电子科技大学

2016年攻读硕士学位研究生入学考试试题

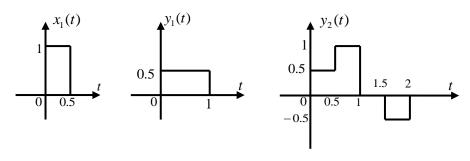
考试科目: 858 信号与系统

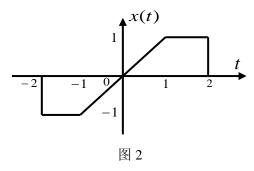
注: 所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。

	英语类技能(+ 05 八	有販ェハ ン		
– `	单项选择题(共 25 分,	母越 3 万 /		
1,	设 $h[n]$ 是离散时间LTI系统的单位冲激响应,下面哪个系统是因果和稳定的(
	A) $h[n] = nu[n]$		B) $h[n] = \cos(\frac{\pi}{8}n)u[n]$	2-1]
	C) $h[n] = \cos(\frac{\pi}{3}n)(\frac{1}{2})^n u[$	n-1]	D) $h[n] = (\frac{1}{2})^n \{u[n +$	$1]-u[n-4]\}$
2,	设信号 $y(t) = e^{-2t} * e^{-t} u(t)$,则 $y(t)$ 可能是下面哪个信号 ()			
	$A) y(t) = -e^{-2t}$	B) $y(t) = \frac{1}{3}e^{-2t}$	$C) y(t) = -e^{-2t}u($	(t) D) 不存在
3,	已知信号 $x[n] = 2u[n+2] - 3u[n] + u[n-3]$ 和 $h[n] = 2\delta[n+1] + \delta[n-1]$,则 $y[n] = x[n] * h[n]$ 为) A) $y[n] = \{4,4,0,0,-3,-1,-1\}, n = -3,-2,-1,0,1,2,3$			
	B) $y[n] = \{2,2,1,1,-1,-1,-1\}, n = -3,-2,-1,0,1,2,3$			
	C) $y[n] = \{4,4,-3,-1,-1\}, n = 0,1,2,3,4$ D) $y[n] = \{2,2,1,1,-1,-1,-1\}, n = 0,1,2,3,4,5,6$			
4、 能为		的傅里叶级数系数	(b) a_k ,若某两条谱线	间隔为 $\frac{\pi}{2}$,则基本周期可
	A) $\frac{\pi}{2}$	B) 8	C) 2	D) $\frac{1}{4}$
	已知 $h[n]$ 是一个 LTI 系 $\frac{1}{2}$ 和 $Z = 4$ 两个极点。 $\frac{1}{2}$			Z)在有限的 Z 平面上仅有 C表的系统是()
	A)非因果、稳定 B)	因果、非稳定	C) 非因果、非稳定	D) 因果、稳定

二、填空题(共20分,每题5分)

- 1、已知信号 x(t) = 2[u(t+2) u(t-2)],则 x(t) 傅里叶变换 $X(j\omega)$ 在 $-\frac{5\pi}{3} < \omega < \frac{5\pi}{3}$ 频带内有个过零点。
- 2、已知信号 $x_1(t) = tu(t) 2(t-1)u(t-1) + (t-2)u(t-2)$ 和 $x(t) = x_1(t) * \sum_{k=-\infty}^{+\infty} \delta(t-6k)$,则 x(t) 的直流分量为_____。
- 3、 若信号 x[n]的 Z 变换为 $X(Z) = \frac{1}{(1 + \frac{1}{4}Z^{-2})(1 Z^{-1})}$,则 x[n]可能有_____种形式。
- 4、对一个 10Hz 的音频信号 x(t) 进行采样,若要能不失真地恢复原信号 x(t) ,则一分钟至少应采样______点。
- 三、 (8分) 已知系统的闭式表达为 $y(t) = x(t) \sum_{k=-\infty}^{+\infty} \delta(t-2k)$, 请确定
- (1) 系统是否是线性系统?
- (2) 系统是否是时不变系统?
- (3) 系统是否是因果系统?
- (4) 系统是否是稳定系统?
- **四、**(10 分)已知 LTI 系统,输入 $x_1(t)$ 时输出 $y_1(t)$,输入 $x_2(t)$ 时输出 $y_2(t)$,其中 $x_1(t)$ 、 $x_1(t)$ 、 $y_2(t)$ 如图 1 所示
- (1) 画出 $x_2(t)$ 的图形并写出表达式
- (2) 画出 $\int_{-\infty}^{t} x_2(\tau) d\tau$ 的图形




图 1

五、(10 分)已知离散时间线性时不变系统的单位冲激响应 $h[n]=(\frac{1}{4})^nu[n]$,若输入信号 $x[n]=\sum_{k=-\infty}^{+\infty}(-1)^k\delta[n-k]$,求输出信号 y[n] 的傅里叶级数表达式

六、(10分)计算下列积分


(1)
$$\int_{-5}^{5} (e^{-2t}u(t+1))u_1(t)dt$$
 (2) $\int_{-\infty}^{+\infty} \left[\frac{\sin(2t)\sin(3t)}{\pi t^2}\right]^2 dt$

七、(12 分)已知连续时间信号x(t)如图 2 所示

- (1) $\vec{x} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega} d\omega$
- (2) 求x(t)的傅里叶变换 $X(j\omega)$

八、 (15 分) 连续系统如图 3 所示,其中 $h_1(t) = \frac{\sin 3\pi}{\pi t}$, $h_2(t) = \frac{\sin \pi}{\pi t}$, $h_3(t) = \frac{4\sin 2\pi}{\pi t}$, $p(t) = \sum_{k=-\infty}^{+\infty} \delta(t - \frac{1}{2}k)$, 若输入信号 $x(t) = (\frac{\sin \pi}{\pi t})^2$, 画出 $y_1(t)$, $y_2(t)$, $y_3(t)$ 与 y(t) 的频 谱

九、(10分)求下列信号的变换

- (1) 已知 $X(j\omega)$ 是 x(t) 的傅里叶变换,用 $X(j\omega)$ 表示 $\frac{dx(-2t)}{dt}$ 的傅里叶变换
- (2) 已知信号 $x(t) = te^{-t}u(t-1)$, 求 x(t) 的拉普拉斯变换。

十、(15 分) 一个因果 LTI 系统 S_1 的单位冲激响应为 h(t) ,其输入 x(t) 、输出 y(t) 可以用以下微分方程来描述

$$\frac{d^3y(t)}{dt^3} + (1+2a)\frac{d^2y(t)}{dt^2} + a(2+a)\frac{dy(t)}{dt} + a^2y(t) = x(t)$$

有另外一个LTI系统 S_2 ,单位冲激响应为g(t),两个系统的单位冲激响应有如下关系

$$g(t) = \frac{dh(t)}{dt} + h(t)$$

- (1) 确定实数 a 的范围,以确保 g(t) 所代表的系统是稳定的
- (2) 若输入 x(t)=1时,LTI 系统 S_2 的输出 $y(t)=\frac{1}{4}$,求 LTI 系统 S_1 的单位冲激响应 h(t)

十一、(15分)已知一个稳定的离散时间线性时不变系统由线性常系数差分方程

$$y[n+1] - \frac{9}{4}y[n] + \frac{1}{2}y[n-1] = x[n]$$
 确定。

- (1) 求该系统的系统函数H(Z),并画出对应的零极图
- (2) 求该系统的单位冲激响应 h[n]
- (3) 判断该系统的因果性
- (4) 求输入 x[n] = u[n] 时的输出 y[n]
- (5) 画出表示该系统的模拟框图