变参数细胞神经网络的分数阶可切换 多元电路设计及仿真

张小红,俞梁华

(江西理工大学信息学院,江西赣州 341000)

摘 要: 构建新的整数阶三维细胞神经网络系统,通过对其非线性动力学分析、数值计算与电路仿真,验证了该系统混沌吸引子的存在性及物理上的可实现性.同时通过调节线性参数 b,研究了新的细胞神经网络系统在基于分数阶 q_i(*i*=1,2,3)不同组合条件下所表现出的混沌特性.结合分数阶电路理论分析分数阶电路中各单元电路形式,并设计了相应参数 b 可变、阶数值 q_i可切换的分数阶细胞神经网络电路系统.经统计本设计可实现 13824 种多元组合电路,并选取具有代表性组合电路进行电路仿真.仿真结果表明,多元电路仿真和数值仿真具有相似的混沌相图,从而证实了细胞神经网络在分数阶条件下仍表现出丰富的动力学特性,具有灵活实用价值和现实推广意义.

 关键词:
 细胞神经网络;分数阶电路;混沌吸引子;电路仿真;可切换电路

 中图分类号:
 TP391.9/0415.5
 文献标识码:
 A
 文章编号:
 0372-2112 (2016)04-0933-11

 电子学报 URL:
 http://www.ejournal.org.cn
 DOI:
 10.3969/j.issn.0372-2112.2016.04.026

Multi-Element Circuit Simulation of Alterable Parameters and Switchable Fractional-Order Cellular Neural Networks

ZHANG Xiao-hong, YU Liang-hua

(Jiangxi University of Science and Technology Information Institute, Ganzhou, Jiangxi 341000, China)

Abstract: Designed a new integer-order and three-dimensional cellular neural networks system. Through nonlinear dynamics analysis, numerical calculation and circuit simulation, the existence of chaotic attractor and realizability in physical about the system were verified. At the same time, studied the system's chaotic characteristics under the conditions of different combination about fractional order q_i (i = 1, 2, 3), by adjusting the linear parameter b. According to the theoretical analysis of each unit circuit of fractional-order circuit, designed a corresponding fractional order cellular neural networks system, which has variable parameter b and switchable q_i . Statically, the design can realize 13824 kinds of multiple combination circuits. This paper selects several representative combinational circuits for circuit simulation. The simulation results show that multiple circuit simulation and numerical simulation have similar chaos phase diagram, which confirmed the system still has rich dynamic characteristics under the condition of the fractional-order, also has flexible application value and realistic significance.

Key words: cellular neural networks; fractional-order circuit; chaotic attractor; circuit simulation; switchable circuit

1 引言

细胞神经网络(Cellular Neural Networks, CNN)是一 种具有强实时性和连续时间动力学性质的神经网络模型,局部连接性质简单易于超大规模电路(VLSI)实现, 可产生非线性动力学混沌现象甚至超混沌复杂行为. 自1988年 Chua 和 Yang 提出细胞神经网络理论^[1,2]以来, CNN 在预测学、图像处理、模式识别、保密通信、逻 辑阵列计算机的构建等方面已经取得了巨大的发 展^[3,4],具有广泛的应用前景和工程实践价值^[5,6].

分数阶微积分是研究任意阶次的微分、积分算子 特性及应用的数学问题,是整数阶微积分概念的延伸 和拓展^[7].近年来分数阶非线性动力学系统中存在的 混沌现象也引起了人们的广泛兴趣^[8],通过对 Chua 混 沌电路、Lorenz 混沌系统以及 Chen 和超混沌系统等的 研究过程发现,对于整数阶的混沌系统,当阶数为分数 时,系统存在更丰富的动力学特性^[9,10].利用分数阶微

收稿日期:2014-09-16;修回日期:2015-03-14;责任编辑:孙瑶

基金项目:国家自然科学基金(No. 61363076, No. 11062002);江西省自然科学基金(No. 20142BAB207020);江西省教育厅科技项目 (No. CJJ14465, No. CJJ14439);江西省研究生创新专项资金(No. YC2014-S368)

积分算子更能准确地描述现实世界的各种动力学特性 和系统的实际物理现象.因此,对分数阶混沌系统的研 究具有重要的理论研究价值.

细胞神经网络的研究至今为止大部分都是建立在 整数阶的条件下,而对于其在分数阶条件下所表现出 的混沌特性的研究却鲜有报道^[11,12].本文就分数阶细 胞神经网络的混沌特性展开较系统的研究,在构建一 个简单三维整数阶 CNN 系统基础上,通过理论分析、数 值仿真及电路仿真,验证了该整数阶和分数阶系统混 沌特性的存在性和物理可实现性,并发现改变线性参 数 *b* 系统仍旧能够产生混沌吸引子现象.利用 Multisim 软件实现了阶数值 q_i可灵活切换,线性参数 b 可调节的 分数阶 CNN 多元电路,电路仿真结果与数值计算具有 相似的吸引子图,从而证实了本设计理论方法的正确 性和现实可行性.

2 CNN 系统结构及状态方程描述

细胞神经网络的基本单元电路称作一个细胞,它由 线性与非线性电路元件组成,其电路原理图如图1(b)所 示^[13].一个细胞神经网络系统是由相邻细胞元之间相互 连接而成,图1(a)所示即为一种简单的连接方式.

