp, hv)|hv = Hash(hk, C ′)},V2 = {(pp, C, hp, hv)|hv $← Y}.

That is, Advsmooth
SPHF (`) =

∑
v∈Y |PrV1 [hv = v]− PrV2 [hv = v]| ≤ negl(`).

It is required that one could efficiently sample elements from the set X . That is,
one could run a polynomial time algorithm SampYes(pp) to sample an element (C,w)
from L where w is the witness to the membership C ∈ L and another polynomial time
algorithm SampNo(pp) to sample an element C from X\L. The subset membership
problem betweenL andX is usually required to be difficult, which is defined as follows.
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Definition 5 (Hard Subset Membership Problem). The subset membership prob-
lem (SMP) is hard on (X ,L) for an SPHF that consists of (SPHFSetup, HashKG,
ProjKG,Hash, ProjHash), if for any PPT adversary A,

AdvSMP
A,SPHF(`) = Pr

b′ = b :

pp
$← SPHFSetup(1`);

hk
$← HashKG(pp); hp← ProjKG(pp, hk);

b
$← {0, 1}; (C0, w)

$← SampYes(pp);

C1
$← SampNo(pp);

b′ ← A(pp, hk, hp, Cb)

−
1

2
≤ negl(`).

3 Malleable Smooth Projective Hash Function

3.1 Definition

A malleable SPHF is defined by a tuple of algorithms (SPHFSetup,HashKG, ProjKG,
Hash, ProjHash,MaulK, MaulH, ReranE, ReranH) which work as follows:

- SPHFSetup, HashKG, ProjKG,Hash,ProjHash are the same as in the classical
SPHF;

- MaulK(pp, hp, r̃). The MaulK algorithm takes as input a projection key hp and
randomness r̃, outputs a new projection key h̃p;

- MaulH(pp, hp, r̃, C). The MaulH algorithm takes as input a projection key hp, the
randomness r̃ and an element C, outputs the hash value h̃v;

- ReranE(pp,C, w̃). The ReranE algorithm takes as input an element C and the ran-
domness w̃, outputs a new element C̃;

- ReranH(pp, hp, C, w̃). The ReranH algorithm takes as input the projection key hp,
an element C and the randomness w̃, outputs the hash value h̃v;

We describe two randomness sampling algorithms named SampR and SampW. One
could run SampR(pp) to sample r̃ from the distribution of randomness using which we
generate the hashing key. The algorithm SampW(pp) can be used to sample w̃ from the
witness distribution of the language.

Now we are ready to describe the properties of a malleable SPHF. In addition to the
properties captured by a classical SPHF, a malleable SPHF also satisfies the following
new properties which are essential in our constructions of CRFs.
Definition 6 (Projection Key Malleability). A smooth projective hash function is pro-
jection key-malleable if the following properties hold.

– Key Indistinguishability. For any PPT adversary A = (A1,A2),

AdvKey-IndA,MSPHF(`) = Pr

b′ = b :

pp
$← SPHFSetup(1`);

(hp1, hp2, st)← A1(pp);

b
$← {0, 1}; r̃ $← SampR(pp);

h̃p← MaulK(pp, hpb, r̃);

b′ ← A2(pp, st, hp1, hp2, h̃p)

− 1

2
≤ negl(`).
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– Projection Consistency. For any element C ∈ X ,

Pr


hv 6= hv′ :

pp
$← SPHFSetup(1`);

hk
$← HashKG(pp); hp← ProjKG(pp, hk);

r̃
$← SampR(pp); h̃p← MaulK(pp, hp, r̃);

hv← Hash(pp, h̃k, C);

h̃v← MaulH(pp, hp, r̃, C);

hv′ ← Hash(pp, hk, C)∗h̃v


≤ negl(`).

where h̃k is the associated hashing key of h̃p ← MaulK(pp, hp, r̃) and ∗ denotes
the operation between two hash values in Y .

Definition 7 (Element Re-randomizability). A smooth projective hash function is element-
rerandomizable if the followings hold.

– Element Indistinguishability. For any PPT adversary A = (A1,A2),

AdvElement-Ind
A,MSPHF (`) = Pr

b′ = b :

pp
$← SPHFSetup(1`);

(C1, C2, st)← A1(pp);

b
$← {0, 1}; w̃ $← SampW(pp);

C̃ ← ReranE(pp, Cb, w̃);

b′ ← A2(pp, st, C1, C2, C̃)

−
1

2
≤ negl(`).

– Rerandomization Consistency.For any element C ∈ X ,

Pr


hv 6= hv′ :

pp
$← SPHFSetup(1`);

hk
$← HashKG(pp); hp← ProjKG(pp, hk);

w̃
$← SampW(pp); C̃ ← ReranE(pp, C, w̃);

hv← Hash(pp, hk, C̃);

h̃v← ReranH(pp, hp, C, w̃);

hv′ ← Hash(pp, hk, C) ∗ h̃v


≤ negl(`).

– Membership Preservation. For any element C ∈ X , let C̃ ← ReranE(pp, C, w̃)

where w̃ $← SampW(pp), we have C̃ ∈ L if and only if C ∈ L.
Definition 8 (Malleable SPHF). An SPHF is malleable if it is projection key-malleable
and element-rerandomizable.

3.2 Malleable SPHFs from Graded Rings

In this section, we show that under some conditions, the SPHF framework from graded
rings proposed by Benhamouda et al. [9] could be extended into malleable SPHF. The
main goal of this part is to demonstrate the feasibility of our definition. We remark that
malleable SPHFs can be constructed using other approaches.

Graded Rings. Benhamouda et al. [9] proposed a generic framework for SPHFs using
a new notion named graded rings, which is a common formalization for cyclic groups,
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bilinear groups, and even multilinear groups. The graded ring provides a practical way
to manipulate elements of various groups involved in pairings and more generally, in
multi-linear maps. Before describing their SPHF framework, we briefly recall the no-
tion of graded rings. The notation⊕ and� correspond to the addition operation and the
multiplication operation, respectively. For simplicity, here we focus on cyclic groups
and symmetric bilinear groups. Let G,GT be two multiplicative groups with the same
prime order p with a symmetric bilinear map e : G×G→ GT .

- For any a, b ∈ Zp, a⊕ b = a+ b, a� b = a · b;
- For any u1, v1 ∈ G, u1 ⊕ v1 = u1 · v1, u1 	 v1 = u1 · v−11 , and for any c ∈ Zp,
c� u1 = uc1;

- For any uT , vT ∈ GT , uT ⊕vT = uT ·vT , uT 	vT = uT ·v−1T , and for any c ∈ Zp,
c� uT = ucT ;

- For any u1, v1 ∈ G, u1 � v1 = e(u1, v1) ∈ GT .

That is, ⊕ and � correspond to the addition and the multiplication of the exponents.
The notations could be extended in a natural way when it comes to the case of vectors
and matrices.

We are now ready to describe the framework of SPHF introduced in [9]. For a
language L which is specified by the parameter aux, suppose there exist two positive
integers m and n, a function Γ : X 7−→ Gm×n (for generating the element basis) and
a function Θaux : X 7−→ G1×n, such that for any element C ∈ X ,

(C ∈ L)⇐⇒ (∃λ ∈ Z1×m
p s.t., Θaux(C) = λ� Γ (C)).

