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Abstract

In this paper, we present new adaptively secure identity-based encryption (IBE) schemes.
One of the distinguishing properties of the schemes is that it achieves shorter public parameters
than previous schemes. Both of our schemes follow the general framework presented in the
recent IBE scheme of Yamada (Eurocrypt 2016), employed with novel techniques tailored
to meet the underlying algebraic structure to overcome the difficulties arising in our specific
setting. Specifically, we obtain the following:

- Our first scheme is proven secure under the ring learning with errors (RLWE) assump-
tion and achieves the best asymptotic space efficiency among existing schemes from the same
assumption. The main technical contribution is in our new security proof that exploits the
ring structure in a crucial way. Our technique allows us to greatly weaken the underlying
hardness assumption (e.g., we assume the hardness of RLWE with a fixed polynomial approx-
imation factor whereas Yamada’s scheme requires a super-polynomial approximation factor)
while improving the overall efficiency.

- Our second IBE scheme is constructed on bilinear maps and is secure under the 3-
computational bilinear Diffie-Hellman exponent assumption. This is the first IBE scheme
based on the hardness of a computational/search problem, rather than a decisional problem
such as DDH and DLIN on bilinear maps with sub-linear public parameter size.

1 Introduction

Background. Identity-based encryption (IBE) is a generalization of public key encryption (PKE)
where the public key of a user can be any arbitrary string such as an e-mail address. The con-
cept of IBE was first proposed by Shamir [Sha85] in 1984, but it took nearly two decades for
the first realizations of IBE [SOK00, BF01, Coc01] to appear. Since then, the construction of
IBE has been one of the central topics in cryptography. Nowadays, we have constructions of
IBEs from assumptions on bilinear maps [BF01, BB04a, BB04b, Wat05, Gen06, Wat09], the
quadratic residue assumption [Coc01, BGH07], and from the learning with error (LWE) assump-
tion [GPV08, CHKP10, ABB10] whose hardness is implied by the worst case reductions to certain
lattice problems [Reg05].
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One of the most standard security definitions for IBE is the adaptive security, or often called
full security. While it is not quite hard to obtain the adaptive security for an IBE in the ran-
dom oracle model [BF01, Coc01, GPV08], the realization in the standard model is much harder.
Roughly speaking, currently there are two general techniques in achieving adaptive security in
the standard model: the partitioning technique [BB04b, Wat05] and the dual system encryption
methodology [Wat09, LW10]. The latter is very attractive, because it allows us to construct very
efficient IBE schemes [CW13, JR13] and even more advanced cryptosystems such as attribute-
based encryptions [LOS+10] with adaptive security. However, it inherently relies on decisional
assumptions on bilinear maps (e.g., SXDH and DLIN) and cannot be extended to the proofs
based on computational assumptions on bilinear maps (e.g., computational bilinear Diffie-Hellman
(CBDH) assumption) or assumptions on lattices. On the other hand, the application of the for-
mer technique is wider. We can construct adaptively secure IBE from the CBDH assumption
(by the straightforward combination of the Goldreich-Levin bit [GL89] and Waters IBE [Wat05])
and from the LWE assumption [CHKP10, ABB10, Boy10]. However, IBE schemes constructed
from the former approach typically requires larger parameters due to the use of the Waters’ hash
[Wat05] or the admissible hash [BB04b, CHKP10].

Very recently, Yamada [Yam16] constructed IBE schemes from lattices based on the parti-
tioning technique with novel ideas that are different from the Waters’ hash or the admissible
hash. His schemes achieve asymptotically shorter public parameters than previous works. One of
the drawbacks of the schemes is that they require super-polynomial size modulus for LWE. As a
result, their ciphertexts are longer than those of previous works by a rather large super-constant
factor. In addition, they have to assume the hardness of the LWE problem for all polynomial
(i.e., O(nc) for all c ∈ N) or the more aggressive super-polynomial approximation factor. Though
their assumption is plausible, it is much stronger than those used in the previous works where
the hardness of the LWE problem for some fixed polynomial approximation factor (i.e., O(nc)
for some c ∈ N) is assumed. Furthermore, since he used fully homomorphic computations of
trapdoors [BGG+14], a technique unique to the lattice setting, it is a highly non-trivial task to
construct analogous schemes in other settings such as bilinear maps.

Our Contribution. In this paper, we focus on the constructions of adaptively secure IBE in these
settings where dual system encryption methodology is unavailable. In particular, we propose IBE
schemes with shorter public parameters from ring/ideal lattices and from a certain computational
assumption (rather than a decisional assumption) on bilinear groups, by extending and adding
twists to the techniques of [Yam16]. Specifically, we obtain the following results. See Table 1 and
2 for the overview.

• We propose an anonymous and adaptively secure IBE scheme from the ring LWE (RLWE)
assumption with fixed polynomial approximation factors, which is further reduced to certain
worst case problems on ideal lattices. Note that simply instantiating Yamada’s scheme us-
ing ideal lattices1 will still require the RLWE assumption for all polynomial approximation
factors, which is a much stronger assumption than what we use. As for the efficiency, the
size of the public parameters, private keys, and ciphertexts in our scheme are O(nκ1/d log n),
O(n log n), and O(n log n), respectively. Here, n is the dimension of the ring elements, κ
is the length of the identities, and d is a flexible constant that can be set arbitrary, but
will affect the reduction cost exponentially. We note that all of them achieve the best
efficiency among the other adaptively secure IBE from the RLWE assumption in an asymp-

1Note that he does not describe nor mention the ring variant of the scheme. However, we can convert his scheme
into a ring variant in a straightforward manner as is the case in most previous works [CHKP10, ABB10, Boy10].
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totic sense. Compared to the ring version of Yamada’s scheme, we managed to reduce the
poly-logarithmic factors contained in the public parameters, private keys, and ciphertexts.