图1 CNN连接结构及基本单元电路

C(i,j)表示第 i 行、第 j 列的神经元,它只同周围 r范围内的神经元相连,而同其它的神经元不连接.若用 $N_i(i,j)$ 表示 C(i,j)神经元和邻近其它神经元的集合, 在一个 $m \times n$ 的二维神经元排列空间内,CNN 网络的连 接关系可以表示为^[14]:

$$I_{xu}(i,j;k,l) = B(i,j;k,l)u_{kl},$$

$$I_{xy} = A(i,j;k,l) y_k$$

CNN 中每个神经元细胞的状态可以用方程(1)来 描述:

$$C \frac{\mathrm{d}x_{ij}(t)}{\mathrm{d}t} = -\frac{1}{R_x} x_{ij}(t) + \sum_{c(k,l) \in N, (i,j)} A(i,j;k,l) y_{kl}(t) + \sum_{c(k,l) \in N, (i,j)} B(i,j;k,l) u_{kl}(t) + I \quad (1)$$

式中 x_{ij} 是第(i,j)个细胞的状态变量;I表示网络的外部 输出; $u_{ki}(t)$ 表示第(i,j)个细胞相应的输入电压; $y_{u}(t)$ 是第(i,j)个细胞相应的输出,其输出函数 $f(x_{ij})$ 是一个 分段线性函数,其表达式为:

$$f(x_{ij}) = \frac{1}{2} (|x_{ij} + 1| - |x_{ij} - 1|)$$
(2)

为了方便起见,本文引入简化的推广 CNN 细胞模型,由以下无量纲的非线性状态方程描述:

$$\frac{\mathrm{d}x_j}{\mathrm{d}t} = -x_j + a_j f(x_j) + G_o + G_s + \tilde{I}_j \tag{3}$$

其中,j为细胞标号, a_j 为常数, $f(x_j)$ 为状态 x_j 的输出, G_a 和 G_s 分别表示邻近连接细胞之间的状态变量和对 应输出的线性组合, \tilde{I}_j 为门限值.

3 整数阶 CNN 构建、分析及电路仿真

3.1 CNN 系统模型构建

将式(3)中细胞神经网络推广动态模型状态方程 展开,并取 *j* = 1,2,3 得到本文研究的传统三阶细胞 CNN 模型的状态方程,其描述如下:

$$\frac{\mathrm{d}x_j}{\mathrm{d}t} = -x_j + a_j f(x_j) + \sum_{k=1, k \neq j}^3 a_{jk} f(x_k) + \sum_{k=1}^3 S_{jk} x_k + \tilde{I}_j,$$

$$(j = 1, 2, 3) \quad (4)$$

式中 x_j 是第j个细胞的状态变量, $f(x_j)$ 是第j个细胞相应的输出.

如果令
$$a_{13} = a_{21} = a_{23} = a_{31} = 0, a_2 = a_3 = 0, S_{13} = S_{22}$$

= $S_{31} = 0, \tilde{I}_j = 0$ 则系统(4)变为:
$$\begin{cases} \frac{dx_1}{dt} = -x_1 + S_{11}x_1 + S_{12}x_2 + a_1 f(x_1) + a_{12} f(x_2) \\ \frac{dx_2}{dt} = -x_2 + S_{21}x_1 + S_{22}x_2 + S_{23}x_3 \\ \frac{dx_3}{dt} = -x_3 + S_{32}x_2 + S_{33}x_3 + a_{32} f(x_2) \end{cases}$$
(5)

令系数矩阵

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0 & -1.5 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix},$$

当初始值为 $x_1(0) = 0.1, x_2(0) = 0.2, x_3(0) = 0.2, 步长 h = 0.01 时, 对系统(5)所描述的细胞神经网络进行数值仿真,得到二维吸引子相图如图 2 所示.$

从图 2 中可以看出,通过具体设定参数与初始值, 系统(4)所描述的整数阶细胞神经网络中产生了双涡 旋混沌奇异吸引子,因此定性的证实了该 CNN 系统中产生了混沌现象.

数值仿真求得系统(4)的 Lyapunov 指数为 (3.8651, -0.9996, -1.3355),其最大的 Lyapunov 指 数大于零,并且系统的 Lyapunov 维数 $D_L = j + \frac{1}{|L_{j+1}|} \sum_{i=1}^{j} L_i = 2 + \frac{L_1 + L_2}{|L_3|} = 4.1456.$ 因此从理论上定量 证明了该 CNN 系统中产生了混沌现象.

3.2 CNN 系统动力学特性理论分析 对于系统(5),由于

 $\nabla V = \frac{\partial \dot{x_1}}{\partial x_1} + \frac{\partial \dot{x_2}}{\partial x_2} + \frac{\partial \dot{x_3}}{\partial x_3} = S_{11} + S_{22} + S_{33} - 3$ (7)

当 $S_{11} = -2.43, S_{22} = 0, S_{33} = 1$ 时,有 $\nabla V < 0$,因此 系统(5)是一个耗散系统,且以式(8)指数形式收敛:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \mathrm{e}^{(\nabla V)t} \tag{8}$$

即当 *t*→∞ 时,系统轨线会以指数率 ∇ *V* 收缩到零,所有 的系统轨线最终将会被限制在吸引子上,这样说明了 系统吸引子的存在性.

令系统(5)中的每个微分方程右边都等于零,即

$$-x_{1} + S_{11}x_{1} + S_{12}x_{2} + a_{1}f(x_{1}) + a_{12}f(x_{2}) = 0$$

$$-x_{2} + S_{21}x_{1} + S_{22}x_{2} + S_{23}x_{3} = 0$$
 (9)

$$-x_{3} + S_{32}x_{2} + S_{33}x_{3} + a_{32}f(x_{2}) = 0$$

对系统(5)进行线性化处理,得到系统的 Jacobi 矩

阵为:

$$\mathbf{J}_{0} = \begin{bmatrix} -1 + a_{1} \dot{f}(x_{1}) + S_{11} & S_{12} & 0\\ 1 & S_{22} - 1 & 1\\ 0 & a_{32} \dot{f}(x_{2}) + S_{32} S_{33} - 1 \end{bmatrix}$$
(10)

由于非线性函数 $f(x_i)$ 的作用,对系统(5)的 Jacobi 矩阵求解应分组讨论,按照数学组合公式可得组合数 为: $N = C_3^1 C_3^1 = 9$,并对其进行分类可得如表1所示.其 中"+"表示 $x_i \ge 1$,"-"表示 $x_i \le -1$,"0"表示 $|x_i| < 1$.