In other words, C ∈ L if and only if Θaux(C) is a linear combination of the rows
in Γ (C). Here it is required that the one who knows the witness w of the membership
C ∈ L can efficiently compute the above linear combination λ. This requirement seems
somewhat strong but is actually verified by very expressive languages [9].

With the above notations, the hashing key in an SPHF is a vector hk := α =

(α1, ..., αn)
T $← Znp and the projection key for an element C is hp := γ(C) = Γ (C)�

α ∈ Gk. Then the hash value computation for an element C is:

Hash(pp, hk, C) := Θaux(C)�α, ProjHash(pp, hp, C, w) := λ� γ(C).

Intuitively, if C ∈ L with λ, then we have,

Hash(pp, hk, C) = Θaux(C)�α = λ�Γ (C)�α = λ�γ(C) = ProjHash(pp, hp, C, w).

This guarantees the correctness of the SPHF. As for the smoothness property, we can
see that for any element C /∈ L and a projection key hp = γ(C) = Γ (C) � α,
the vector Θaux(C) is not in the linear span of Γ (C), and thus its hash value hv =
Hash(pp, hk, C) = Θaux(C) � α is independent from hp = Γ (C) � α. We refer the
readers to [9] for a more detailed analysis. One can note that if the function Γ : X 7−→
Gm×n is a constant function, the corresponding SPHF is of KV-SPHF type, otherwise
it is of GL-SPHF type.

A Simple Example. We illustrate this framework for the DDH language. Let g1, g2
be two generators of a cyclic group G of prime order p. Let X = G1×2 and L =
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{(u1, u2) | r ∈ Zp, s.t., u1 = gr1, u2 = gr2}. For any C = (u1, u2) ∈ L, Θaux(C) = C,
Γ (C) = (g1, g2) and the witness for C ∈ L is w = r and here λ = w = r. The hashing

key is hk = α = (α1, α2)
T $← Z2

p and the projection key is hp = γ(C) = Γ (C)�α =
gα1
1 gα2

2 ∈ G. We then have
Hash(pp, hk, C) = Θaux(C)�α = (u1, u2)� (α1, α2)

T = uα1
1 uα2

2 ,

ProjHash(pp, hp, C, w = r) = λ� γ(C) = r � (gα1
1 gα2

2 ) = (gα1
1 gα2

2 )r.

This is exactly the original SPHF of Cramer and Shoup for the DDH language in [12].
Generic Construction of Malleable SPHFs. With the above definitions, we present a
generic framework for constructing malleable SPHF based on graded rings.

- SPHFSetup(1`). Output pp which defines the set X and the language L with the
positive integers m and n, and functions Γ and Θaux.

- HashKG(pp). Sample α $← Znp and output hk = α.
- ProjKG(pp, hk, C). Output hp = γ(C) = Γ (C)�α ∈ Gk.
- Hash(pp, hk, C). Output hv = Θaux(C)�α.
- ProjHash(pp, hp, C, w). Output hv = λ� γ(C) where λ is derived from w.
- MaulK(pp, hp, r̃). To re-randomize a projection key hp = γ(C) using the random-

ness r̃, compute and output h̃p as:

∆hp = Γ (C)� r̃, h̃p = γ(C)⊕∆hp.

- MaulH(pp, hp, r̃, C). Output h̃v = Θaux(C)� r̃.
- ReranE(pp, C, w̃). To re-randomize an element C using the random witness w̃,

derive λ̃ from w̃, compute and output C̃ as:

∆C = λ̃� Γ (C), C̃ = Θaux(C)⊕∆C.

- ReranH(PP, hp, C, w̃). Derive λ̃ from w̃ and output h̃v = λ̃� γ(C).

For the above construction, we have the following theorem.

Theorem 1. The above generic construction is a malleable smooth projective hash
function if the following conditions hold:

a. Θ : X 7−→ G1×n is an identity function; (Diverse Group [12])
b. Γ : X 7−→ Gk×n is a constant function; (KV-SPHF type)
c. The subset membership problem between L and X is hard.

Proof. It should be clear that the construction is an SPHF as it is exactly the graded
ring-based SPHF framework proposed in [9]. Below we show that it is projection key-
malleable and element-rerandomizable.

PROJECTION KEY MALLEABILITY. For any r̃ = (r1, ..., rn)
T $← SampR(pp), any

element C ∈ X , we have that

MaulK(pp, hp,r̃) = γ(C)⊕ (Γ (C)� r̃)
= Γ (C)�α⊕ (Γ (C)� r̃)

= Γ (C)� (α⊕ r̃) = h̃p.
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One can easily notice that the new projection key h̃p is independent of hp, as the
randomness r̃ is uniformly chosen and Γ is a constant function. Therefore, for any
PPT adversary A, we have that AdvKey-IndA,MSPHF(`) is negligible. Moreover, the associated

hashing key of h̃p is h̃k = α̃ = α⊕ r̃ = (α1 + r1, ..., αn + rn)
T ∈ Znp . Therefore, we

have

Hash(pp, h̃k, C) = Θaux(C)� α̃ = Θaux(C)� (α⊕ r̃)
= Θaux(C)�α⊕Θaux(C)� r̃
= Hash(pp, hk, C)⊕MaulH(pp, hp, r̃, C).

This shows the projection consistency and thus the projection key is malleable.
ELEMENT RE-RANDOMIZABILITY. For any randomness w̃, and any element C ∈ X ,
we have that, ReranE(pp, C, w̃) = Θaux(C)⊕ (λ̃� Γ (C)) = C̃. Due to the uniformly
chosen randomness w̃ (which derives λ̃) and the hard subset membership problem,
we have that C̃ is computationally independent of C. Particularly, λ̃ � Γ (C) could be
viewed as a random chosen element from L as Γ is a constant function (i.e., Γ (C) =
Γ (C̃)). Therefore, for any PPT adversary A, if AdvElement-Ind

A,MSPHF (`) is non-negligible, we
could use A to break the hard subset membership problem, which is a contradiction.
Noting that here we require Θ to be an identity function, i.e., Θaux(C̃) = C̃, we have

Hash(pp, hk, C̃) = Θaux(C̃)�α = C̃ �α
= (Θaux(C)⊕ λ̃� Γ (C)))�α
= Θaux(C)�α⊕ λ̃� Γ (C)�α
= Θaux(C)�α⊕ λ̃� γ(C)

= Hash(pp, hk, C)⊕ ReranH(pp, hp, C, w̃).

The above illustrates the rerandomization consistency. Below we show that the ele-
ment rerandomization is also membership-preserving. Given any element C ∈ L with
the witness C = λ, for any randomness w̃ that derives λ̃, we have that,

ReranE(pp, C, w̃) = Θaux(C)⊕ (λ̃� Γ (C))

= λ� Γ (C)⊕ (λ̃� Γ (C))

= (λ⊕ λ̃)� Γ (C)

= λ′ � Γ (C̃) = Θaux(C̃) = C̃.

