
Unsaturated lipids are major oxidation targets 
in foods (Sun et al. 2011). The inhibition of lipid 
oxidation in foods is important for consumers and 
industry because the oxidation will decrease food 
quality and influence wellness. The oxidation of 
lipid-based products has become a major concern 
for food industries more now than ever. One of the 
best ways of inhibiting lipid oxidation is to utilise 
antioxidants (Decker et al. 2010). However, the 
amount of antioxidants for food manufacturers to 
moderate oxidative rancidity is limited and the ap-
proval of new antioxidants is challenging (Chaiyasit 
et al. 2007). Moreover, the concern of using synthetic 
antioxidants, such as butylated hydroxytoluene (BHT), 

is increasing because of their perhaps carcinogenic 
effects (Ito et al. 1986). Therefore, new efficient an-
tioxidants should be developed from natural sources 
by food scientists.

Phenolic acids are secondary plant metabolites that 
are ubiquitous in nature. They and their derivatives 
have wide-ranging biological functions in our diet 
and are also used as antioxidants in food products 
(Wang et al. 2002). As we have known, the effi-
ciency of antioxidants is affected by their solubility 
in the phases in which oxidation takes place (Decker 
1998). Therefore, antioxidants in food must be able 
to partition between several phases and interact with 
emulsions at the interfaces, and hydrophobicity is 
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one of the most important parameters for antioxi-
dant activity. Thus, phenolic acids, as hydrophilic 
antioxidants, are normally very much restricted in 
their applications in lipid-based food products.

In recent years, lipophilisation of hydrophilic 
antioxidant molecules to synthesise antioxidants 
with a broad range of hydrophobicity has attracted 
broad interest because they could be accumulated 
at oil-water or oil-air interfaces to protect against 
the lipid oxidation (Figueroa-Espinoza & Vil-
leneuve 2005). Various phenolic esters have been 
synthesised using fatty alcohols or acids (Whitaker 
et al. 2001; Sørensen et al. 2012). Recently, various 
phytosteryl phenolates have also been synthesised 
and have shown excellent antioxidant capacities in 
lipids (Tan & Shahidi 2011, 2012, 2013; Fu et al. 
2014; Wang et al. 2015a).

Policosanols (PLs) are mixtures of long-chain (C24 
to C34) aliphatic primary alcohols and are natural 
supplements. They can be obtained from sugarcane, 
wheat, and beeswax and are used to treat diabetes 
and hypercholesterolaemia diseases (Berttner et 
al. 2006; Irmak et al. 2006; Berthold et al. 2014). 
In a previous study, several esters of policosanols 
and phenolic acids were synthesised; the resulting 
policosanyl p-coumarate and policosanyl 5-phenyl-
valerate showed a potential for use as lipid antioxi-
dants (Wang et al. 2015b). Hence, in this study, the 
antioxidant capacities of another eight synthesised 
policosanyl phenolates were assessed and compared 
in different systems in order to develop novel more 
effective food antioxidants.

MATERIAL AND METHODS

Chemicals. Lipase acrylic resin from Candida 
antarctica (Novozyme 435, 5 U/mg) was purchased 
from Sigma-Aldrich Korea (Seoul, Korea). One unit 
represents the microequivalents of fatty acid hydro-
lysed from a triglyceride in 1 h at pH 7.2 at 37°C.

The PLs (average molecular weight is 412), which 
contained octacosanol (61.87%), tr iacontanol 
(20.04%), hexacosanol (12.13%), and other long-
chain alcohols (5.99%), were obtained from Riotto 
Biological Technology Co., Ltd. (Xi’an, China). Ferrous 
chloride (FeCl2) and ferric chloride (FeCl3), glacial 
acetic acid, hydrogen chloride, and sulphuric acid 
were purchased from Shiny Pure Chemicals Co., 
Ltd. (Minoo Oska, Japan), Kanto Chemical Co., Inc. 
(Tokyo, Japan), Junsei Chemical Co., Ltd. (Tokyo, 

Japan), and Daejung Chemicals & Metals Co., Ltd. 
(Siheung, Korea), respectively. Ground pork was 
purchased from a local supermarket in Chuncheon, 
Korea. Vinyl salicylate, vinyl 4-hydroxybenzoate, 
vinyl gentisate, vinyl vanillate, vinyl syringate, vinyl 
veratrate, vinyl 4-chlorophenylacetate, and vinyl 
4-hydroxyphenylacetate were produced in our labo-
ratory (Wang et al. 2015a). All reagents used in this 
study were analytical grade and were purchased from 
Sigma-Aldrich Korea (Korea).