对于区域 I 内不难求得其平衡点为(0,0,0), Jacobi 矩阵为

$$\boldsymbol{J}_{0} = \begin{bmatrix} -1 + a_{1} + S_{11} & S_{12} & 0\\ 1 & S_{22} - 1 & 1\\ 0 & a_{32} + S_{32} & S_{33} - 1 \end{bmatrix}$$
(11)

区域	x_1, x_2 的取值范围	$\dot{f}(x_1), \dot{f}(x_2)$ 的值					
Ι	$D_{0 0} = \{ (x_1, x_2) \mid x_1 < 1, x_2 < 1 \}$	$\dot{f}(x_1) = \dot{f}(x_2) = 1$					
П	$D_{++} = \{ (x_1, x_2) \mid x_1 \ge 1, x_2 \ge 1 \}, D_{+-} = \{ (x_1, x_2) \mid x_1 \ge 1, x_2 \le -1 \},$ $D_{-+} = \{ (x_1, x_2) \mid x_1 \le -1, x_2 \ge 1 \}, D_{} = \{ (x_1, x_2) \mid x_1 \le -1, x_2 \le -1 \}$	$\dot{f}(x_1) = \dot{f}(x_2) = 0$					
Ш	$D_{+0} = \{ (x_1, x_2) \mid x_1 \ge 1, x_2 < 1 \}, D_{-0} = \{ (x_1, x_2) \mid x_1 \le -1, x_2 < 1 \}$	$\dot{f}(x_1) = 0, \dot{f}(x_2) = 1$					
IV	$D_{0+} = \{ (x_1, x_2) \mid x_1 < 1, x_2 \ge 1 \}, D_{0-} = \{ (x_1, x_2) \mid x_1 < 1, x_2 \le -1 \}$	$\dot{f}(x_1) = 1, \dot{f}(x_2) = 0$					

表1 $\dot{f}(x_1)$, $\dot{f}(x_2)$ 取值分布

$$\boldsymbol{J}_{0} = \begin{bmatrix} 2.53 & 9.25 & 0\\ 1 & -1 & 1\\ 0 & -13 & 0 \end{bmatrix}$$
(12)

为获得特征值, $\langle \lambda I - J_0 \rangle = 0$, 得到平衡点的三个特征值为:

 $\lambda_1 = 3.6564$

$$\lambda_2 = -1.0632 - 2.8044i$$

 $\lambda_3 = -1.0632 + 2.8044i$

由于特征值 λ_2 、 λ_3 的实部为负实数,而 λ_1 为正实

数,这就意味着在(0,0,0)点是一个不稳定的且为三维 空间内的一个鞍点,其不稳定性也导致了可能会产生 混沌的特性.

同理也可求得其他的区域编号内的平衡点及特征 值,如表 2 所示. 该系统的平衡点都是不稳定的鞍焦 点,满足 Shilnikov 定理^[15],即对于三阶自治系统平衡点 的特征值 γ 和 $\sigma \pm \omega j$,若满足 $\gamma \sigma < 0$ 且 $|\gamma| > |\sigma|$,则系 统的矢量场满足产生混沌的鞍焦点条件,从而在理论 上证明了系统(5)存在混沌特性的可能性.

区域	平衡点	特征值	平衡点类型					
Ι	(0,0,0)	$\lambda_1 = 3.6564$, $\lambda_2 = -1.0632 - 2.8044$ i, $\lambda_3 = -1.0632 + 2.8044$ i	不稳定鞍焦点					
Ш	无	$\lambda_1 = -4.9685 \ \lambda_2 = 0.2692 - 3.2067i \ \lambda_3 = 0.2692 + 3.2067i$	-					
Ш	(1.738,0, -1.738) (-1.738,0,1.738)	$\lambda_1 = -4.8468 \ \lambda_2 = 0.2084 - 3.0259i \ \lambda_3 = 0.2084 + 3.0259i$	不稳定鞍焦点					
IV	无	$\lambda_1 = 3.7586 \ \lambda_2 = -1.1143 - 2.8480i \ \lambda_3 = -1.1143 + 2.8480i$	_					

表2 各区域平衡点的特征值及其平衡点类型

3.3 线性参数 S₂₂对系统的影响

在一个动力学系统中随着系统参数值的变化,系统的平衡点和稳定性也会发生相应的变化,从而会使系统处于不同的状态.对于这种变化一般可以用 Lyapunov 指数谱图(图 3)和分岔图(图 4)直观的表示出来.对于本文中的 CNN 系统(5),我们仅随机选择系统中的线性参数值 S₂₂来分析其对系统的影响,若选择其它线性参数也会得到类似的结论.

 $S_{22} - x_1$ 分岔图如图 4 所示,从图中可以看出系统

的混沌动力学行为随着 S22 的变化而不断改变.

3.4 整数阶 CNN 电路仿真

整数阶电路采用线性电阻、线性电容、运算放大器 来实现. 运算放大器采用 LM741 来进行电路的加减运 算. 而对于非线性函数 $f(x) = \frac{1}{2}(|x+1| - |x-1|)$ 则 用放大器 TL082CD 在 ± 18V 条件下来实现,放大电路 的输出端不能直接实现 f(x) 而是实现 $u_{out} = -f(x)$,其 具体的实现电路及仿真结果如图 5 所示.

参数变化的控制模块主要由滑动变阻器和单刀双 掷开关组成,其主要目的是为了实现分数阶时对线性 参数 b 的调节,端口 1 和 2 分别对应输出 x_2 和 – x_2 . 图 中滑动变阻器选取最大值为 $R_{m1} = 500 k\Omega$, $R_{m2} = 10 k\Omega$, 电路原理图如图 6 所示.

依照系统(5)数学模型设计的电路原理图及其仿 真结果如图 7 所示,电路图中各元器件的值为 $R_{1} = R_{2}$ $= R_{3} = 100k\Omega, R_{1} = R_{2} = R_{3} = R_{4} = R_{5} = R_{6} = R_{7} = R_{8} =$ $R_{9} = R_{a} = R_{b} = 10k\Omega, R_{11} = 29.1k\Omega, R_{12} = 9.3k\Omega, R_{13} =$ $11k\Omega, R_{14} = 66.7k\Omega, R_{21} = 100k\Omega, R_{22} = 50k\Omega, R_{23} =$ $100k\Omega, R_{31} = 6.67k\Omega, R_{32} = 50k\Omega, C_{1} = C_{2} = C_{3} = 33$ nF.