• We propose a (non anonymous and) adaptively secure IBE scheme from the 3-computational
bilinear Diffie-Hellman exponent (3-CBDHE) assumption. The 3-CBDHE assumption is a
weaker variant of the n-decisional bilinear Diffie-Hellman exponent (n-DBDHE) assumption
[BBG05, BGW05, BH08]. The former seems to be much a weaker assumption than the
latter in two aspects. First, the former is a computational assumption whereas the latter is
a decisional assumption. Second, the former is not a parameterized assumption, in the sense
that the size of the problem instance only depends on the security parameter. As for the
efficiency, the public parameters, private keys, and ciphertexts in our scheme require O(

√
κ)

group elements. Here, κ is the length of the identities. This is the first adaptively secure
IBE scheme from a computational assumption on bilinear groups with public parameters
consisting of sub-linear number of group elements in the length of the identities. However,
we note that the sizes of the ciphertexts and private keys of our scheme are larger than the
previous schemes.

We emphasize that our result for the lattice based construction cannot be obtained through
the simple switch to the ring setting in Yamada’s scheme. Their proof will still require a super-
polynomial-size modulus to work, whereas our new technique allows for a polynomial-size modulus.
In addition, the security proof of our scheme requires new ideas that did not appear in [Yam16]. It
exploits the commutative properties of the underlying ring elements in an essential way, involves
a more generalized partitioning argument, and a careful analysis of the Gaussian error. Refer
Sec. 2 for the technical overview. We note that the public parameter of our second scheme could
be further reduced to O(κ1/d) assuming the d+ 1-CBDHE assumption. However, it would come
at the cost of even longer ciphertexts and complicated description of the scheme. This is beyond
the scope of our work. We finally remark that the reduction costs for both of our schemes are
inadmissible as was in the case of [Yam16]. In fact, the reduction loss for the first scheme is worse
than [Yam16]. Improving them is left as an open problem.

Related Works. One way to reduce the size of the public parameters in Waters’ hash and
its analogue is to use Naccache’s approach [Nac07, SRB12]. However, with this approach, we
are only allowed to reduce the size of public parameters up to logarithmic factor. Ducas et
al. [DLP14] constructed efficient IBE over NTRU lattices in the random oracle model. Gentry
[Gen06] proposed adaptively secure IBE with compact parameters from a parameterized (or q-
type) assumption on bilinear maps. Galindo [Gal10] and Chen et al. [CCZ11] proposed selectively
secure CCA-secure IBE schemes from the CBDH assumption.

Note on Recent Works. Here, we mention two important recent related works.
Apon et al. [AFL16] proposed an adaptively secure IBE scheme from lattices whose parameters

are very compact, using collision resistant hash function with output-length κ = ω(log λ). Here,
λ is the security parameter. While their scheme is more efficient than our scheme, we clarify
that they implicitly assume exponential security on the collision resistant hash function, which
is a stronger assumption than what we use. To demonstrate this, let us set κ = log2 λ. If there
is no better attack than the birthday attack against the hash function, no PPT adversary can
find a collision with more than negligible probability. On the other hand, the existence of even
a sub-exponential time attack would compromise the security of the IBE. For example, assume
that there exists an attack that finds a collision in time 2

√
κ. Then, the collision for the hash can

be found in linear time in λ, since 2
√
κ = 2log λ = λ.
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In their very recent work, Zhang et al. [ZCZ16] constructed an IBE scheme with poly-
logarithmic public parameters. While their scheme achieves better asymptotic space efficiency
than our scheme, their scheme is Q-bounded, in the sense that the security of the scheme is not
guaranteed any more if the adversary obtains more than Q private keys. This restriction can-
not be removed by just making Q super-polynomial, because the running time of the encryption
algorithm in their scheme is at least linear in Q. We note that our scheme is secure against an
unbounded collusion.

2 Overview of Our Techniques

2.1 Construction from Ring and Ideal Lattices

The Yamada IBE. We briefly review the Yamada IBE [Yam16], for our proposed IBE scheme
follows the framework of theirs and overcomes some of the major problems posed by their con-
struction. Their construction follows the general framework of constructing lattice-based IBE
schemes that associates to each identity ID the matrix [A|H(ID)] ∈ Zn×2m

q . In previous IBE
constructions [ABB10, CHKP10], the function H(ID) was computed by using the rather long κ
public matrices {Bi}i∈[κ], where κ = O(n) is the length of the identities. The main technical

contribution of the Yamada IBE was in reducing the size of the public matrices to κ1/d for any
constant d and hence reducing the size of the public parameters by incorporating a primitive
called fully homomorphic trapdoor functions. Hereafter, we consider the case d = 2 for simplicity.
In detail, they used an injective map S : {0, 1}κ → 2[`]×[`] that maps an identity to a subset of
the set [`]× [`] where ` = dκ1/2e, and computed the function H(ID) as

H(ID) = B0 +
∑

(i,j)∈S(ID)

B1,i ·G−1(B2,j) (1)

where the number of public matrices B0, {Bi,j}(i,j)∈[2]×[`] are now reduced to O(κ1/2). Here, G
is a special gadget matrix whose trapdoor is publicly known [MP12] and G−1 is viewed as a
deterministic function rather than a matrix, that maps a matrix V ∈ Zn×mq to a matrix U ∈
{0, 1}m×m such that GU = V mod q.