The above holds due to the fact that Θ is an identity function, i.e., Θaux(C̃) = C̃

and Γ is a constant function, i.e., Γ (C) = Γ (C̃). The witness to the fact C̃ ∈ L is
λ′ = λ⊕ λ̃. For any element C ∈ X\L, the vector Θaux(C) is not in the linear span of
Γ (C). Therefore, for any w̃, let C̃ = ReranE(pp, C, w̃) = Θaux(C)⊕ (λ̃�Γ (C)), we
trivially have that Θaux(C̃) = C̃ is not in the linear span of Γ (C) and thus C̃ ∈ X\L.

Instantiation from the k-Linear Assumption. We instantiate the above framework
based on the k-Linear (k-Lin) assumption. Let G be a group with prime order p and
g a generator. The k-Lin assumption asserts that gr1+···+rkk+1 is pseudo-random given
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g1, · · · , gk+1, g
r1
1 , · · · , g

rk
k where g1, · · · , gk+1

R← G, r1, · · · , rk
R← Zp. Note that the

DDH assumption is equivalent to the 1-Lin assumption.
We show how to construct a malleable SPHF from k-Lin assumption. The language

is defined as,

L =
{
(c1, · · · , ck)|∃(r1, · · · , rk) ∈ Zkp, s.t., c1 = gr11 , · · · , ck = grkk , ck+1 = g

∑k
i=1 ri

k+1 )
}
.

For any C = (c1, · · · , ck+1), we have Θaux(C) = C and

Γ (C) =


g1 1 · · · 1 gk+1

1 g2 · · · 1 gk+1

...
...

. . .
...

...
1 1 · · · gk gk+1

 ∈ Gk×(k+1).

For anyC ∈ Lwith witnessλ = w = (r1, · · · , rk), we have,Θaux(C) = (gr11 , · · · , g
rk
k ,

g
∑k
i=1 ri

k+1 ) = λ � Γ (C). Let pp = (G, p, g1, · · · , gk+1), r̃ = (β1, · · · , βk+1)
T and

λ̃ = w̃ = (η1, · · · , ηk). The instantiation is as follows:

- HashKG(pp) : hk = α = (α1, · · · , αk+1)
T $← Zkp;

- ProjKG(pp, hk, C) : hp = γ(C) = Γ (C)�α = (gα1
1 g

αk+1

k+1 , · · · , gαkk g
αk+1

k+1 )T;
- Hash(pp, hk, C) : hv = (c1, · · · , ck+1)� (α1, · · · , αk+1)

T =
∏k
i=1 c

αi
i ;

- ProjHash(pp, hp, C,w) : hv = λ� γ(C) =
∏k
i=1(g

αi
i g

αk+1

k+1 )ri ;

- MaulK(pp, hp, r̃) : h̃p = γ(C) ⊕ (Γ (C) � r̃) = (gα1
1 g

αk+1

k+1 , · · · , gαkk g
αk+1

k+1 )T ⊕
(gβ11 g

βk+1

k+1 , · · · , g
βk
k g

βk+1

k+1 )T =(gα1+β1
1 g

αk+1+βk+1

k+1 , · · · , gαk+βkk g
αk+1+βk+1

k+1 )T;
- MaulH(pp, hp, r̃, C) : h̃v = Θaux(C) � r̃ = (c1, · · · , ck+1) � (β1, · · · , βk+1)

T = cβ11 ·
cβ22 · · · c

βk+1

k+1 =
∏k+1
i=1 c

βi
i ;

- ReranE(pp,C, w̃) : C̃ = Θaux(C)⊕ (λ̃� Γ (C)) = (c1g
η1
1 , · · · , ckgηkk , ck+1g

∑k
i=1 ηi

k+1 );
- ReranH(pp, hp,C, w̃) : h̃v = λ̃ � γ(C) = (η1, · · · , ηd) � (gα1

1 g
αk+1

k+1 , · · · , gαkk g
αk+1

k+1 )T

=
∏k
i=1(g

αi
i g

αk+1

k+1 )ηi .

It is easy to verify that the above instantiation is a malleable SPHF as it satisfies all
the conditions of Theorem 1.
Remark. Note that the function Θaux is required to be an identity function in our frame-
work. That is, the above generic construction is on diverse groups [12]. However, we
remark that such a requirement is not necessary. We will show later (Section. 4.2) a
concrete malleable SPHF which demonstrates that instantiating malleable SPHF from
graded rings can be done in different ways.

4 Generic Construction of CRFs via Malleable SPHFs

4.1 Warm-Up: Message-Transmission Protocol with CRFs

A message transmission protocol (MTP) enables one party, Alice, to securely com-
municate a message to another party, Bob. Here we focus on the unkeyed setting for
message transmission. That is, both Alice and Bob have neither a shared secret key
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nor each other’s public key. Specifically, the protocol does not assume a public-key
infrastructure. It simply lets Bob send a randomly chosen public key as the first mes-
sage and thereafter Alice sends an encryption of her message under Bob’s public key
as the second message. Since neither the sender nor the receiver can be authenticated in
this setting, the strongest security guarantee is semantic security against passive adver-
saries. That is, the adversary should not be able to distinguish the protocol transcripts for
transferring two different plaintexts which are chosen by the adversary. We remark that
our framework can be seen as a generic construction of semantically secure public-key
encryption that is both key malleable and re-randomizable defined in [14], and hence
provides a more intuitive way to build two-round message-transmission protocols with
CRFs. We show a two-round MTP constructed using SPHF in Fig. 2.

Alice (pp) Bob(pp)

hk
$← HashKG(pp),

hp← ProjKG(pp, hk)
hp←−−−−−−−−

(C,w)
$← SampYes(pp),

V = ProjHash(pp, hp, C, w),
CT = V ⊕M

(C,CT )−−−−−−−−→
M = CT 	 Hash(pp, hk, C)

Fig. 2. Generic construction of two-round MTP from SPHF

Theorem 2. The construction of MTP in Fig. 2 is correct and semantically secure.

It should be clear that the protocol functionality is ensured by the correctness of the
SPHF and the security is guaranteed by the pseudo-randomness of the SPHF, which is
implied by the smoothness and the hardness of the subset membership problem.
CRF for the Receiver. In reality, a tampered implementation of Bob (the receiver) might
choose an insecure public key so that an eavesdropper will be able to read Alice’s plain-
text. The key could also act as a channel to leak some secrets to Alice or an eavesdrop-
per. Even assuming that the protocol is semantically secure, without the CRF, the com-
promised implementation of Bob can still leak some secret information to the outside.
It is thus desirable for the CRF to resist exfiltration. Fig. 3 shows the reverse firewall for
Bob. The idea is that the CRF re-randomizes the public key chosen by Bob before it is
sent to the outside world. To maintain the protocol functionality, it also intercepts Bob’s
incoming messages and converts Alice’s ciphertext under the re-randomized key to that
under Bob’s original public key. The CRF should also preserve the semantic security
of the protocol regardless of how Bob behaves. A computationally bounded adversary
learns nothing about Alice’s input plaintext from the transcript between Alice and Bob’s
CRF, even when the original public key chosen by Bob is insecure.
Theorem 3. The CRF for Bob shown in Fig. 3 maintains functionality and strongly
preserves security for Bob, and strongly resists exfiltration against Alice, provided that
the underlying SPHF is projection key-malleable.
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Alice (pp) Bob’s Firewall (pp) Bob (pp)

hp←−−−−−−−−
r̃

$← SampR(pp),
h̃p← MaulK(pp, hp, r̃)

h̃p←−−−−−−−−
(C,CT )−−−−−−−−→

∆V = MaulH(pp, hp, C, r̃),
C̃T = CT 	∆V

(C,C̃T )−−−−−−−−→

Fig. 3. Bob’s CRF for the protocol shown in Fig. 2

Proof. We verify that our construction satisfies the following properties.
Functionality Maintaining. For any ciphertext (C,CT ),

C̃T = CT 	∆V = CT 	MaulH(pp, hp, C, r̃)

= M ⊕ ProjHash(pp, h̃p, C, w)	MaulH(pp, hp, C, r̃)

= M ⊕ Hash(pp, h̃k, C)	MaulH(pp, hp, C, r̃)

= M ⊕ Hash(pp, hk, C).