将 Multisim 仿真结果与 Matlab 数值仿真结果比较 不难发现其波形十分吻合,因此电路仿真结果是有效 的,从而也验证了该混沌系统电路是可以物理实现的.

4 分数阶 CNN 仿真分析

4.1 分数阶微积分的定义

在分数阶微积分理论发展过程中,共有若干种定义,但是最常用的是 Riemann-Liouville 定义的分数阶微积分,其数学表达式如下^[16]:

$$\frac{\mathrm{d}^{q}f(t)}{\mathrm{d}t^{q}} = \frac{1}{\Gamma(n-q)} \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}} \int_{0}^{t} \frac{f(\tau)}{(t-\tau)^{q-n+1}} \mathrm{d}\tau \quad (13)$$

式中的 $\Gamma(\cdot)$ 为 Gamma 函数, $n-1 \leq q \leq n, q$ 为分数,n为整数,该式子的 Laplace 变换表达式为:

$$L\left\{\frac{\mathrm{d}^{q}f(t)}{\mathrm{d}t^{q}}\right\} = s^{q}L\left\{f(t)\right\} - \sum_{k=0}^{n-1} s^{k}\left[\frac{\mathrm{d}^{q^{-1-k}}f(t)}{\mathrm{d}t^{q^{-1-k}}}\right]$$
(14)

若函数*f*(*t*)的初始条件为零,则式(14)可表示为:

$$L\left\{\frac{\mathrm{d}^{q}f(t)}{\mathrm{d}t^{q}}\right\} = s^{q}L\left\{f(t)\right\}$$
(15)

对于一个动力学系统其对应的分数阶微分方程可

以表示成:

$$a_n D^{v_*} F(x,y) + a_{n-1} D^{v_{n-1}} F(x,y) + \dots + a_0 D^{v_0} F(x,y)$$

 $= b_m D^{\alpha_n} G(x,y) + b_{m-1} D^{\alpha_{m-1}} G(x,y) + \dots$
 $+ b_0 D^{\alpha_0} G(x,y)$ (16)

其中 F(x,y) 为系统输入, G(x,y) 为系统输出, 假设它 们均满足初始值为0 的条件. 对其做 Laplace 变换, 可以 得到分数阶微分方程的传递函数为:

$$H(s) = \frac{b_m s^{\alpha_n} + b_{m-1} s^{\alpha_{n-1}} + \dots + b_0 s^{\alpha_0}}{a_n s^{v_n} + a_{n-1} s^{v_{n-1}} + \dots + a_0 s^{v_0}}$$
(17)

从式(15)中不难看出可以在频域中用传递函数H(s)=1/ s^q 来表示分数阶微分算子q,因此工程中常常采用时 域-复频域转换法来求解分数阶微分方程.本文3.1节通 过仿真证实了传统的整数阶细胞神经网络系统(5)能够 产生混沌现象,当系统的阶数值分别为 $q_1,q_2,q_3(0 < q_1, q_2,q_3 < 1)$ 时,系统(5)变为分数阶 CNN 系统:

$$\begin{cases} \frac{d^{q_1}x_1}{dt^{q_1}} = -x_1 + S_{11}x_1 + S_{12}x_2 + a_1 f(x_1) + a_{12} f(x_2) \\ \frac{d^{q_2}x_2}{dt^{q_2}} = -x_2 + S_{21}x_1 + S_{22}x_2 + S_{23}x_3 \\ \frac{d^{q_3}x_3}{dt^{q_3}} = -x_3 + S_{32}x_2 + S_{33}x_3 + a_{32} f(x_2) \end{cases}$$
(18)

当 $q_1 = q_2 = q_3 = 1$ 时退化为整数阶系统(5). 依据 Charef, Hartley 等研究者所提出的分数阶微积分数值解

法 ^[17] 可知:当 q_1 ,	q_2, q_3 取值不同时	,标准整数阶算子逐	渐逼近分数阶算子的方式也不同,	如表3所示.
--------------------------------	------------------	-----------	-----------------	--------

表3 整数阶逼近分数阶算子公式

q_i 取值	逼近算法描述
0.95	$\frac{1}{s^{0.95}} \approx \frac{1.2831(s+14.4073)(s+0.1129)}{(s+18.3290)(s+0.1437)(s+0.0011)}$
0.9	$\frac{1}{s^{0.9}} \approx \frac{2.2675(s+1.292)(s+215.4)}{(s+0.01292)(s+2.154)(s+359.4)}$
0.8	$\frac{1}{s^{0.8}} \approx \frac{5.3088(s+0.1334)(s+2.371)(s+42.17)(s+749.9)}{(s+0.01334)(s+0.2371)(s+4.217)(s+74.99)(s+1334)}$
0.7	$\frac{1}{s^{0.7}} \approx \frac{9.3633(s+0.06449)(s+0.578)(s+5.179)(s+46.42)(s+416)}{(s+0.01389)(s+0.1245)(s+1.116)(s+10)(s+20)(s+89.62)(s+803.1)}$

4.2 分数阶 CNN 数值仿真

10

将参数值矩阵(6)代入式(18)中,并令 *b* = *S*₂₂ - 1,则系统(18)变为

$$\begin{cases} \frac{d^{q_1}x_1}{dt^{q_1}} = -3.43x_1 + 10.75x_2 + 5.96f(x_1) - 1.5f(x_2) \\ \frac{d^{q_2}x_2}{dt^{q_2}} = x_1 + bx_2 + x_3 \\ \frac{d^{q_3}x_3}{dt^{q_3}} = -15x_2 + 2f(x_2) \end{cases}$$
(19)

经过实验研究发现对应不同的阶数值 $q_1, q_2, q_3, 当$

改变系统(19)中的参数 b 时仍会表现出混沌现象.数 值仿真结果如表 4 所示(由于篇幅有限故只选取几项 进行说明).