During the security proof, the reduction algorithm first prepares random integers y0, {yi,j}(i,j)∈[2]×[`] ∈
Zq from certain domains whose size grows linear in the number of key extraction query Q of the ad-
versary. Then after sampling R0, {Ri,j}i∈[2],j∈[`] ∈ Zm×m with small spectral norm, the reduction
algorithm prepares the public parameters as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG (2)

for (i, j) ∈ [2] × [`]. Then during the security reduction the hash value for identity ID Eq.(1) is
computed as

H(ID) = (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,i + y1,iG) ·G−1(B2,j)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,iG
−1(B2,j) + y1,iB2,j)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(
AR1,iG

−1(B2,j) + y1,i(AR2,j + y2,jG)
)

4



= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(
AR1,iG

−1(B2,j) + A(y1,iR2,j) + y1,iy2,jG
)

= A

R0 +
∑

(i,j)∈S(ID)

(
R1,iG

−1(B2,j) + y1,iR2,j

)
︸ ︷︷ ︸

:=RID, which is “small”

+

y0 +
∑

(i,j)∈S(ID)

y1,iy2,j


︸ ︷︷ ︸

:=Fy(ID)

·G

= ARID + Fy(ID)G. (3)

Observe that we implicitly relied on the fact that A and y1,i commutes. Therefore, the reduction
algorithm is able to sample a secret key for ID using the trapdoor of G if and only if Fy(ID) 6= 0
mod q. Hence, the simulation succeeds when the adversary queries on secret keys for ID satisfying
Fy(ID) 6= 0 mod q, and queries for a challenge ciphertext for ID? satisfying Fy(ID?) = 0 mod q
in which case the reduction algorithm can embed its LWE challenge.

Overview of the Construction and Security Proof. The major drawback of the Yamada
IBE is that they require the modulus size q to be super-polynomial. This stems from the fact
that the size of y0, yi,j ∈ Zq must grow linearly in the number of adversarial key extraction query
Q for the security proof to be meaningful, i.e., Pry[Fy(ID?) = 0∧Fy(ID1) 6= 0∧ · · · ∧Fy(IDQ) 6= 0]
is noticeable in n. However, since the size of the G-trapdoor RID used during simulation grows
proportionally to the size of y1,i (check above Eq.(3) to see how RID was created), thereby growing
proportional to Q = poly(n), we need to set the modulus size q to be at least super-polynomial in
n for the trapdoor to operate properly. Therefore, if we try to restrict ourselves to a polynomial
sized modulus q, it seems the best we can achieve is a scheme where we have to set a bound on
the number of adversarial key extraction queries before instantiation, i.e., a Q-bounded scheme.

In our work, we combine several ideas in a novel way to circumvent the above seemingly
inevitable problem. The first idea is to extend the elements y0, yi,j ∈ Zq to matrices Y0,Yi,j ∈
Zn×nq so that instead of increasing the size of the element y ∈ Zq, we can “pack” small elements
in the entries of the matrix Y ∈ Zn×nq . Namely, since the matrix has n2 entries, if the number of
key extraction query is Q = nc for some constant c, we can always set up the matrix so that c of
the entries are packed by elements of size O(n). Since there are n2 entries in total, this allows us
to pack the matrix with small entries (e.g., O(n)) for arbitrary Q = poly(n) without the need of
increasing the modulus size q. However, this simple idea alone does not work, since during the
security proof to obtain Eq.(3), we crucially relied on the fact that A and y1,i commutes. For our
idea to work we need the two matrices A and Y1,i to commute, however, in general this does not
hold.

To overcome this problem, we introduce our second idea of using the ring structure of ideal
lattices. Concretely, we use the special polynomial ring R = Z[X]/(Xn + 1) to construct our
scheme for n a power of 2. The construction itself is exactly the same as the ring analogue of the
Yamada IBE, however, our new security proof relies crucially on the underlying ring structure.
In detail, the reduction algorithm prepares the public parameters as

b0 = aR0 + y0g, bi,j = aRi,j + yi,jg (4)

for (i, j) ∈ [2]× [`], where a, b0, bi,j ∈ Rkq , R ∈ Rk×kq , y0, yi,j ∈ Rq and g ∈ Rkq is the ring analogue
of the G-trapdoor. Observe that y0, yi,j are now elements in Rq instead of Zq. Although this y is
not quite a matrix, this is actually more than enough for us to use the packing technique described
above. This can be seen by first noticing the natural isomorphism between Rq ∼= Znq induced by
the coefficient embedding and viewing y ∈ Rq as a vector in Znq . Since y has n entries when viewed
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as vectors, it can support up to nn queries by packing each entry with small elements of size O(n).
Furthermore, the second part of the problem addressed above is naturally resolved, since now that
we are working in a ring we get the commutativity of a and y1,j for free. This key role in the
commutativity for rings is somewhat reminiscent to the signature scheme of [DM14]. We note
that the technique used by [Alp15] (which has also been used in [Xag13]) to extend the results
of [DM14] to matrices seems to be inapplicable in our setting. This is because in our setting we
need to commute the LWE challenge matrix A instead of the gadget matrix G whose associating
trapdoor is known. To summarize, by incorporating our second idea, we obtain the ring variant
of Eq.(3) and the trapdoor operates as specified. We note that one might be tempted to pack the
entries of y with constant size elements, since 2n is still exponential in n and hence Q(n) < 2n.
However, the security proof relies heavily on the fact that the density (i.e., the number of entries
that are packed) of y is bounded by some constant. Therefore, we must choose the size of the
packed elements with care to make the overall scheme secure.