The above holds due to the projection consistency of the projection key malleability in
the underlying SPHF. Therefore, Bob is able to recover Alice’s plaintext by computing
M = C̃T 	 Hash(pp, hk, C).

Strong Security Preservation and Strong Exfiltration Resistance. It suffices to show that
the CRF strongly resists exifiltration. Suppose there exists an adversary who has non-
negligible advantage AdvLEAKA,W (`) in the game LEAK. We then show how to build an
adversary B to break the key indistinguishability captured by the projection key mal-
leability of the underlying SPHF by runningA. Recall that in the game LEAK,Awould
provide two parties (P1,P2) which represent its chosen tampered implementations of
Bob and Alice. B first runs the protocol between the honest party Bob and P2, and
obtains the output of Bob as hp0. B then runs again the protocol between P1 and P2,
and obtains the output of P1 as hp1. It then sends (hp0, hp1) as the challenge projection
keys for the key indistinguishability game, and receives the challenge re-randomized
projection key h̃p. Finally, it forwards h̃p to A as part of the challenge transcript T ∗ of
the game LEAK and outputs the guess b′ ofA as its guess. It is easy to see that the above
behaviours of B are computationally indistinguishable from the real game LEAK from
the view of A. Therefore, we have that AdvKey-IndB,MSPHF(`) ≥ AdvLEAKA,W (`), which contra-
dicts the projection key malleability of the underling SPHF. This also trivially implies
the strong security preservation of the CRF. �

CRF for the Sender. It is obvious that a CRF cannot prevent an arbitrarily tampered
implementation of Alice from sending Bob some secret besides the message to be sent.
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That is, no CRF for Alice can achieve strong exfiltration resistance against Bob. There-
fore, the “best possible” security is against the corrupted implementations of Alice that
maintain the functionality. One should note that the MTP functionality requires Bob
to recover the plaintext message of Alice. In other words, a functionality-maintaining
corruption of Alice can only send the given input but no other message. Formally, we
have the following theorem for the CRF depicted in Fig. 4.

Alice (pp) Alice’s Firewall (pp) Bob (pp)

hp←−−−−−−−−
hp←−−−−−−−−

(C,CT )−−−−−−−−→
w̃

$← SampW(pp)

C̃ = ReranE(pp, C, w̃)
∆V = ReranH(pp, hp, C, w̃)

C̃T = CT ⊕∆V
(C̃,C̃T )−−−−−−−−→

Fig. 4. Alice’s CRF for the protocol shown in Fig. 2

Theorem 4. The CRF for Alice shown in Fig. 4 maintains functionality and strongly
preserves security for Alice, and weakly resists exfiltration against Bob, provided that
the SPHF is element-rerandomizable.

Proof. We verify that our construction satisfies the following properties.
Functionality Maintaining. One could easily have,

C̃T = CT ⊕∆V = CT ⊕ ReranH(pp, hp, C, w̃)

= M ⊕ ProjHash(pp, hp, C, w)⊕ ReranH(pp, hp, C, w̃)

= M ⊕ Hash(pp, hk, C)⊕ ReranH(pp, hp, C, w̃)

= M ⊕ Hash(pp, hk, C̃).

The above holds by the rerandomization consistency as the underlying SPHF is element
re-randomizable. Bob is thus able to recover Alice’s plaintext by computingM = C̃T	
Hash(pp, hk, C̃).
Strong Security Preservation and Weak Exfiltration Resistance. For any tampered im-
plementation of Alice that maintains functionality, suppose there exists an adversary
who has non-negligible advantage AdvLEAKA,W (`) in the game LEAK. We then show how
to build an adversary B to break the element indistinguishability captured by the ele-
ment re-randomizability of the underlying SPHF by runningA. Recall that in the game
LEAK, A would provide two parties (P1,P2) which represent its chosen tampered im-
plementations of Alice and Bob. Note that the tampered implementation of Alice is
functionality-maintaining. B first runs the protocol between honest party Alice and P2,
and obtains the output of Alice as (C0, CT0). B then runs again the protocol between P1
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and P2, and obtains the output of P1 as (C1, CT1). It then sends (C0, C1) as the chal-
lenge elements for the element indistinguishability game, and receives the challenge
re-randomized element C̃. It computes C̃T =M ⊕Hash(pp, hk, C̃) and then forwards
(C̃, C̃T ) to A as part of the challenge transcript T ∗ of the game LEAK and outputs the
guess b′ of A as its guess in the element indistinguishability game. It is easy to see that
the above behaviours of B are computationally indistinguishable from the real game
LEAK from the view of A. Therefore, we have that AdvElement-Ind

B,MSPHF (`) ≥ AdvLEAKA,W (`),
which contradicts the element re-randomizability of the underling SPHF. Therefore,
the CRF weakly resists exfiltration against Bob and of course against any eavesdropper.
This also trivially implies the security preservation of the firewall. �

4.2 Oblivious Signature-Based Envelope with CRFs

In this section, we introduce the CRF constructions for the oblivious signature-based
envelope protocol with an instantiation from the language of encryption of signature.
Formally, an OSBE protocol involves: a sender, holding a string P , and a receiver hold-
ing a credential. The protocol functionality requires that at the end of protocol, the
receiver could receive P if and only if he/she possesses a certificate/signature on a
predefined message M . The security notion asserts that the sender cannot determine
whether the receiver owns the valid credential (obliviousness) and no other party learns
anything about P (semantic security).