从表 4 中不难发现当分数阶 CNN 取不同的阶数值 q_1, q_2, q_3 时,只要能够选取不同的参数值 b,就能够产生 与整数阶 CNN 系统相似的混沌吸引子.

4.3 分数阶电路单元

分数阶电路的电路单元有四种^[18-20],分别为链型、 树型、混合型及新型.每种单元的电路结构如表 5 所示.

表4 q_i 组合与参数b变化的数值仿真									
阶数值	参数b	x ₁ -x ₂ 相图	x ₂ -x ₃ 相图	x ₁ -x ₃ 相图					
	<i>b</i> =-1	$\begin{array}{c} 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0 \\ 0.2 \\ 0.4 \\ 0 \\ 0 \\ 1 \\ x_1 \\ x$	$\begin{array}{c} 1 \\ 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -0.4 \\ -0.2 \\ 0 \\ \frac{1}{x_2} \\ 0.2 \\ 0.4 \end{array}$	$\begin{array}{c} 1\\ 0\\ -1\\ -2\\ -3\\ -4\\ 0\\ 1\\ x_1 \\ 2\\ 3 \end{array}$					
q ₁ =0.95 q ₂ =0.95 q ₃ =0.95 q _i 全相同	<i>b</i> =-0.6	$\begin{array}{c} 1 \\ 0.5 \\ 0 \\ -0.5 \\ -1 \\ -4 \\ -2 \\ x_1 \\ 0 \\ -1 \\ -4 \\ -2 \\ x_1 \\ -2 \\ -4 \\ -2 \\ x_1 \\ -2 \\ -4 \\ -4 \\ -2 \\ -2 \\ -4 \\ -4 \\ -4$	$x^{-0} = \begin{bmatrix} x^{-1} & x^{-1} \\ x^{-1} & x^{-1} \\$	$ \begin{array}{c} $					
	<i>b</i> =-0.2	$\begin{array}{c} & x_{10^{7}} \\ & x_{10^{7}} \\ & y_{10^{-1}} \\ & -2 \\ -2 \\ -5 \\ & 0 \\ & x_{1} \\ & x_{10^{7}} \\ \end{array}$	$x^{-0.5}$	$\begin{array}{c} 1 \\ 0.5 \\ x^{2} \\ 0 \\ -0.5 \\ -1 \\ -5 \\ 0.5 \\ 0.5 \\ 0 \\ x_{1} \\ $					
	<i>b</i> =-0.6		$ \begin{array}{c} 1 \\ 0 \\ -1 \\ r^{2} \\ -2 \\ -3 \\ -4 \\ -0.5 \end{array} \\ \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $	$\mathbf{x}_{i}^{-1} \underbrace{\begin{smallmatrix} 1\\ -2\\ -3\\ -4\\ 0 \\ 1 \\ x_{i} \\ 2 \\ 3 \\ 4 \\ 0 \\ 1 \\ x_{i} \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$					
<i>q</i> ₁ =0.95 <i>q</i> ₂ =0.95 <i>q</i> ₃ =0.90 <i>q</i> _i 不全相同	<i>b</i> =-0.3	$\begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ -0.5 \\ -1 \\ -4 \\ -2 \\ 0 \\ x_1 \\ \end{array}$							
	<i>b</i> =0.1	x_{10}^{0}	$\begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	$\begin{array}{c} \begin{array}{c} \times 10^7 \\ \\ \\ \times ^7 \\ -1 \\ -2 \\ -1 \\ -2 \\ -1 \\ -0.5 \\ x_1 \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array}$					
	<i>b</i> =0.6		$\begin{array}{c} 2 \\ 0 \\ x^{-2} \\ -4 \\ -6 \\ -1 \\ -0.5 \\ x_{2} \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$x^{-2} = \frac{1}{x_{1}^{-2}} = $					
q ₁ =0.95 q ₂ =0.90 q ₃ =0.80 q _i 全不相同	<i>b</i> =1	$\begin{array}{c} 1\\ 0.5\\ 0.5\\ -1\\ -4\\ -2\\ 0\\ x_1 \end{array}$	x^{-0}	$x^{-0} = \begin{bmatrix} x^{-1} & x^{-1} \\ x^{-1} & x^{-1} \\ x^{-1} & x^{-1} \end{bmatrix} = \begin{bmatrix} x^{-1} & x^{-1} \\ x^{-1} & x^{-1} \end{bmatrix}$					
	<i>b</i> =1.3	$\begin{array}{c} & \times 10^8 \\ & 4 \\ & 2 \\ & 0 \\ & -2 \\ & -1 \\ & -0.5 \\ & 0 \\ & 0 \\ & 0.5 \\ & 1 \\ & \times 10^9 \end{array}$	$\begin{array}{c} 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -3 \\ -5 \\ -5 \\ x_2 \\ x_2 \\ x_1 \\ 0 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