Preparative synthesis of policosanyl phenolates. 
The vinyl phenolates (0.1 mmol) were placed into 
10 ml vials to react with the PLs (0.1 mmol) under 
Novozyme 435 (300 U) catalysis in a binary sol-
vent mixture (3 ml, hexane/2-butanone 8 : 2, v/v) for 
4 days at 60°C. The products were separated from 
the reaction mixture by silica-gel column chroma-
tography with solvent gradient elution (hexane/
ethyl acetate from 32 : 1 to 4 : 1, v/v). For instance 
of policosanyl 4-hydroxybenzoate (2b), a mixture 
of hexane (2.4 ml), 2-butanone (0.6 ml), vinyl 4-hy-
droxybenzoate (16.4 mg, 0.1 mmol), policosanols 
(41.2 mg, 0.1 mmol), and Novozyme 435 (300 U, 
60 mg) was stirred using the magnetic stirring bar 
under nitrogen for 4 days at 60°C. The mixture was 
filtered, and the solution was evaporated. The residue 
(57.6 mg) was purified by column chromatography 
(packed with silica gel Si 60, 63–200 µm, Watchers, 
6 g) with solvent gradient elution by a mixture of 
hexane and ethyl acetate from 32 : 1 to 4 : 1 (v/v). 
Policosanyl 4-hydroxybenzoate (2b) was obtained as 
a colourless solid (1.1 mg, 1.78%). The reaction and 
column chromatography were monitored by thin layer 
chromatography (TLC, silica-gel precoated, flexible 
TLC sheets, 4 × 10 cm; Merch KGaA, Darmstadt, 
Germany) using hexane and ethyl acetate (4 : 1, v/v) 
as an elution solvent. The spots were visualised 
under ultraviolet at 254 nm using TLC Visualizer 
(CAMAG Scientific Inc., Wilmington, USA). The 
percentage yield of the reaction was calculated as 
the ratio of the obtained amount of product to the 
maximum theoretical amount, multiplied by 100. 
The isolated policosanyl phenolates were identified 
by 1H NMR, recorded at 400 MHz in CDCl3 using 
a Fourier transform NMR spectrometer (Bruker 
Korea, Seongnam, Korea) with tetramethylsilane 
as an internal standard. Signal processing and in-
terpretation were performed using the Bruker DPX 
400 MHz (9.4T) software package.

ABTS assay. The ABTS assay was performed as 
described by Re et al. with slight modifications (Re 
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et al. 1999). Briefly, 2 mM of ABTS diammonium salt 
was mixed with 3.5 mM of potassium persulphate in 
distilled water and held in the dark for 24 h before 
use. The ABTS+ solution (290 µl) was reacted with 
the sample (10 μl) in a 90 well plate for 10 minutes. 
Absorbance at 750 nm was measured using an EL-800  
Universal Microplate Reader (Bio-Tek Instruments 
Inc., Winooski, USA). Percent inhibition was calcu-
lated as follows: 

% inhibition = [(Acontrol – Ablank) – (Asample – Ablank)]/ 
                        (Acontrol – Ablank) × 100

where: Acontrol – absorbance of the ABTS solution (290 μl) 
with ethyl acetate (10 μl); Ablank – absorbance of distilled 
water (290 μl) with ethyl acetate (10 μl); Asample – absorbance 
of the ABTS solution (290 μl) with the test compound (10 μl) 

The results were expressed as an IC50. BHT was 
used as a positive control.