The final idea is carefully crafting a properly distributed challenge ciphertext. To be precise,
the main issue is in the difficulty of creating a ciphertext that has errors that are properly dis-
tributed. This problem of generating a properly distributed challenge ciphertext was addressed
in [Yam16] as well, however, they used the standard technique called the “smudging” or “noise
flooding” technique which came at the cost of making the modulus size q super-polynomial in n.
This was not a problem for them, since as we pointed out earlier, their scheme inherently needed
a super-polynomial sized modulus to work. However, this tactic is inapplicable to our setting
since we want to restrict ourselves to the polynomial sized modulus. To overcome this we devise
a way to carefully craft the error term; a technique reminiscent of [GPV08, ACPS09]. First,
assume we have F(ID?) = 0 for the challenge identity ID? and thus H(ID) = ARID∗ . Note that
for ease of understanding we explain the technique in the matrix form instead of the ring form.
To prove security, we have to embed the LWE challenge A and v into the challenge ciphertext,
where v = sA + x or v a random vector. One natural way is to set

x1 = x, x2 = xRID? (5)

and compute the challenge ciphertext as

s[A|H(ID?)] + [x1|x2] = [v|vRID? ].

However, one can not simply use the standard generalized leftover hash lemma for lattices pre-
sented in [ABB10]; a technique often used in proving such forms. This is because RID? is not
uniformly sampled as in the case of [ABB10], but instead highly correlated to the values of y, {yi,j}
used during the simulation. Alternatively, we present a noise rerandomization technique and add
a small extra noise to Eq.(5) and statistically hide RID. Namely, we sample noises e1 and e2 from
a particular Gaussian distribution with variance computed from RID? and set

x1 = x + e1, x2 = xRID? + e2. (6)

Thus the challenge ciphertext is created as above by further adding the new noise terms. Although
the general idea of this technique has been around since [Reg05, GPV08] and has been used in
contexts elsewhere, as far as we know, we believe this is a nice application for rerandomizing the
noise without the need of adding a huge (super-polynomial sized) noise.

An Additional Idea. Working in the ring setting introduces some subtle yet crucial obstacles,
which we did not have to address before. Namely, for q a prime and n a power of 2, the domain
Rq = Z[X]/(q,Xn + 1) we work in is no longer a field as in the case of Zq. Additionally, if we use
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a modulus q such that q ≡ 1 mod 2n as in [LPR10, LPR13], the ring Rq completely splits into n
fields. In such a ring, each field only contains q = poly(n) elements so the Schwartz-Zippel lemma
during our security proof can not be applied. We get around this by using a modulus q such that
q ≡ 3 mod 8 where it is known to split into only two fields. Then, since each field now contains
qn/2 elements and Rq acts roughly as a field, we are able to apply our proof techniques. As for the
purpose of completeness, we prove the hardness of LWE over such rings by the straightforward
combination of previous results in the Appendix E. We finally note that we also obtain a nice
regularity lemma over such rings which helps us attain better parameters for the scheme.

We also employ some ideas to further optimize the sizes of the public parameters, secret keys
and ciphertexts. Namely, we use the (ring version of the) G-trapdoor where the base is set as nη

for some positive constant η. We use η = 1
4 for our concrete parameter selection. By incorporating

this idea, we can further reduce the size of the parameters by a factor of log n. However, this
comes at the cost of making the scheme less efficient, since the function G−1(·) has a slower
running time for a larger base.

2.2 Construction from Bilinear Maps

Here, we explain our IBE scheme from bilinear maps. We start with a slightly modified version
of Waters IBE [Wat05] and gradually modify it to obtain our scheme. Let us consider a group
G with prime order p whose generator is g. The group is equipped with a efficiently computable
bilinear map e : G × G → GT . The public parameters of the scheme contains rather long κ + 3
group elements {gwi}i∈[0,κ], g

α, gβ, and a randomness rand ∈ {0, 1}|GT | that is used to derive

the Goldreich-Levin hardcore bit function GL : {0, 1}|GT | × {0, 1}|GT | → {0, 1}. The form of the
ciphertexts and private keys in the scheme are as follows:

C =
(
gs, gsH(ID), GL

(
e(gα, gβ)s, rand

)
⊕M

)
, skID =

(
gαβ · grH(ID), g−r

)
where M ∈ {0, 1} is the message to be encrypted, and s and r are random elements in Zp that are
picked during the encryption and key generation algorithms, respectively.

Here, H : {0, 1}κ → Zp is defined as H(ID) = w0 +
∑

IDi=1wi where IDi is the i-th bit of ID.
The reason why we use the hardcore bit function is to base the security of the scheme on the
computational bilinear Diffie-Hellman (CBDH) assumption, rather than the stronger decisional
bilinear Diffie-Hellman (DBDH) assumption which was used to prove the security of the original
Waters IBE.