				续表	
阶数值	参数b	x ₁ -x ₂ 相图	x ₂ -x ₃ 相图	x ₁ -x ₃ 相图	
	<i>b</i> =1.5	$\begin{array}{c} 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0 \\ 0.2 \\ 0 \\ 0.1 \\ x_1 \\ 2 \\ 3 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ x^{2} \\ -2 \\ -3 \\ -4 \\ -0.5 \\ 0 \\ 0 \\ x_{2} \\ \end{array} $	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ -2\\ -3\\ -4\\ 0\\ 1\\ 1\\ x_1 \end{array}$	
q ₁ =0.85 q ₂ =0.80 q ₃ =0.70 q _i 全不相同	<i>b</i> =1.9	$\begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ -1.4 \\ -2 \\ 0.5 \\ 1 \\ -4 \\ -2 \\ 0 \\ x_1 \\ 2 \\ 4 \end{array}$	r^{-1}	$\begin{array}{c} 5 \\ x^{-0} \\ -5 \\ -4 \\ -2 \\ x_{1} \\ \end{array}$	
	<i>b</i> =2.1	$\begin{array}{c} \times 10^{4} \\ \begin{array}{c} 4 \\ 2 \\ 0 \\ -2 \\ -4 \\ -1 \\ -0.5 \\ 0 \\ x_{1} \\ 0.5 \\ 10^{5} \end{array}$	$x = \frac{1}{10^{-1}} + \frac{10^{5}}{10^{-1}} + \frac{10^{5}$	$\begin{array}{c} \times 10^{5} \\ 1 \\ -2 \\ -1 \\ -2 \\ -1 \\ -0.5 \\ x_{1} \\ \end{array} \begin{array}{c} 1 \\ -2 \\ x_{1} \\ \times 10^{5} \end{array}$	
	<i>b</i> =1.6	$\begin{array}{c} 1 \\ 0.5 \\ -0.5 \\ -1 \\ -4 \end{array} \begin{array}{c} -2 \\ 0 \\ x_1 \end{array} \begin{array}{c} 0 \\ -2 \\ x_1 \end{array} \begin{array}{c} -2 \\ -2 \end{array} \begin{array}{c} 0 \\ -2 \\ x_1 \end{array} \begin{array}{c} -2 \\ -2 \end{array} \begin{array}{c} 0 \\ -2 \\ -2 \end{array} \begin{array}{c} 0 \\ -2 \\ -2 \end{array} \begin{array}{c} 0 \\ -2 \\ -2 \end{array} $	r_{-2}^{4}	$\begin{array}{c} 4 \\ 2 \\ 0 \\ x^{2} - 2 \\ -4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ x_{1} \end{array}$	
q ₁ =0.70 q ₂ =0.70 q ₃ =0.70 q _i 全相同	<i>b</i> =1.7	$\begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ -0.5 \\ -1 \\ -4 \\ -2 \\ 0 \\ x_1 \end{array}$	$ \begin{array}{c} 5 \\ -5 \\ -5 \\ -1 \\ -0.5 \\ -1 \\ -0.5 \\ -1 \\ -0.5 \\ -1 \\ -0.5 \\ -1 \\ -0.5 \\ -1 \\ -0.5 \\ -1 \\ -0.5 \\ -1 \\ -0.5 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	x^{-0}	
	<i>b</i> =1.8	$\begin{array}{c} 4000\\ 2000\\ -2000\\ -4000\\ -4000\\ -1 \end{array} \qquad \begin{array}{c} 0\\ 0\\ 0\\ -1 \end{array} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$x^{2} = \frac{x^{1}0^{4}}{x^{2}}$	$\begin{array}{c} \times 10^{4} \\ \begin{array}{c} 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -2$	

表5 分数阶各单元电路图及其复频域表达式

类型	链型	树型	混合型	新 型	
电路 结 构	$A \bullet \underbrace{ \begin{bmatrix} R_1 & R_2 & R_3 \\ K_1 & C_2 & C_3 \end{bmatrix}}_{H \bullet H \to H} - \underbrace{ \begin{bmatrix} R_2 & R_3 \\ K_1 & C_2 & C_3 \end{bmatrix}}_{H \to H \to H} - \underbrace{ \begin{bmatrix} R_3 & R_4 \\ K_1 & K_2 \\ K_1 & K_2 \end{bmatrix}}_{H \to H \to H} + \underbrace{ \begin{bmatrix} R_3 & R_4 \\ K_1 & K_2 \\ K_2 & K_2 \end{bmatrix}}_{H \to H \to H}$	$A = \begin{bmatrix} R_1 & \dots & R_2 & \dots & R_1 \\ C_1 & \dots & C_2 & \dots & C_n \\ C_n & \dots & C_n & \dots & C_n \\ C_n & \dots & $	$A \xrightarrow{\begin{bmatrix} C_1 & R_2 \\ C_2 & \\ C_3 & \\ C_4 & \\ C_3 & \\ C_4 & \\ C_4 & \\ C_4 & \\ C_4 & \\ C_5 & \\ C_6 & \\ C_$	$\begin{array}{c c} A & & & \\ \hline & & & \\ \hline \\ \hline$	
H(s)	$H(s) = \frac{R_1}{sR_1C_1 + 1} + \frac{R_2}{sR_2C_2 + 1} + \frac{R_3}{sR_3C_3 + 1}$	$H(s) = \left[R_{+} + (R_{2} / / \frac{1}{sC_{2}})\right] / \left[\frac{1}{sC_{1}} + (R_{3} / / \frac{1}{sC_{2}})\right]$	$H(s) = \left\{ \left[((R_1 / \frac{1}{sC_1}) + R_2) / \frac{1}{sC_2} \right] + R_3 \right\} / \frac{1}{sC_3}$	$H(s) = R_1 / \frac{1}{sC_1} / \frac{1}{sC_2} = \frac{1}{sC_2} / \frac{1}{sC_3} = \frac{1}{sC_3}$	

表5单元电路中的 n 为 A 和 B 之间的等效电路复 频域表达式 H(s) 展开式中分母 s 的最高阶. 以链型单

元中 q = 0.95 为例, A 和 B 之间的等效电路复频域表达 式为:

$$H(s) = \frac{R_1}{sR_1C_1 + 1} + \frac{R_2}{sR_2C_2 + 1} + \frac{R_3}{sR_3C_3 + 1} + \dots + \frac{R_n}{sR_nC_n + 1}$$
(20)

对应的表3可知n=3,则

$$H(s) = \frac{R_1}{sR_1C_1 + 1} + \frac{R_2}{sR_2C_2 + 1} + \frac{R_3}{sR_3C_3 + 1} \quad (21)$$

同理可求得其他类型单元电路在q=0.95时的复

频域表达式,见表5.

通过对式(21)做基本的数学变形并与表 3 进行比较,通过比较可计算出各元件的参数值为 R_1 = 15. 1k Ω , R_2 = 1.51M Ω , R_3 = 692. 9M Ω ; C_1 = 3.616 μ F, C_2 = 4.602 μ F, C_3 = 1.267 μ F. 同理可得各个单元电路在不同 q 值(0.95 \lambda 0.90 \lambda 0.80)时各个元器件的参数值,如表 6 所示,其在"-"表示无元器件.