Ferric thiocyanate (FTC) assay. The peroxide 
value (PV) was determined by FTC assay in a linoleic 
acid system (Sakanaka et al. 2004). Briefly, 9 ml of 
2.5% linoleic acid ethanol solution and 1 ml of the 
sample were mixed in sealed test tubes and held in 
the dark at 60°C for 7 days. The control group was 
prepared without adding the sample. BHT was used 
as a positive control. The resulting oxidative fatty 
acid sample (0.5 ml) was reacted with 5 μl of 0.02 M 
FeCl2 10% HCl solution and 5 μl of 30% (w/v) am-
monium thiocyanate for 3 minutes. Absorbance at 
500 nm was measured using a spectrophotometer 
(Secomam, Alès, France). The same reaction without 
addition of the fatty acid sample was used as a blank. 
The PV was calculated from a Fe3+ standard calibra-
tion curve using the following equation: 

PV = [(Asample – Ablank) × m]/(55.8 × 2 × w)

where: Asample – absorbance of the sample including the 
control group at 500 nm; Ablank – absorbance of the blank 
at 500 nm; w – weight of the lipid sample; m – slope of the 
calibration curve

 The inhibition oxidation (IO) index was calculated 
from the PVs as follows: 

% IO = 100 – (PVsample/PVcontrol) × 100

where: PVsample, PVcontrol – PVs of the sample and control 
group 

The results were expressed as an IC50 for PV in-
hibition.

Measurement of the total oxidation value in 
a linoleic acid model system. The total oxidation 
(TOTOX) value represents the total oxidation that 
lipids have undergone, including primary and sec-
ondary oxidation (Sherwin et al. 1978). Nine mil-
lilitres of 2.5% linoleic acid ethanol solution and 
1 ml of 1 mM samples were mixed in sealed tubes 
and held in the dark at 60°C. A blank group without 
the sample was prepared. After the allotted time, the 
PV and p-anisidine values (p-AnV) of the samples 
were determined using the FTC method described 
above and IUPAC method 2.504 (Paquot 1979), 
respectively. The TOTOX value was obtained by the 
formula: TOTOX value = 2 × PV + p-AnV.

Measurement of the thiobarbituric acid reactive 
substances (TBARS) value in a cooked ground pork 
system. Fresh ground pork in water suspension (1 g/ml)  
was homogenised with 100 μM of the sample and 
cooked at 80°C in a water bath for 15 minutes. The 
cooked samples were held at 4°C in the dark. BHT 
was used as a positive control and a blank group was 
prepared without the sample. After the allotted time, 
5 ml of the cooked sample was reacted with 2.5 ml of 
10% trichloroacetic acid and 2.5 ml of 0.02 M thiobar-
bituric acid at 80°C for 15 minutes. After centrifuging 
at 10 000 rpm for 15 min, the upper absorbance was 
measured at 532 nm using a spectrophotometer. The 
TBARS value was calculated based on a malonalde-
hyde (MDA) standard calibration curve. The results 
were expressed as μmol MDA/kg meat.

Statistical analysis. All experiments were repeated 
at least three times and the results are given as the 
means ± SD. All data were analysed using ANOVA. 
Significant differences were assessed by Duncan’s 
test (P < 0.05). The statistical analyses were carried 
out using IBM SPSS version 19.0 software (IBM, 
New York, USA).

RESULTS AND DISCUSSION

Synthesis of policosanyl phenolates. For lipoph-
ilisation of phenolic acids with PLs, the lipase-cat-
alysed synthesis strategy is the first choice due to 
the environmental friendly conditions. However, no 
product was obtained in our preliminary experiment 
through the direct esterification route. On the one 
hand, enzymatic reactions often have long reaction 
times and low yields; and on the other hand, the 
reactive groups of the materials are perhaps difficult 
to approach the lipase active site. To improve the 
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reaction efficiency, as shown in Figures 1A and B,  
the vinyl phenolates that were produced in our labora-
tory were used as activated acyl donors in the present 
study. The structures of corresponding phenolic 
acids and PLs are shown in Figure 1C. The purities 
of synthesised products were confirmed by 1H NMR 
signals, which were over 95%. The structures of 
the resulting products were confirmed by 1H NMR 
spectrometry (Table 1 and Figure 2), in which the 
characteristic alkyl peaks of the policosanols were 
detected in the range of δ 0.09–1.70 ppm. The change 

in the chemical shift of the α-H in the policosanol 
from δ 3.70 ppm to δ 4.30 ppm indicated the bind-
ing of phenolate and PLs. The TLC Rf values of the 
policosanyl phenolates are higher than those of their 
corresponding phenolic acids, indicating that they 
possess higher hydrophobicity.