Next, we try to reduce the size of the public parameters using the idea of the Yamada IBE.
A natural way to do this would be to introduce the injective map S : {0, 1}κ → 2[`]×[`] with
` = dκ1/2e, change the public parameters to be gw0 , {gwi,j}(i,j)∈[2]×[`], and modify the function H
as

H(ID) = w0 +
∑

(i,j)∈S(ID)

w1,iw2,j . (7)

Through this change, we can reduce the size of the public parameters from O(κ) group elements to
O(
√
κ), just in as [Yam16]. However, we come across an immediate problem: We cannot efficiently

compute gsH(ID) from the public parameters! A straightforward solution to this problem is to put
“helper” terms {gw1,iw2,j} into the public parameters. However, this makes the size of the public
parameters large again.
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Our solution to this problem is to rely on the Boneh-Boyen technique [BB04a] to compute
something similar to the problematic term. Namely, we compute

gsH(ID)+
∑
j∈S(ID) t̃jw2,j , { gt̃j }j∈[`] (8)

instead of computing only gsH(ID). Here, {t̃j} are additional randomness introduced by the en-
cryption algorithm. Accordingly, we change the form of the ciphertexts and private keys of our
scheme as follows:

C =
(
gs, gsH(ID)+

∑
j∈[`] t̃jw2,j , {gt̃j}j∈[`], GL

(
e(gα, gβ)s, rand

)
⊕M

)
,

skID =
(
gαβ · grH(ID), g−r, {grw2,j}j∈[`]

)
. (9)

Note that although the size of the public parameters is smaller than the original scheme, the sizes
of the ciphertexts and private keys are larger due to the additional terms. We now show that one
can efficiently compute the ciphertext. In particular, we show that it is possible to generate the
terms in Eq.(8). To see this, let us introduce the variables {tj} such that

t̃j := tj − s

 ∑
i∈{i∈[1,`]|(i,j)∈S(ID)}

w1,i

 . (10)

Then, we have

sH(ID) +
∑
j∈[`]

t̃jw2,j

= sH(ID) +
∑
j∈[`]

w2,j

tj − s
 ∑
i∈{i∈[1,`]|(i,j)∈S(ID)}

w1,i


= sH(ID) +

∑
j∈[`]

w2,jtj − s
∑
j∈[`]

 ∑
i∈{i∈[1,`]|(i,j)∈S(ID)}

w1,iw2,j


= sw0 +

���������
s

∑
(i,j)∈S(ID)

w1,iw2,j +
∑
j∈[`]

w2,jtj −
���������
s

∑
(i,j)∈S(ID)

w1,iw2,j

= sw0 +
∑
j∈[`]

w2,jtj . (11)

Since Eq.(10) and (11) are linear in w0, wi,j , it can be seen that the terms in Eq.(8) can be
computed efficiently, as desired.

By substituting t̃j in Eq.(9) with the right-hand side of Eq.(8), we obtain our final scheme. As
for the security, we can prove the adaptive security of the scheme from the 3-computational bilinear
Diffie-Hellman exponent (3-CBDHE) assumption. We need to rely on this stronger assumption
than the standard CBDH assumption, because of the different algebraic structure incorporated
by the modified Waters IBE.

3 Preliminaries

Notations. We use non-italic bold lowercase letters (e.g., v) for vectors with entries in R and italic
bold lowercase letters (e.g., v) for vectors with entries in rings or number fields. We view vectors
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in the row form stated otherwise. Matrices are denoted by uppercase bold letters analogously. For
a vector v ∈ Rn, denote ‖v‖p as the Lp-norm, where p = 2 is the standard Euclidean norm. For a
matrix R ∈ Rn×n, denote ‖R‖GS as the longest column of the Gram-Schmidt orthogonalization of
R and denote s1(R) as the largest singular value (spectral norm). We denote [·|·] (resp. [·; ·]) as
the horizontal (resp. vertical) concatenation of vectors and matrices. We denote [a, b] as the set
{a, a+ 1, . . . , b− 1, b} for any integers a, b ∈ N satisfying a ≤ b, and for simplicity write [b] for the
special case a = 1. For a (quotient) polynomial ring R over Z, we denote [−b, b]R ⊆ R as the set of
elements in R with all coefficients in the interval [−b, b]. Statistical distance between two random
variables X and Y with support Ω is defined as ∆(X;Y ) = 1

2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. A

function f : N → R≥0 is said to be negligible, if for all c, there exists λ0 such that f(λ) < 1/λc

for all λ > λ0. We denote by negl(λ) a negligible function in λ.

3.1 Identity-Based Encryption

Syntax. We use the standard syntax of IBE [BF01]. Let ID be the ID space of the scheme. If a
collision resistant hash function CRH : {0, 1}∗ → ID is available, one can use an arbitrary string
as an identity. An IBE scheme is defined by the following four algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input a security parameter 1λ and outputs
a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID)→ skID: The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and an identity ID ∈ ID. It outputs a private key skID. We
assume that ID is implicitly included in skID.

Encrypt(mpk, ID,M)→ C: The encryption algorithm takes as input a master public key mpk, an
identity ID ∈ ID, and a message M, It outputs a ciphertext C.