<i>q</i> 值	类型	n 值	$R_1/M\Omega$	$C_1/\mu F$	$R_2/M\Omega$	$C_2/\mu F$	$R_3/M\Omega$	C ₃ /µF	$R_4/M\Omega$	C₄∕µF	$R_5/M\Omega$	C₅∕µF
0.05	链型	3	0.0151	3.616	1.51	4.602	692.9	1.267	-	-	-	-
	树型	3	0.3258	1.048	694.1	0.2135	2.167	3.039	-	-	-	-
0.93	混合	3	662.5	0. 2907	31.62	0.2177	0.3226	0.7794	-	-	-	-
	新型	3	694.6	0.7794	32.82	0.2699	0.3260	0.2133	-	-	-	-
	链型	3	62.84	1.232	0.25	1.84	0.0025	1.1	-	-	-	-
0.0	树型	3	1.55	0.7346	61.54	0. 5221	0.00253	1.1103	-	-	-	-
0.9	混合	3	61.52	0.5062	1.5520	0. 2996	0.01565	0.4410	-	-	-	-
	新型	3	61.30	0.4410	1. 598	0.4870	0.0158	0. 2937	-	-	-	-
0. 8	链型	5	37.85	1.98	1.754	2.40	0.170	1.390	0.017	0.78	0.0018	0.42
	树型	5	0.0086	0.9503	0.0927	0.6139	6.325	0.2349	39.69	0.2337	0.49	0.239
	混合	5	31.10	1.0970	7.7630	0.5073	0.8377	0. 2833	0.0845	0.1722	0.0086	0.1884
	新型	5	39.80	0.1884	9.839	0.7619	0.9330	0.4520	0.0932	0.2545	0.00955	0.1396

表6 分数阶各单元电路元件参数

4.4 分数阶 CNN 电路仿真

4.4.1 总体电路框图设计

在整数阶 CNN 系统电路原理图(图7(*a*))中引入 分数阶电路单元,通过调节参数 *b* 来实现各阶值产生混 沌现象,总体电路设计原理图如图 8 所示.

电路图 8 中的 TOTAL 模块即为 CNN 整数阶电路

(图7),电路图中的电容器件 C_1 、 C_2 、 C_3 由分数阶单元 电路替换,LINExx,TREExx,MIXxx 和 NEWxx 模块分别 表示不同的分数阶电路单元(分别对应表 5 中链型、树 型、混合型及新型,xx 表示 q 值大小),实验时通过开关 的闭合来控制 q_1,q_2,q_3 的值.

图8 可控分数阶CNN总体电路设计原理

4.4.2 分数阶 CNN 多元电路仿真

对于一个特定的三维分数阶系统,当阶值 q₁,q₂,q₃ 分别取电路可实现阶数 {0.7,0.75,0.8,0.85,0.9, 0.95} 中任意值时,由组合数学排列原理可知共有组合 方式 $N = (C_6^1)^3 = 216$ 种. 由于对每一阶数值 (q_1, q_2, q_3) 均有链型、树型、混合型和新型 4 种电路单元选择. 所 以对于任何一个三维的系统其电路单元设计的组合数 有 $M = (C_4^1)^3 = 64$ 种. 所以对于该三维的分数阶 CNN

系统其组合电路方式共有 216 × 64 = 13824 种. 而对于 每一种组合方式通过调节滑动变阻器改变线性参数 b 时,系统的混沌特性会出现相应的变化,使得系统的实 际电路种数不可估量.因此对于该分数阶的系统其混 沌特性更丰富.

为了简化设计而不失一般性,本文从三个阶值全部相同、不全相同和全部不同中各选择一组,所选择的阶值组合为 $q_1 = q_2 = q_3 = 0.95$, $q_1 = q_2 = 0.95$, $q_3 = 0.9$ 和 $q_1 = 0.95$, $q_2 = 0.9$, $q_3 = 0.8$. 仿真实验开关设置及实验结果如表 7 所示.

参数b调节与 开关状态	q_i 值	电路说明	电路仿真相图
<i>b</i> =-0.6. 调节图6滑动 变阻器使其	<i>q</i> ₁ =0.95	新型电路	550 08 -1.1 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4
接入的值为 25%,即阻值 约为120kΩ, 同时开关闭	<i>q</i> ₂ =0.95	链型电路	
合1. 闭合开关K ₄ , K ₁₃ , K ₂₇ .	q ₃ =0.95	混合型 电路	
b=-0.3 调节图6滑动 变阻器使其	<i>q</i> ₁ =0.95	新型电路	5 500 m - 10 - 2.4 - 400 0m - 2.4 - 4
接入的值入 55%,即阻值 约为270kΩ. 同时开关闭	q ₂ =0.95	混合型 电路	
合1. 闭合开关K ₄ , K ₁₅ , K ₃₀ .	<i>q</i> ₃ =0.90	树型电路	64 20 20 4.0 4.0 2.4 4.00 m 800.m 2.4 2.4 4.0
b=1 调节图6滑动 变阻器使其	<i>q</i> ₁ =0.95	混合型	500 m
接入的值为 10%,即阻值 约为50kΩ. 同时开关闭	q ₂ =0.90	树型	4.0 4.0 1.0 4.0 1.0 4.0 1.0 4.0 1.0 4.0 1.0 4.0 1.0 4.0 1.0
合2. 闭合开关K ₃ , K ₁₈ , K ₃₆ .	<i>q</i> ₃ =0.80	新型	

表 7 可控的分数阶CNN多元组合电路仿真

5 结论

研究了一个新的三维细胞神经网络系统及其在不同分数阶 q_i组合下的混沌动力学特性.理论分析和数 值计算结果表明,所构建的新的细胞神经网络系统在 整数阶及分数阶下不仅均能产生复杂的混沌动力学行 为,而且具有一定的拓扑性.同时结合分数阶电路理论 与多元组合电路思想,设计出参数可控的 CNN 可切换 阶值的电路原理图.仿真结果表明电路仿真与数值仿 真具有相似的混沌吸引子相图,验证了该系统理论分 析的正确性及实际物理上的可实现性,该设计方法具 有一定的普适性和实用推广性.

