大落差天然气管道清管冲击分析

李长俊 刘浠尧 贾文龙 彭阳 西南石油大学石油与天然气工程学院

摘要:中缅天然气管道沿线地势复杂,形成了很多的大落差管段,最大处可达1000多米, 给清管作业带来了相当大风险。针对某大落差管段,采用OLGA软件分析了清管器在管内的运 行速度与持液率变化,得出管道承受的冲击载荷,再利用CAESARII软件分析了在此荷载作用下 管道应力与位移变化。研究结果表明,清管器在作业时,管道内部的输送压力对大落差管段的 冲击荷载影响明显;管道在土壤中的横向和纵向位移均较小;在积液量较少情况下,清管器速 度与持液率的增加对冲击应力影响较小。

关键词: 天然气管道; 大落差管段; 清管; 冲击荷载; OLGA; CAESARII doi:10.3969/j.issn.1006-6896.2015.12.017

从云南瑞丽市进入中国境内的天然气管道,在 清管作业时,液体在清管器推动下经过大落差管段 会产生较大的冲击荷载,极易导致管道失效。国内 学者多以实验与数值模拟相结合的方式研究清管器 在管道中的运行规律^[1-2],以及沿坡敷设输气管道的 应力^[3]。但关于大落差管道在清管作业时液体对管 道冲击影响的研究^[4],国内却较少开展。根据中缅 天然气管道落差较大、里程较长的特点,分析了某 大落差管段的应力与位移影响,以评估清管作业时 管道的安全性。

1 基于OLGA大落差管道清管分析

1.1 大落差管段模型建立

以云南省内某段中缅大落差埋地管道为例,利 用 OLGA 软件⁶⁹建立了清管模型,沿线高程如图 1 所示。

根据该管线实际出口压力 6 470 kPa、入口流量1 420×10⁴ m³/d、总积液量 500 m³,可以得到清 管器运行速度和管道内持液率的变化。

1.2 清管器运行速度变化

设定管道稳定运行1.5h后,从首站投入清管器,模拟清管过程中清管球的运动速度,跟踪清管球的运动位置,结果如图2所示。

图 2 清管球运动速度与运行位置分析

由图2可看出,清管器最大运行速度为8.0 m/s, 当清管器到达22^{*}阀室后,清管器的速度出现了较 大的波动,说明液体主要积聚在22^{*}阀室至末站的 大落差管段间;因此,对该管段持液率需进一步 分析。

1.3 管内持液率变化

分别模拟了不同时间(25、26h)从22[#]阀室 至末站管内持液率变化情况,如图3~图4所示。

基金论文: 国家自然科学基金奖项目"天然气管道跨越结构清管动力响应实验及理论研究"(51174172)。

图 4 清管开始 26 h 后 22^{*}阀室至末站持液率情况

由图4可知,当清管进行26h后管内的持液率 介于0.4~1.0之间;当清管进行31h后,管道持液 率最大为1.0;当清管进行32h时,管线内的积液 被清出,几乎无积液。

1.4 冲击荷载计算

对液体通过弯头进行受力分析,如图5所示。 由动量和能量方程得到液体对管道的冲击荷载为

$$\begin{cases} R_x = \rho A v^2 (1 - \cos \alpha) \times h_L \\ R_y = \rho A v^2 \sin \alpha \times h_L \end{cases}$$
(1)

式中 R_x 、 R_y 为液柱对管道在轴向和纵向上的 推力 (N); v 为清管球速度 (m/s); A 为管道的过 流面积 (m²); α 为弯头与水平坐标轴之间的角 度 (°); ρ 为清管液柱的密度 (kg/m³); h_L 为管 道坡底弯头处的持液率。

图 5 清管过程液体对管道的受力分析

2 基于CAESARII大落差管段冲击分析

2.1 大落差管段模型建立

22[#]阀室至末站管段全长12.08 km,高程差 为1016.36 m,该管段清管工况分析模型如图6所 示,管段局部放大模型如图7所示。沿线管段参数 和土壤参数见表1和表2。