Decrypt(mpk, skID, C)→ M or ⊥: The decryption algorithm takes as input the master public key
mpk, a private key skID, and a ciphertext C. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, all ID ∈ ID, and all M in
the specified message space,

Pr[Decrypt(mpk, skID,Encrypt(mpk, ID,M)) = M] = 1− negl(λ)

holds, where the probability is taken over the randomness used in (mpk,msk)
$← Setup(1λ),

skID
$← KeyGen(mpk,msk, ID), and Encrypt(mpk, ID,M).

Security. We now define the security for an IBE scheme Π. This security notion is defined by
the following game between a challenger and an adversary A.

- Setup. At the outset of the game, the challenger runs Setup(1λ) → (mpk,msk) and gives mpk
to A.

- Phase 1. A may adaptively make key-extraction queries. If A submits ID ∈ ID to the
challenger, the challenger returns skID ← KeyGen(mpk,msk, ID).

- Challenge Phase. At some point, A outputs a message M and an identity ID? ∈ ID, on which
it wishes to be challenged. Then, the challenger picks a random coin coin

$← {0, 1} and a random

ciphertext C
$← C from the ciphertext space. If coin = 0, it runs Encrypt(mpk, ID?,M)→ C? and

gives the challenge ciphertext C? to A. If coin = 1, it sets the challenge ciphertext as C? = C
and gives it to A.
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- Phase 2. After the challenge query, A may continue to make key-extraction queries, with the
added restriction that ID 6= ID?.

- Guess. Finally, A outputs guess a ĉoin for coin. The advantage of A is defined as

AdvIBE
A,Π =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ .
We say that Π is adaptively-anonymous secure, if the advantage of any PPT A is negligible. The
term anonymous captures the fact that the ciphertext does not reveal the identity for which it
was sent to.

We also define the standard adaptive security (without anonymity) as in [Wat05] for Π via a
similar game to the above. To define adaptive security, we change the challenge phase as follows.

- Challenge Phase. A outputs two messages M0, M1 and an identity ID? ∈ ID, on which
it wishes to be challenged. Then, the challenger picks a random coin coin

$← {0, 1}, runs
Encrypt(mpk, ID?,Mcoin)→ C?, and gives the challenge ciphertext C? to A.

We also say that Π is adaptively secure, if the advantage of any PPT A is negligible. We note
that adaptively-anonymous security implies adaptive security. Namely, the former is a stronger
security notion.

3.2 Lattices and Gaussian Distributions

An n-dimensional (full rank) lattice Λ ⊆ Rn is the set of all integer linear combinations of some
set of n linearly independent basis vectors B = {b1, . . . ,bn} ⊆ Rn, Λ = {

∑
i∈[n] zibi|z ∈ Zn}. For

positive integers q, n,m, a matrix A ∈ Zn×mq and a vector u ∈ Znq , the m-dimensional “shifted”

integer lattice is defined as Λ⊥u (A) = {z ∈ Zm|AzT = uT mod q}. We simply write Λ⊥(A) in
case u = 0.

For s > 0, the n-dimensional Gaussian function ρs : Rn → (0, 1] is defined as ρs(x) =
exp(−π‖x‖22/s2). The (spherical) continuous Gaussian distribution Ds over Rn is the distribution
with density function proportional to ρs. When the dimension n is not clear from context,
we explicitly write it as Dn

s . More generally, for any matrix B ∈ Rn×m, denote DB as the
distribution of xBT where x is distributed as Dm

1 . A well known fact is that for any two matrices
B1,B2, the sum of an independent sample from DB1 and DB2 is distributed as DC where C =
(B1B

T
1 + B2B

T
2 )1/2.

For a n-dimensional lattice Λ and a vector in u ∈ Rn, the discrete Gaussian distribution
DΛ+u,s over the coset Λ + u is defined as DΛ+u,s(x) = ρs(x)/ρs(Λ + u) for all x ∈ Λ + u. We also
define the discrete Gaussian distribution Dcoeff

Λ+u,r over a (quotient) polynomial ring R in X over R.

The discrete Gaussian distribution Dcoeff
Λ+u,r is the distribution of a =

∑n−1
i=0 αiX

i ∈ R where the
coefficient vector [α0, . . . , αn−1] ∈ Rn is sampled from the discrete Gaussian distribution DΛ+u,r.
This definition naturally extends to vectors a ∈ Rk in case of nk-dimensional lattices.

The following lemma on noise rerandomization plays an important role in the security proof of
our scheme when creating a properly distributed challenge ciphertext. This allows us to simulate
the challenge ciphertext without resorting to the noise flooding technique as in [Yam16]. The
proof can be found in Appendix B.1.

Lemma 1 (Noise Rerandomization). Let q, `,m be positive integers and r a positive real satisfying
r > max{ω(

√
logm), ω(

√
log `)}. Let b ∈ Zmq be arbitrary and x chosen from DZm,r. Then for

any V ∈ Zm×` and positive real σ > s1(V), there exists a PPT algorithm ReRand(V,b + x, r, σ)
that outputs b′ = bV + x′ ∈ Z`q where x′ is distributed statistically close to DZ`,2rσ.
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Remark 1. During the security proof we set ` = 2m, V = [Im|RID] and b + x as the LWE
challenge. Note that we deal with the LWE challenge in a slightly different manner than usual
by viewing the LWE challenge as either b = sA or b a uniformly random element. This is
only a conceptual difference. Then, for a valid LWE tuple, the output returned by the noise
rerandomization algorithm ReRand is b′ = bV + x′ = s[A|ARID] + x′, where x′ is distributed
according to a spherical Gaussian distribution and b′ is distributed exactly as in the real world.
We also like to emphasize that the ReRand algorithm only needs to know the value b + x and does
not need to know the individual values b and x.