In this lipase-catalysed reaction, the vinyl esters are 
able to easily approach the lipase active site to form 
the acyl-enzyme intermediate (Kwon et al. 2007; 
Chigorimbo-Murefu et al. 2009). Despite this, the 
yields of the policosanyl phenolates remained low at 

Figure 1. Scheme for policosanyl 
phenolate synthesis: (A) chemical 
vinylation; (B) lipase-catalysed esteri-
fication; (C) structures of policosanols 
and phenolic acids.

Figure 2. 1H NMR spectra of PLs (A) 
and policosanyl vanillate (B)
*solvent peak (CDCl3); #water peak
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1.32–20.58% after a 4-day reaction period. Compar-
ing the yield information of synthesised products 
in Table 1, we found that the lipase activity can be 
affected by the functional groups of acyl donors. 
Specifically, 2b, policosanyl gentisate (3b), policosanyl 
vanillate (4b), policosanyl syringate (5b), policosanyl 

veratrate (6b) in Table 1, the hydroxyl groups look 
like more strongly inhibited lipase activities than the 
methoxyl groups; in addition, the effect of a hydroxyl 
group in the ortho position was greater than that of 
a para hydroxyl group. Comparing 2b, 4b, and 5b, 
the inhibition due to para hydroxyl groups of lipase 

Table 1. Structures, yields, and Rf values for the synthetic compounds. The TLC elution solvents were hexane and ethyl acetate 
(4 : 1, v/v). The yield is the ratio of the amount of product actually obtained to the maximum amount of product possible

No. Name

1H NMR (400 MHz, CDCl3, δ)
Yield  
(%)

Rf  
(TLC)phenolic group policosanyl groups

2 3 4 5 6 1” alkyl chains
– policosanols – – – – – 3.64 0.90–1.70 – –
1a salicylic acid – 6.94 7.43 7.03 7.96 – – – 0.23
1b policosanyl salicylate – 6.90 7.47 7.00 7.87 4.37 1.08–1.80 1.32 0.87
2a 4-hydroxybenzoic acid 7.96 6.94 – 6.94 7.96 – – – 0.08
2b policosanyl 4-hydroxybenzoate 7.89 6.77 – 6.77 7.89 4.20 0.90–1.67 1.78 0.41
3a gentisic acid – 6.77 6.91 – 7.43 – – – 0.09
3b policosanyl gentisate – 6.81 6.93 – 7.21 4.26 0.81–1.50 4.51 0.53

4a vanillic acid 7.47 3.73 
(-OCH3) – 6.83 7.52 – – – 0.06

4b policosanyl vanillate 7.55 3.95 
(-OCH3)

5.97  
(-OH) 6.94 7.64 4.28 0.88–1.75 8.59 0.48

5a syringic acid 7.03 3.74 
(-OCH3) – 3.74 

(-OCH3) 7.03 – – – 0.06

5b policosanyl syringate 7.32 3.95 
(-OCH3)

5.88  
(-OH)

3.95 
(-OCH3) 7.32 4.29 0.88–1.76 3.56 0.31

6a veratric acid 7.53 3.70 
(-OCH3)

3.70 
(-OCH3) 6.87 7.58 – – – 0.11

6b policosanyl veratrate 7.55 3.93 
(-OCH3)

3.93 
(-OCH3) 6.89 7.69 4.29 0.88–1.76 20.58 0.58

No. Name

1H NMR (400 MHz, CDCl3, δ)
Yield 
(%)

Rf 
(TLC)phenolic group policosanyl groups

2 3 4 5 6 7 1” alkyl chains
7a 4-chlorophenylacetic acid 7.04 7.19 – 7.19 7.04 3.51 – – – 0.12

7b policosanyl 4-chlorophenyl 
acetate 7.22 7.30 – 7.30 7.22 3.58 4.08 0.88–1.58 3.54 0.78

8a 4-hydroxyphenylacetic acid 6.91 6.63 – 6.63 6.91 3.47 – – – 0.06

8b policosanyl 4-hydroxyphenyl 
acetate 7.15 6.78 4.74 

(-OH) 6.78 7.15 3.53 4.07 0.88–1.60 2.69 0.42

O
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activity was reduced by meta methoxyl groups and a 
single meta methoxyl group inhibited activity more 
than a double group.