参考文献

- [1] L O Chua, L Yang. Celluar neural networks: Application
 [J]. IEEE Transactions Circuits and System I, 1988, 35 (10):1273 1290.
- [2] L O Chua, L Yang. Cellularneural networks: Theory [J].
 IEEE Transactions on Circuits and System I, 1988, 35 (10):1257 1272.
- [3] 赵廷钊. 基于细胞神经网络的煤仓图像处理方法的研究
 [J].煤矿机械,2014,35(5):185-186.
 Zhao Ting-zhao. Research on image processing method of coal bunker based on cellular neural networks [J]. Coal Mine Machinery,2014,35(5):185-186. (in Chinese)
- [4] 刘泉,李佩玥,章明朝,等. 基于可 Markov 分割混沌系统 的图像加密算法[J]. 电子与信息学报,2014,36(6):
 1271-1277.

Liu Quan, Li Pei-yue, Zhang Ming-chao. Image encryption algorithm based on chaos system having Markova portion [J]. Journal of Electronics and Information Technology, 2014,36(6):1271 – 1277. (in Chinese)

- [5] 徐小军,王友仁. 基于离散分数阶正交小波变换图像降噪新方法[J]. 电子学报,2014,42(2):280-287.
 Xu Xiao-jun, Wang Youren. Novel image denoising method based on discrete fractional orthogonal wavelet transform [J]. Acta Electronica Sinica,2014,42(2):280-287. (in Chinese)
- [6] 张迎迎,周立群. 一类具多比例延时的细胞神经网络的指数稳定性[J]. 电子学报,2012,40(6):1159-1163.
 Zhang Ying-ying, Zhou Li-qun. Exponential stability of a class of cellular neural networks with multi-pantograph delays[J]. Acta Electronica Sinica, 2012, 40(6):1159-1163. (in Chinese)
- [7] Slavova A, Rashkova V. A novel CNN based image denoising model[A]. The 20th European Conference on Circuit Theory and Design (ECCTD)[C]. USA: IEEE, 2011. 226 229.
- [8] Deng S, Tian Y, Hu X, et al. Application of new advanced CNN structure with adaptive thresholds to color edge detection [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(4):1637 – 1648.
- [9] Caponetto R. Fractional Order Systems: Modeling and Control Applications[M]. Singapore: World Scientific, 2010.
- [10] 孙克辉,杨静利,丘水生. 分数阶混沌系统的电路仿真 与实现[J]. 计算机仿真,2011,28(2):117-119.
 Sun Ke-hui, Yang Jing-li, Qiu Shui-sheng. Circuit simulation and implement for fractional-order chaotic systems
 [J]. The Computer Simulation,2011,28(2):117-119. (in Chinese)

- [11] 贾红艳,陈增强,薛薇. 分数阶 Lorenz 系统的分析及电路实现[J]. 物理学报,2013,62(14):140503 140503.
 Jia Hong-yan, Chen Zeng-qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system[J]. Acta Physica Sinica, 2013,62(14):140503 140503. (in Chinese)
- [12] 张广军,董俊,姚宏,等. 分数阶 Chen 混沌系统的完全
 同步与反向同步[J]. 应用力学学报,2013,30(2):201-205.

Zhang Guang-jun, Dong Jun, Yao Hong, et al. The complete synchronization and anti-phase synchronization of the fractional-order Chen chaotic system [J]. Chinese Journal of Applied Mechanics, 2013, 30(2); 201 – 205. (in Chinese)

- [13] Chua L O, Lin G. Canonical realization of Chua's circuit family [J]. IEEE Transactions on Circuits and System, 1990,37(7):885-902.
- [14] 廖晓昕. 细胞神经网络的数学理论(II)[J]. 中国科学 (A辑),1994,24(10):1037-1046.
 Liao Xiao-xi. The mathematical theory of cellular neural networks (II)[J]. China Science (A),1994,24(10): 1037-1046. (in Chinese)
- [15] Silva C P. Shil'nikov's theorem-a tutorial [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1993, 40(10):675-682.
- [16] Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications [M]. USA: Academic Press, 1998.
- [17] A Charef, H H Sun, Y Y Tsao, B Onaral. Fractal system as represented by singularity function [J]. IEEE Transactions on Automatic Control, 1992, 37(9):1465 - 1470.
- [18] 张小红,孙强. 异分数阶混沌系统构造及多元电路仿真
 [J]. 系统仿真学报,2014,26(7):1460-1466.
 Zhang Xiao-hong, Sun Qiang. Construction of a heterogeneous fractional-order chaotic system and its multiple circuits simulation[J]. Journal of System Simulation,2014, 26(7):1460-1466. (in Chinese)

[19] 许喆,刘崇新,杨韬. 基于 Lyapunov 方程的分数阶新混 沌系统的控制 [J]. 物理学报, 2010, 59 (3): 1524 - 1531.

Xu Zhe, Liu Cong-xin, Yang tao. Controlling fractionalorder new chaotic system based on Lyapunov equation [J]. Acta Physica Sinica, 2010, 59(3):1524 – 1531. (in Chinese)

[20] 曹鹤飞,张若洵.基于单驱动变量分数阶混沌同步的参数调制数字通信及硬件实现[J].物理学报,2012,61
 (2):123-130.

Cao He-fei, Zhang Ruo-xun. Parameter modulation digital communication and its circuit implementation using fractional order chaotic system via a single driving variable [J]. Acta Physica Sinica, 2012, 61 (2): 123 – 130. (in Chinese)

作者简介

张小红 女,1966 年 8 月出生,河北昌黎 人. 现为江西理工大学信息工程学院教授、博 士、硕士生导师. 研究方向为无线传感器网络、 非线性动力学理论、混沌保密通信. E-mail;xiaohongzh@263.net

俞梁华 男,1989 年 2 月出生,江西上饶 人.2013 年在江西理工大学获得学士学位,现为 江西理工大学硕士研究生.主要从事细胞神经 网络方面的研究工作.