3.3 Rings and Ideal Lattices

We try to provide a minimum exposition of rings and ideal lattices to keep it self-contained. For
further detail see Appendix E or refer to other works [LPR10, LPR13].
Preparation. Let n be a power of 2 and set m = 2n. Define the ring R = Z[X]/(Φm(X)),
where Φm(X) = Xn + 1 is the mth cyclotomic polynomial. For an integer q, denote Rq as
R/qR = Z[X]/(q,Φm(X)). By viewing the elements in R as n−1 degree polynomials in Z[X], we
can consider a natural coefficient embedding of R onto the integer lattice Zn. Namely, we define
the coefficient embedding φ : R → Zn that maps a =

∑n−1
i=0 αiX

i ∈ R to [α0, α1, . . . , αn−1] ∈ Zn.
We extend the coefficient embedding naturally to vectors and matrices. On the other hand, we
can also identify R as the subring of anti-circulant matrices in Zn×n by viewing each ring element
a ∈ R as a linear transformation r → a · r of R. Concretely, we define the ring homomorphism
rot : R → Zn×n that sends a ∈ R to a matrix in Zn×n such that the i-th row is φ(a · Xi−1

mod Φm(X)) ∈ Zn. Note that the first row of rot(a) is φ(a). Similarly to above, the definition of
the map rot naturally extends to vectors and matrices. We provide some useful formulas on ring
elements in the Appendix A.

Norms in R. We define the Euclidean length for an element a ∈ R and a vector v ∈ Rk

by identifying R with Zn through the coefficient embedding.2 Therefore, when we say a vector
v in Rk is “short”, we mean that ‖φ(v)‖2 is small. We also define the largest singular value
of a matrix R ∈ Rs×t by identifying the ring R with Zn×n through the map rot.3 Namely,
s1(R) := max‖z‖2=1‖z · rot(R)‖2. Note that this definition allows us to consider singular values
of an element in R as well.

Properties for Elements in R. As with matrices with entries in R, we have similar singular
value bounds for matrices with elements in R. Namely, we can bound the singular value of a
random matrix chosen from [−b, b]s×tR . Recall that an element of [−b, b]R is an element in R with
all of its coefficients in the interval [−b, b].

Lemma 2 ([DM15], Special case of Fact 1). Let b be a positive integer and R be a s × t matrix
chosen uniformly at random from [−b, b]s×tR . Then, there exists a universal constant C(≈ 1/

√
2π)

such that

Pr[s1(R) ≥ C · b
√
n · (
√
s+
√
t+ ω(

√
log n))] = negl(n)

2 We could have identified the Euclidean length by the canonical embedding as done in other works. However,
for our special case where n is power of 2, the lengths are equivalent up to a factor of

√
n. (See Appendix E.2 for

further detail.)
3 For the special case where n is a power of 2, s1(R) defined by the coefficient and canonical embeddings are

both equivalent to the one defined by the map rot. (See Appendix E.2 for further detail.)
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We note that similarly to matrices with entries in R, we have s1(R1R2) ≤ s1(R1)s1(R2) for
all R1,R2 ∈ Rk×k, which follows from the fact that rot is a ring homomorphism. Furthermore,
it also holds when R1 is replaced by an element a in R.

Regularity Lemma. The former Lemma shows that there exists a quotient ringRq = R/(q,Φm(X))
that acts roughly as a field, or in other words, Rq has exponentially many invertible elements.
The latter Lemma is a ring analogue of the standard lattice regularity lemma. The proof of the
following Lemmas can be found in Appendix B.2 and B.3.

Lemma 3. Let q be a prime such that q ≡ 3 mod 8 and n be a power of 2. Then, Φ2n(X) = Xn+1
splits as Xn + 1 ≡ t1t2 mod q for two irreducible polynomials t1 = Xn/2 + uXn/4 − 1 and
t2 = Xn/2 − uXn/4 − 1 in Zq[X] where u2 ≡ −2 mod q. Furthermore, all x ∈ Rq satisfying
‖φ(x)‖2 <

√
q are invertible, i.e., x ∈ R∗q .

Lemma 4 (Regularity Lemma). Let n be a power of 2, q be a prime larger than 4n such that
q ≡ 3 mod 8, and `, k′, k, ρ be positive integers satisfying `, k′ ≥ 1, k ≥ 2, ρ < 1

2

√
q/n. Define

the family of hash functions H = {hA(x) : [−ρ, ρ]kR → Rk
′
q }, where hA(x) = Ax for A ∈ Rk′×kq ,

x ∈ Rk×1
q . Then, H is a universal hash family. Furthermore, for A

$← Rk
′×k
q and X

$← [−ρ, ρ]k×`R ,
we have

∆((A,AX) ; (A, U(Rk
′×`
q ))) ≤ `

2
·

√(
qk′

(2ρ+ 1)k

)n
.

Ring Learning with Errors. The ring LWE problem was introduced by Lyubashevsky et al.
[LPR10]. They showed that solving it on the average is as hard as (quantumly) solving several
standard problems on ideal lattices in the worst case.