2.2 清管应力与位移分析

基于前述OLGA软件模拟,分析4种输送压力 (6.78、6.57、6.55、6.47 MPa)下管道的最大应力 与位移,结果见表3和表4。

材料	外径/ mm	直管 壁厚/ mm	弯管 壁厚/ mm	腐蚀 裕量/ mm	介质 密度/ kg・m ⁻³	保温层 厚度/ mm	安装 温度/ ℃	操作 温度/ ℃
X70钢	1016	17.5	22.5	0.1	95	0	20	50

表2 土壤参数

摩擦因数	土壤密度/	到管顶埋深/	摩擦角度/	压实	热膨胀
	kg・m ⁻³	m	(°)	系数	系数
0.6	0.001 686	1.6	0	3	0.015

由表3可知,在不同工况下,管道最大应力随 着管道内压、持液率、清管器运行速度增大而增 大,但持液率和清管器速度的增加对于管道最大应 力影响较小,而管道内压力的压微小变化都将导致 管道最大应力的显著变化,表明管内压力对管道最 大应力的影响较大。

为了直观地显示出整条大落差管段的纵向和横 向位移情况,特将输送压力为6.78 MPa、持液率为 1.0、清管器速度为8.0 m/s 时整个管段的纵向位 移、横向位移采用图8和图9进行描述。

由图8和图9可知,大落差管段整体横向和纵 向位移较小,均不超过0.25 mm。结果表明,土壤 摩擦力足以抵消清管时液体对管道冲击产生的位 移,不会导致管道下滑。

表3 不同工况下的最大应力值					表4 不同工况下的最大位移值					
	管道内压/ MPa	管道持液率	清管器运行速度/ m・s ¹	管道最大应力/ MPa		管道内压/ MPa	管道 持液率	清管器运行速度/ m・s ⁻¹	管道最大横向 位移/mm	管道最大纵向 位移/mm
		0.4	6.0	207.12			0.4	6.0	0.126	0.185
	6.78	0.8	7.0	207.68		6.78	0.8	7.0	0.159	0.207
		1.0	8.0	208.56			1.0	8.0	0.232	0.223
		0.4	6.0	203.14		6.57	0.4	6.0	0.164	0.153
	6.57	0.8	7.0	203.76			0.8	7.0	0.172	0.182
		1.0	8.0	204.89			1.0	8.0	0.185	0.221
		0.4	6.0	199.79			0.4	6.0	0.146	0.154
	6.55	0.8	7.0	200.57		6.55	0.8	7.0	0.165	0.188
		1.0	8.0	201.32			1.0	8.0	0.182	0.214
		0.4	6.0	187.28			0.4	6.0	0.116	0.158
	6.47	0.8	7.0	187.98		6.47	0.8	7.0	0.146	0.183
		1.0	8.0	188.43			1.0	8.0	0.172	0.203

结论 3

(1) 管内压力对大落差管段的冲击荷载影响明 显。在输送压力为6.78 MPa、持液率为1.0、清管 器运行速度为8.0 m/s时,管段所受最大应力为 208.56 MPa, 但仍在许用应力范围内, 管道处于安 全状况。

(2) 在土壤约束下,管道的横向和纵向位移均 较小,清管器推动液体对管道产生冲击的过程中, 管道不会发生明显移动。

(3) 清管器速度以及持液率的增加对冲击应力 的影响基本呈增大趋势,但影响不显著。

(4) 随着管内出现液体段塞, 清管器速度波动

较大,且清管器速度基本处于2.0~8.0 m/s范围内。 参考文献

- [1] 刘宏波, 吴明, 周立峰. 输油管线中清管器运行规律研究[J]. 天然气与石油, 2006, 24 (1): 33-35.
- [2] 徐小波,马国光,刘昕,等. 气管线清管过程中的问题及解决 方法[J]. 油气田地面工程, 2011, 30 (1): 57-58.
- [3] 黄坤,吴世娟,卢泓芳,等.沿坡敷设输气管道应力分析[J]. 天然气与石油, 2012, 30 (4): 1-4.
- [4] 曾鸣, 宋尚娜, 王文明, 等. 基于有限元法的大落差管段清管 冲击分析[J]. 天然气工业, 2013, 33 (5): 101-103.
- [5] 叶斌. 国内外多相流模拟软件综述[J]. 油气田地面工程, 2012, 31 (2): 85-86.

[第一作者简介]李长俊:从事油气储运相关研究工 作。18349296337、350378817@qq.com

收稿日期 2015-04-26

(栏目主持 张秀丽)