Alice (pp) Bob(pp)

Cσ
$← Encrypt(pp, σ; r)

Cσ←−−−−−−−−
hk

$← HashKG(pp)
hp← ProjKG(pp, hk)
V = Hash(pp, hk, Cσ)

Q = V ⊕ P
(hp,Q)−−−−−−−−→

V = ProjHash(pp, hp, Cσ, r)
P = Q	 V

Fig. 5. Blazy-Pointcheval-Vergnaud OSBE Framework [11]
Blazy-Pointcheval-Vergnaud OSBE Framework [11]. Noting that the original OSBE
requires a secure channel during the execution to protect against eavesdroppers, Blazy,
Pointcheval and Vergaud [11] clarified and enhanced the security models of OSBE
by considering the security for both the sender and the receiver against the author-
ity. Their new notion, namely semantic security w.r.t. the authority, requires that the
authority who plays as the eavesdropper on the protocol, learns nothing about the pri-
vate message of the sender. They showed how to generically build a 2-round OSBE
scheme that can achieve the defined strong security in the standard model with a Com-
mon Reference String (CRS). We first recall a slightly modified version of their gen-
eral framework, which is illustrated in Fig. 5. In particular, without loss of generality,
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we assume that the string P is in the hash value space of the underlying SPHF. The
main idea of the BPV-OSBE framework relies on the SPHF from the language de-
fined by the encryption of valid signatures. Let pp = (PP, ek, vk,M) where PP is the
collection of global parameters for the signature scheme, the encryption scheme and
the SPHF system, ek is the public key of the encryption scheme, vk is the verifica-
tion key of the signature scheme and M is the predefined message. Suppose Encrypt
is the encryption algorithm of the encryption scheme and Ver is the verification al-
gorithm of the signature scheme. The language of the underlying SPHF is then de-
fined as L = {Cσ | ∃r, σ, s.t., Cσ = Encrypt(pp, σ; r) ∧ Ver(pp, σ,M) = 1} . We then
have that the subset membership problem is hard due to the security of the encryption
scheme. Readers are referred to [11] for the detailed analysis of protocol correctness
and security.
CRF for the Receiver. An tampered implementation of the receiver might produce a
ciphertext Cσ that either enables an eavesdropper to read Alice’s message P , or acts
as a channel to leak some secrets to the outsider (Alice or an eavesdropper). A CRF
for Bob (denoted byWB) should be able to re-randomize the ciphertext Cσ while still
preserves the protocol functionality. It is also a requirement for WB to preserve the
protocol security, i.e., obliviousness, semantic security and semantic security w.r.t the
authority. Regarding exfiltration,WB should prevent the compromised Bob from using
Cσ as a channel to leak secrets. Fig. 6 depicts the firewallWB in the OSBE protocol.

Alice (pp) Bob’s Firewall (pp) Bob (pp)

Cσ←−−−−−−−−
w̃

$← SampW(pp),
C̃σ = ReranE(pp, Cσ, w̃)

C̃σ←−−−−−−−−
(hp,Q)−−−−−−−−→

∆V = ReranH(pp, hp,Cσ, w̃)

Q̃ = Q	∆V
(hp,Q̃)−−−−−−−−→

Fig. 6. Bob’s CRF for the OSBE protocol shown in Fig. 5

Theorem 5. The CRF for Bob shown in Fig. 6 maintains functionality and strongly
preserves security for Bob, and strongly resists exfiltration against Alice, provided that
the underlying SPHF is element-rerandomizable.
Proof. We verify that our construction satisfies the following properties.
Functionality Maintaining. Due to the rerandomization consistency of the element re-
randomizability, we have

Q̃ = Q	∆V
= Q	 ReranH(pp, hp, Cσ, w̃)

= P ⊕ Hash(pp, hk, C̃σ)	 ReranH(pp, hp, Cσ, w̃)

= P ⊕ Hash(pp, hk, Cσ).
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Bob is thus able to recover P by computing P = Q̃	 ProjHash(pp, hk, Cσ, r).

Strong Security Preservation and Strong Exfiltration Resistance. The strong exfiltra-
tion resistance follows from the fact that C̃σ is independent of the original ciphertext
Cσ chosen by Bob who might be arbitrarily compromised. Precisely, suppose there ex-
ists an adversary who has non-negligible advantage AdvLEAKA,W (`) in the game LEAK.
We then show how to build an adversary B to break the element indistinguishability
captured by the element re-randomizability of the underlying SPHF by running A. Re-
call that in the game LEAK, A would provide two parties (P1,P2) which represent its
chosen tampered implementations of Bob and Alice. B first runs the protocol between
the honest party Bob and P2, and obtains the output of Bob as C0. B then runs again
the protocol between P1 and P2, and obtains the output of P1 as C1. It then sends
(C0, C1) as the challenge elements for the element indistinguishability game, and re-
ceives the challenge re-randomized element C̃σ . Finally, it forwards C̃σ to A as part
of the challenge transcript T ∗ of the game LEAK and outputs the guess b′ of A as its
guess in the key indistinguishability game. It is easy to see that the above behaviours
of B are computationally indistinguishable from the real game LEAK from the view
of A. Therefore, we have that AdvElement-Ind

B,MSPHF (`) ≥ AdvLEAKA,W (`), which contradicts the
element-rerandomizability of the underling SPHF. This trivially implies that the CRF
also strongly preserves the protocol security. �

CRF for the Sender. Similar to the message-transmission protocol, it is easy to see
that no CRF for Alice can achieve strong exfiltration resistance against Bob. The “best
possible” security is thus against the corrupted implementations of Alice that maintain
the functionality. We show the CRF for Alice (denoted byWA) in Fig. 7. Formally, we
have the following theorem.
Theorem 6. The CRF for Alice shown in Fig. 7 maintains functionality and strongly
preserves security for Alice, and weakly resists exfiltration against Bob, provided that
the underlying SPHF is projection key-malleable.

Proof. We verify that our construction satisfies the following properties.

Functionality Maintaining. Due to the projection consistency of the projection key-
malleability of the underlying SPHF, we have

Q̃ = Q⊕∆V = Q⊕MaulH(pp, hp, Cσ, r̃)

= P ⊕ Hash(pp, hk, Cσ)⊕MaulH(pp, hp, Cσ, r̃)

= P ⊕ Hash(pp, h̃k, Cσ).

In the above, h̃k is the associated key of projection key h̃p← MaulK(pp, hp,r̃). We can
see that Bob can recover P by computing P = Q̃	 ProjHash(pp, h̃p, Cσ, r).

Strong Security Preservation and Weak Exfiltration Resistance. For any tampered im-
plementation of Alice that maintains functionality, suppose there exists an adversary
who has non-negligible advantage AdvLEAKA,W (`) in the game LEAK. We then show how to
build an adversary B to break the key indistinguishability captured by the projection key-
malleability of the underlying MSPHF by runningA. Recall that in the game LEAK,A
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would provide two parties (P1,P2) which represent its chosen tampered implementa-
tions of Alice and Bob. Note that the tampered implementation of Alice is functionality-
maintaining. B first runs the protocol between honest party Alice and P2, and obtains
the output of Alice as (hp0, Q0). B then runs again the protocol between P1 and P2, and
obtains the output of P1 as (hp1, Q1). It then sends (hp0, hp1) as the challenge projec-
tion key for the key indistinguishability game, and receives the challenge re-randomized
projection key h̃p. It computes Q̃ = P ⊕ ProjHash(pp, h̃p, Cσ, r), and then forwards
(h̃p, Q̃) to A as part of the challenge transcript T ∗ of the game LEAK and outputs the
guess b′ of A as its guess in the key indistinguishability game. It is easy to see that the
above behaviours of B are computationally indistinguishable from the real game LEAK
from the view ofA. Therefore, we have that AdvKey-IndB,MSPHF(`) ≥ AdvLEAKA,W (`), which con-
tradicts the projection key-malleability of the underling MSPHF. Therefore, the firewall
weakly resists exfiltration against Bob and of course against any eavesdropper. This also
trivially implies the security preservation of the CRF. �

Alice (pp) Alice’s Firewall(pp) Bob(pp)

Cσ←−−−−−−−−
Cσ←−−−−−−−−

(hp,Q)−−−−−−−−→
r̃

$← SampR(pp),
h̃p← ProjMaul(pp, hp,r̃)
∆V = MaulH(pp, hp, Cσ, r̃),
Q̃ = Q⊕∆V

(h̃p,Q̃)−−−−−−−−→

Fig. 7. Alice’s CRF for the OSBE protocol shown in Fig. 5

Instantiation from the Linear Encryption of Valid Signatures. In the work [11],
an efficient OSBE protocol is proposed by combining the linear encryption scheme,
the Waters signature [25] and an SPHF on the language of linear ciphertexts. Here we
show how to extend the instantiated SPHF to be malleable for the CRF constructions.
It is worth noting that the introduced malleable SPHF here could also be represented
by graded ring but does not follow the generic framework proposed in Section 3.2 (i.e.,
Θaux is not an identity function). We first recall the SPHF proposed in the work [11].
Let G,GT be two multiplicative groups with the same prime order p. Let g be the
generator of G and I be the identity element of GT . A symmetric bilinear map is a map
e : G × G → GT such that e(ua, vb) = e(u, v)ab for all u, v ∈ G and a, b ∈ Zp. It is
worth noting that e can be efficiently computed and e(g, g) 6= 1GT .

Linear Encryption of Waters Signatures. Let h $← G and u = (u0, ..., uk)
$← Gk+1

which defines the Waters hash of a message M = (M1, ...,Mk) ∈ {0, 1}k as F(M) =

u0
∏k
i=1 u

Mi
i . The verification key is vk = gz and the associated signing key is sk = hz

where z $← Zp. The signature on a message M is σ = (σ1 = sk · F(M)s, σ2 = gs) for
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some random s
$← Zp. It can be verified by checking e(g, σ1) = e(vk, h)·e(F(M), σ2).

The linear encryption public key is ek = (Y1 = gy1 , Y2 = gy2) and the secret key is

dk = (y1, y2)
$← Z2

p. The ciphertext of a Waters signature σ = (σ1, σ2) is Cσ = (c1 =

Y r11 , c2 = Y r22 , c3 = gr1+r2 · σ1, c4 = σ2), where (r1, r2)
$← Z2

p.

The Instantiated Malleable SPHF. We first interpret the underlying SPHF using the
graded ring. The language is defined as,

L =
{
(c1, c2, c3, c4)|∃(r1, r2) ∈ Z2

p, (σ1, σ2) ∈ G2
1, s.t.,

(
c1 = Y r11 , c2 = Y r22 , c3 =

gr1+r2 · σ1, c4 = σ2

)∧ (
e(g, σ1) = e(vk, h) · e(F(M), σ2)

)}
.

For any Cσ = (c1, c2, c3, c4), we have

Θaux(Cσ) =
(
c′1 = e(c1, g), c

′
2 = e(c2, g), c

′
3 = e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))
,

and Γ (Cσ) =

(
Y1 1 g
1 Y2 g

)
∈ G2×3. We can see that if Cσ ∈ L with witness w =

(r1, r2), let λ = (gr1 , gr2), we have,

Θaux(Cσ) =
(
e(c1, g), e(c2, g), e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))
=
(
e(Y r11 , g), e(Y r22 , g), e(gr1+r2 , g)

)
= λ� Γ (Cσ).

Let pp = (G, p, g, Y1, Y2,u), r̃ = (β1, β2, β3)
T and λ̃ = w̃ = (η1, η2, η3). The

instantiation is as follows:

- HashKG(pp) : hk = α = (α1, α2, α3)
T $← Z3

p;
- ProjKG(pp, hk, C) : hp = γ(Cσ) = Γ (Cσ)�α = (Y α1

1 gα3 , Y α2
2 gα3)T;

- Hash(pp, hk, C) : hv = Θaux(Cσ) � α = (c′1, c
′
2, c
′
3) � (α1, α2, α3)

T = e(c1, g)
α1 ·

e(c2, g)
α2 ·

(
e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))α3

;

- ProjHash(pp, hp, C,w) : hv = λ � γ(Cσ) = (gr1 , gr2) � (Y α1
1 gα3 , Y α2

2 gα3)T =

e
(
(Y α1

1 gα3)r1 · (Y α2
2 gα3)r2 , g

)
;

- MaulK(pp, hp, r̃) : h̃p = γ(C)⊕(Γ (C)�r̃) = γ(Cσ)⊕(Γ (Cσ)�∆r) = (Y α1
1 gα3 , Y α2

2 gα3)
⊕(Y β11 gβ3 , Y β22 gβ3) = ((Y α1+β1

1 gα3+β3 , Y α2+β2
2 gα3+β3))T;

- MaulH(pp, hp, r̃, C) : h̃v = Θaux(C) � r̃ = (c′1, c
′
2, c
′
3) � (β1, β2, β3)

T = e(c1, g)
β1 ·

e(c2, g)
β2 ·

(
e(c3, g)/

(
e(vk, h) · e(F(M), c4)

))β3
;

- ReranE(pp,C, w̃) : C̃ = Cσ⊕(Y η11 , Y η22 , gη1+η2F(M)η3 , gη3) = (c1 ·Y η11 , c2 ·Y η22 , c3 ·
gη1+η2F(M)η3 , c4 · gη3);

- ReranH(pp, hp,C, w̃) : h̃v = (gη1 , gη2) � Γ (Cσ) = (gη1 , gη2) � (Y α1
1 gα3 , Y α2

2 gα3)

=e
(
(Y α1

1 gα3)η1 · (Y α2
2 gα3)η2 , g

)
.

Theorem 7. The above construction is a malleable smooth projective hash function.
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Proof. We verify that our construction satisfies the following properties. Note that
the constructions of both MaulK and MaulH follow the framework proposed in Sec-
tion 3.2. According to Theorem 1, we have that our constructed SPHF is projection
key-malleable. Note that in our construction,C ′σ = Cσ⊕(Y η11 , Y η22 , gη1+η2F(M)η3 , gη3),
one can easily observe the rerandomization is element-indistinguishable due to the 2-
Lin assumption. Particularly, we have that (Y η11 , Y η22 , gη1+η2) is a linear tuple w.r.t
(Y1, Y2, g). If any adversary can distinguish the rerandomized element, we can use it
as a subroutine to break the 2-Lin assumption. We then prove that the element reran-
domization is membership-preserving. Suppose Cσ =

(
c1 = Y r11 , c2 = Y r22 , c3 =

gr1+r2 · σ1, c4 = σ2
)
∈ L. We have that after it is rerandomized,

C̃σ = Cσ ⊕ (Y η11 , Y η22 , gη1+η2F(M)η3 , gη3)

= (c1 · Y η11 , c2 · Y η22 , c3 · gη1+η2F(M)η3 , c4 · gη3)
=
(
Y r1+η11 , Y r2+η22 , gr1+r2+η1+η2 · σ1 · F(M)η3 , σ2 · gη3

)
def
=
(
c̃1, c̃2, c̃3, c̃4

)
Since Γ is a constant function, we know that, Γ (C̃σ) = Γ (Cσ) =

(
Y1 1 g
1 Y2 g

)
.