Antioxidant activities of policosanyl phenolates. 
Detection of free radical scavenging activity and lipid 
oxidation inhibition by the resulting phenolipids was 
carried out using ABTS and FTC assays (Figure 3). 
The IC50s for the policosanyl phenolates for reduc-
ing the ABTS radical were much higher than those 
for reducing PV, suggesting that the inhibition of 
lipid oxidation was a predominant mechanism of the 
antioxidant activity of synthesised samples.

In the ABTS assay, none of the phenolic acids or 
synthesised policosanyl phenolates other than gentisic 
acid (3a), vanillic acid (4a), and 4-hydroxyphenylacetic 
acid (8a) showed free radical scavenging activity. The 
effectiveness of an antioxidant in free radical scaveng-
ing is influenced by its chemical properties, such as 
hydrogen bond energies and resonance delocalisation 
(Soobrattee et al. 2005). Therefore, the hydroxyl 
substituents were necessary for phenolate to act as 
a hydrogen donor, enabling these compounds to act 
as efficient free radical scavengers. The reactivity of 
hydrogen donors can also be improved with the as-
sistance of other function groups (Buettner 1993). 
In contrast, the long aliphatic chain of the policosanyl 
phenolates appears to have limited the reactivity of the 
hydroxyl donors, or the intramolecular bond interac-
tions were reduced by their complex conformations. 
Nevertheless, large increases in PV inhibition activity 
were obtained after lipophilisation of the phenolic 
acids with PLs. The long alkyl chains of the policosanyl 
phenolates may have stabilised the unsaturated fatty 
acids. Due to the strong observed potential of these 
policosanyl phenolates for lipid oxidation inhibition, 
additional confirmatory experiments were conducted.

Lipid oxidation inhibitory activity of policosanyl 
phenolates in a linoleic acid model system. The 
lipid oxidation inhibitory activities of the synthesised 
policosanyl phenolates were measured using the 
TOTOX value in a linoleic acid model system. The 
TOTOX value is a combination of PV and p-AnV 
and therefore provides a comprehensive assessment 
of lipid oxidation. During the storage of linoleic 
acid without antioxidant treatment, the TOTOX 
value showed a slow-fast-slow increasing trend and 
reached a maximum on the 14th day (Figure 4). In this 
process, hydrogen was first abstracted from linoleic 
acid and hydroperoxide and free radicals were then 
formed, accompanied by an increase in PV. Further 
combination of radicals resulted in increasing p-AnV; 
correspondingly, PV substantially decreased. As the 
oxidation process neared completion, increases in 
both PV and p-AnV slowed and the TOTOX value 
reached a maximum. However, the TOTOX value on 
the 14th day varied in different samples. Compounds 
2b, 5b, and policosanyl 4-hydroxyphenyl acetate (8b) 
effectively inhibited the lipid oxidation after their 
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corresponding phenolic acids were lipophilised with 
PLs (Figure 5). Inhibition of hydroperoxide and ter-
minal oxidation product formation after 1 week may 
have been the inhibitory mechanism (Figure 6); in 
terms of TOTOX, inhibition began to occur after 1 
week, likely due to the long alkyl chains of the PLs 
reacting with other molecules.

Lipid oxidation inhibitory activity of policosanyl 
phenolates in a cooked ground pork model system. 
The lipid oxidation inhibitory activities of the syn-

thesised products were confirmed by their TBARS 
values in the cooked ground pork system (Figure 7). 
The TBARS values for all meat samples increased up 
to the 7th day due to oxidation. However, the TBARS 
values of the meat samples treated with policosanyl 
phenolates reflected significant inhibitory effects on 
lipid oxidation. Compared with BHT, 2b, 5b, and 8b 
were found to be moderate, long-lasting antioxidants 
and have the potential to be used as alternative an-
tioxidants in food products.

CONCLUSIONS

In this study, eight novel policosanyl phenolates were 
synthesised. The lipophilisation of phenolic acids with 
PLs improved their hydrophobicities and inhibitory 
activities toward lipid oxidation. Policosanyl 4-hydroxy-
benzoate (2b), policosanyl syringate (5b), and policosanyl 
4-hydroxyphenylacetate (8b) showed a potential as food 
antioxidants. The availability of a synthetic approach 
to these phenolipids will greatly facilitate further in-
vestigations of their biological properties.
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