Let λ̃ = (gr1+η1 , gr2+η2), we then obtain:

Θaux(C̃σ) =
(
e(c̃1, g), e(c̃2, g), e(c̃3, g)/

(
e(vk, h) · e(F(M), c̃4)

))
=
(
e(Y r1+η11 , g), e(Y r2+η22 , g),

e(gr1+r2+η1+η2 · σ1 · F(M)η3 , g)

e(vk, h) · e(F(M), σ2 · gη3)

)
=
(
e(Y r1+η11 , g), e(Y r2+η22 , g), e(gr1+r2+η1+η2 , g)

)
= λ̃� Γ (C̃σ).

This shows that C̃σ ∈ L. If Cσ /∈ L, we trivially have that C̃σ /∈ L.
We then justify the rerandomization consistency. For any hashing key hk = α =

(α1, α2, α3)
T $← Z2

p, we have that,

Hash(pp, hk, C̃σ) = Θaux(C̃σ)�α

=
(
e(c̃1, g), e(c̃2, g),

e(c̃3, g)

e(vk, h) · e(F(M), c̃4)

)
� (α1, α2, α3)

T

= (c′1, c
′
2, c
′
3)� (α1, α2, α3)

T ⊕ (gη1 , gη2)� (Y α1
1 gα3 , Y α2

2 gα3)

= Θaux(Cσ)�α⊕ e
(
(Y α1

1 gα3)η1 · (Y α2
2 gα3)η2 , g

)
= Hash(pp, hk, Cσ)⊕ ReranH(pp, hp,Cσ, w̃).

5 Oblivious Transfer With Reverse Firewall

5.1 A New OT Framework from Graded Rings

Oblivious transfer forms a central primitive in modern cryptography. It is a protocol be-
tween the sender, holding two message M0 and M1, and a receiver holding a choice bit
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b. The OT functionality requires that at the end of the protocol, the receiver can learn the
message Mb. The security requirement is that the receiver learns nothing about M1−b
(sender security), and the sender learns nothing about the receiver’s choice b (receiver
security). We introduce a variant of the HK-OT [16] framework in the context of graded
rings. Essentially, we follow the generic framework of (malleable) SPHF from graded
rings (shown in Section 3.2). The modified semi-generic framework narrows the possi-
ble instantiations of the HK-OT framework. However, as we will show later, the CRF
construction following our framework not only captures the prior work [21], which is
the only known OT-CRF to date, but also yields new constructions under weaker as-
sumptions.

SampI(Γ , b): PairG(Γ , C0):

w
$← SampW(pp) Parse Γ as (Γ1, ..., Γn)

C := λ(w)� Γ set Γ ′ = (1G, ..., 1G, Γn)1×n
Parse Γ as (Γ1, ..., Γn) set e = (0Zp , ..., 0Zp , 1Zp )1×m
Set e = (0Zp , ..., 0Zp , bZp )1×m ∆C := e� Γ ′
∆C := e� (1G, ..., 1G, Γn)1×n C1 := C0 	∆C
C0 := C ⊕∆C return C1

Return (C0,w) Note: 1G is am× 1 matrix of 1G

Fig. 8. Definitions of Algortihms SampI,PairG.

Alice (pp,M0,M1) Bob(pp, b)

Γ
$← SampB(pp)

(C0,w)
$← SampI(Γ , b)

(Γ ,C0)
←−−−−−−−−

C1 = PairG(Γ , C0),

hk0 = α0
$← Znp ,

hp0 = γ0 = Γ � α0

hk1 = α1
$← Znp ,

hp1 = γ1 = Γ � α1(
Vi
)1
i=0
←
(
Ci � αi

)1
i=0(

CTi
)1
i=0
←
(
Vi ⊕Mi

)1
i=0 (

γi, CTi

)1
i=0−−−−−−−−→

Vb = λ(w)� γb
Mb = CTb 	 Vb

Fig. 9. OT Protocols from Graded Rings.

Before introducing our framework, we define two new algorithms SampI,PairG
depicted in Fig. 8. For the sake of clarity, we useλ = λ(w) to represent the derivation of
λ from the witness w. We require Θaux to be an identity function and Γ to be a constant
function. That is, we only consider the KV type SPHF on diverse groups. As before,
the subset membership problem must also be hard. Note that these are exactly the same
conditions (Theorem 1) for our malleable SPHF construction presented in Section 3.2.
Our graded ring-based OT framework is shown in Fig. 9. Suppose the element basis
(denoted by Γ = (Γ1, ..., Γn) ∈ Gm×n) is chosen by the receiver using the algorithm
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named SampB. It is worth noting that for the sake of simplicity, we assume without
loss of generality the receiver (even the tampered implementation) would not trivially
choose Γi = 1G for any i ∈ [1, n], since such an attempt can be easily detected in
reality. One can note that:

- b = 0: C0 ∈ L as C0 = λ(w)� Γ and C1 /∈ L as C1 is not a linear span of Γ .
- b = 1: C0 /∈ L as C0 is not a linear span of Γ and C1 ∈ L as C1 = λ(w)� Γ .

Formally, we have the following result for the above framework.

Theorem 8. The generic construction of OT shown in Fig. 9 is correct and secure.

The protocol functionality (correctness) follows from the fact that Cb ∈ L and the
sender security is guaranteed as C1-b /∈ L. The receiver security is due to the hardness
of the subset membership problem.

Alice WB (pp) Bob

Γ ,C0←−−−−−−−−
S̃ ← SampS(pp)

Γ̃ ← Γ � S̃
C′0 ← C0 � S̃
w̃

$← SampW(pp)

C ← λ(w̃)� Γ̃
C̃0 ← C′0 ⊕ C

Γ̃ ,C̃0←−−−−−−−−(
γi, CTi

)1
i=0−−−−−−−−→ (

∆Vi
)1
i=0
←
(
λ(w̃)� γi)

)1
i=0(

C̃Ti
)1
i=0
←
(
CTi 	∆Vi

)1
i=0 (

γi, C̃Ti

)1
i=0−−−−−−−−→

Fig. 10. Bob’s CRF for the OT Protocol in Fig. 9

5.2 Constructions of CRFs

CRF for the Receiver. The construction of the receiver CRF (denoted by WB) under
our OT framework is shown in Fig. 10. The algorithm SampS outputs a transformation
matrix (denoted by S̃ ∈ Zn×np ) for the element basis Γ . We denote the output of
PairG(Γ , C̃0) as C̃1 and it should be clear that:

- b = 0: C̃0 = λ(w)�Γ � S̃⊕ w̃� Γ̃ = (λ(w)⊕λ(w̃))� Γ̃ . C̃1 = (λ(w)�Γ 	∆C)�
S̃ ⊕ w̃ � Γ̃ = (λ(w)⊕ λ(w̃))� Γ̃ 	∆C � S̃, where ∆C = (0Zp , ..., 0Zp , 1Zp)1×m �
(1G, ...,1G, Γn)1×n.

- b = 1: C̃0 = (λ(w)�Γ ⊕∆C)� S̃⊕ w̃� Γ̃ = (λ(w)⊕λ(w̃))� Γ̃ ⊕∆C � S̃, where
∆C = (0Zp , ..., 0Zp , 1Zp)1×m � (1G, ...,1G, Γn)1×n. C̃1 = λ(w)� Γ � S̃ ⊕ w̃ � Γ̃ =

(λ(w)⊕ λ(w̃))� Γ̃ .
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That is, C̃b ∈ L and thusWB maintains the protocol functionality:

C̃Tb = CTb 	∆Vb
= Mb ⊕

(
C̃b �αb

)
	
(
λ(w̃)� γb

)
= Mb ⊕

(
λ(w)⊕ λ(w̃))� Γ̃ �αb

)
	
(
λ(w̃)� Γ̃ �αb

)
= Mb ⊕

(
λ(w)� Γ̃ �αb

)
= Mb ⊕

(
λ(w)� γb

)
.

Discussions on S̃. It is a trivial observation thatWB could strongly resist exfiltration
if Γ̃ is independent from Γ as this also results in a random element C̃ (by uniformly
sampling w̃). Precisely, let Γ = (Γ1, ..., Γn). An ideal transformation matrix S̃ should
transfer each Γi to another random Γ̃i and for any i, j ∈ [1, n] and i 6= j, Γ̃i is indepen-
dent from Γ̃j . To realize such a transformation, one could either shear and uniformly
scale or globally and non-uniformly scale the matrix Γ as follows:

- Shear and uniform scaling. Choose a column and then independently shear each
other column. Then uniformly scale all the columns. The shearing and scaling could
be in any order. A corresponding transformation matrix for this type of transforma-
tion has the following format (assuming the chosen column is Γ1):

S̃ = A�B =


α 0 · · · 0
0 α · · · 0
...

...
. . .

...
0 0 · · · α

�


1 β2 · · · βn
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ∈ Zn×np ,

where (α, β2, ..., βn)
$← Znp , A is the a scaling matrix and B is the shearing matrix.

- Globally non-uniform scaling. Independently scale each column. A corresponding
transformation matrix for this type of transformation has the following shape:

S̃ =


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn

 ∈ Zn×np ,

where (α1, ..., αn)
$← Znp .

The first type has been used by Mironov and Stephens-Davidowitz in their OT-CRF
construction [21]. One can note the second type of transformation is more efficient and
thus can improve the efficiency. We will show the details in Section 5.3.
CRF for the Sender. Fig. 11 depicts the construction of CRF for the sender (denoted
by WA). One may note that the construction is exactly part of the garded ring-based
construction of malleable SPHF shown in Section 3.2. Therefore, according to Theo-
rem 1, one could easily see thatWA maintains functionality, weakly resist exfiltration
against Bob and strongly resist exfiltration against an eavesdropper. The composed fire-
wallWB ◦WA also weakly preservers security against Bob.
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Alice (pp) WA(pp) Bob(pp)

Γ ,C0←−−−−−−−−
Γ ,C0←−−−−−−−−(

γi, CTi

)1
i=0−−−−−−−−→

r̃0
$← SampR(pp)

r̃1
$← SampR(pp)(

γ̃i
)1
i=0
←
(
γi ⊕ (Γ � r̃i)

)1
i=0(

∆Vi
)1
i=0
←
(
Ci � r̃i

)1
i=0(

C̃Ti
)1
i=0
←
(
CTi ⊕∆Vi

)1
i=0 (

γ̃i, C̃Ti

)1
i=0−−−−−−−−→

Fig. 11. Alice’s CRF for the OT Protocol in Fig. 9

5.3 Instantiations

Due to the space limitation, the hardness assumptions and security analysis are given in
the full version.
Capturing the OT-CRF in [21]. Below we show that our framework indeed encom-
passes the construction in [21]. Precisely, in [21] the basis chosen by the receiver is
(g, c) and the chosen element is C0 = (d, h), where d = gy, h = cygb. We have that.

Γ = (g, c), S̃ =

(
α αx′

0 α

)
, w̃ = y′,

Γ̃ = Γ � S̃ = (gα, cαgαx
′
), C ′0 = C0 � S̃ = (dα, hαdαx

′
),

C = w̃ � Γ̃ = (gαy
′
, cαy

′
gαx

′y′), C̃0 = C ′0 ⊕ C = (dαgαy
′
, hαdαx

′
cαy

′
gαx

′y′).

One can note that the transformation of Γ adopted here is via shearing and uniform
scaling as:

S̃ =

(
α αx′

0 α

)
=

(
α 0
0 α

)
�
(
1 x′

0 1

)
.

It is clear that other parts of protocol also follow the above framework.
Improving the Efficiency of [21]. As mentioned above, we can construct a more effi-
cientWB based on the DDH assumption by applying the globally non-uniform scaling
of Γ . Specifically, suppose the element basis provided by the receiver is (g, c) and the
chosen element is C0 = (d, h), where d = gy, h = cycb. We have

Γ = (g, c) ∈ G1×2, S̃ =

(
s1 0
0 s2

)
∈ Z2×2

p , w̃ = y′,

Γ̃ = Γ � S̃ = (gs1 , cs2), C ′0 = C0 � S̃ = (ds1 , hs2),

C = w̃ � Γ̃ = (gs1y
′
, cs2y

′
), C̃0 = C ′0 ⊕ C = (ds1gs1y

′
, hs2cs2y

′
).
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Instantiation from k-Linear Assumption. We now show the construction of CRF for
the above protocol. We only show the construction of WB since WA can be easily
obtained from the k-linear assumption based instantiation of malleable SPHF shown in
Section 3.2. Specifically, we have

Γ =


g1 1 · · · 1 gk+1

1 g2 · · · 1 gk+1

...
...

. . .
...

...
1 1 · · · gk gk+1

 , S̃ =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sk+1

 ,

Γ̃ = Γ � S̃ =


gs11 1 · · · 1 g

sk+1

k+1

1 gs22 · · · 1 g
sk+1

k+1

...
...

. . .
...

...
1 1 · · · g

sk
k g

sk+1

k+1

 , C ′0 = C0 � S̃ = (cs11 , c
s2
2 , ..., c

sk+1

k+1 ),

w̃ = (r′1, r
′
2, ..., r

′
k+1) ∈ Zkp, C = w̃ � Γ̃ = (g

s1r
′
1

1 , g
s2r
′
2

2 , ..., g
sk+1

∑k
i=1 r

′
i

k+1 ),

C̃0 = C ′0 ⊕ C = (cs11 g
s1r
′
1

1 , cs22 g
s2r
′
2

2 , · · · , cskk g
skr
′
k

k , c
sk+1

k+1 g
sk+1

∑k
i=1 r

′
i

k+1 ).

6 Conclusion

In this work, we presented generic CRF constructions for several widely used cryp-
tographic protocols based on a new notion named malleable smooth projective hash
function, which is an extension of the SPHF with new properties. We showed how
to generically construct CRFs via malleable SPHFs in a modular way. Specifically, we
proposed generic constructions of CRFs for the unkeyed message-transmission protocol
and the OSBE protocol. We further studied the OT protocol and developed a new OT
framework from graded rings and showed how to construct OT-CRFs via a modified
version of the malleable SPHF framework.
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