Definition 1 (RLWE). For positive integers n = n(λ), k = k(n), a prime integer q = q(n) > 2,
an error distribution χ = χ(n) over Rq, and an PPT algorithm A, an advantage for the RLWE
problem RLWEn,k,q,χ of A is defined as follows:

Adv
RLWEn,k,q,χ
A = |Pr[A({(ai, vi)}ki=1)→ 1]− Pr[A({(ai, ais+ ei)}ki=1)→ 1]|

where a1, . . . , ak, v1, . . . , vk, s
$← Rq and e1, . . . , ek

$← χ. We say that RLWEn,k,q,χ assumption

holds if Adv
RLWEn,k,q,χ
A is negligible for all PPT A.

Theorem 1. Let α be a positive real, m be a power of 2, ` be an integer, Φm(X) = Xn + 1 be
the mth cyclotomic polynomial where m = 2n, and R = Z[X]/(Φm(X)). Let q ≡ 3 mod 8 be a
(polynomial size) prime such that there is another prime p ≡ 1 mod m satisfying p ≤ q ≤ 2p. Let
also αq ≥ n3/2k1/4ω(log9/4 n). Then, there is a probabilistic polynomial-time quantum reduction
from Õ(

√
n/α)-approximate SIVP (or SVP) to RLWEn,k,q,χ with χ = Dcoeff

Zn,αq.

Although the proof is obtained by combining many of the previous results, we nevertheless
include the proof in Appendix E for completeness. Due to the Linnik’s theorem and Dirichlet’s
theorem on arithmetic progressions, we have that there are sufficiently many primes p and q
satisfying the assumption of the theorem.

Trapdoors for Rings. Define the gadget matrix gb = [1|b| · · · |bk′−1|0] ∈ Rkq , where b is a positive
integer and k ≥ k′ = dlogb qe. When k = k′ and b = 2, this corresponds to the matrix repre-
sentation of the gadget matrix G ∈ Zn×nkq often used in the literatures by properly rearranging
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the rows and columns of rot(g2). The following algorithms are simple modification of traditional
lattice based algorithms, however, owing to the conversion to the ring setting and the fact that
we view vectors in their row form, it may seem unclear at first. We provide some supplementary
notes in Appendix A and B.4.

Lemma 5. Let n be a power of 2, q be a prime larger than 4n such that q ≡ 3 mod 8, and b, ρ
be a positive integer satisfying ρ < 1

2

√
q/n. Furthermore, define log1(·) := log2(·). Then, there

exist polynomial time algorithms with the properties below:

• TrapGen(1n, 1k, q, ρ) → (a,Ta) ([MP12], Lemma 5.3): a randomized algorithm that, when
k ≥ 2 logρ q, outputs a vector a ∈ Rkq and a matrix Ta ∈ Rk×k, where rot(aT )T ∈ Zn×nkq

is a full-rank matrix and rot(Ta) ∈ Znk×nk is a basis for Λ⊥(rot(aT )T ) such that a is
negl(n)-close to uniform and ‖rot(Ta)‖GS = O(bρ ·

√
n logρ q).

4

• SampleLeft(a, b, u,Ta, σ) → e ([CHKP10]): a randomized algorithm that, given vectors
a, b ∈ Rkq where rot(aT )T , rot(bT )T ∈ Zn×nkq are full-rank, an element u ∈ Rq, a matrix

Ta ∈ Rk×k such that rot(Ta) ∈ Znk×nk is a basis for Λ⊥(rot(aT )T ), and a Gaussian param-
eter σ > ‖rot(Ta)‖GS · ω(

√
log nk), outputs a vector e ∈ R2k sampled from a distribution

which is negl(n)-close to Dcoeff
Λ⊥
φ(u)

([rot(aT )T |rot(bT )T ]),σ
, i.e., [a|b]eT = u and φ(e) ∈ Z2nk is

distributed according to DΛ⊥
φ(u)

([rot(aT )T |rot(bT )T ]),σ.

• SampleRight(a, gb,R, y, u,Tgb , σ) → e where b = aR + ygb ([ABB10]): a randomized
algorithm that, given vectors a, gb ∈ Rkq such that rot(aT )T , rot(gb)

5 ∈ Zn×nkq are full-

rank matrices, elements y ∈ R∗q , u ∈ Rq, a matrix R ∈ Rk×k, a matrix Tgb ∈ Rk×k

such that rot(Tgb) ∈ Znk×nk is a basis for Λ⊥(rot(gb)), and a Gaussian parameter σ >
s1(R) · ‖rot(Tgb)‖GS · ω(

√
log nk), outputs a vector e ∈ R2k sampled from a distribution

which is negl(n)-close to Dcoeff
Λ⊥
φ(u)

([rot(aT )T |rot(bT )T ]),σ
, i.e., [a|b]eT = u and φ(e) ∈ Z2nk is

distributed according to DΛ⊥
φ(u)

([rot(aT )T |rot(bT )T ]),σ.

• ([MP12]:) Let k ≥ dlogb qe. There exists a publicly known matrix Tgb such that rot(Tgb) ∈
Znk×nk is a basis for the lattice Λ⊥(rot(gb)) and ‖rot(Tgb)‖GS ≤

√
b2 + 1. Furthermore,

there exists a deterministic polynomial time algorithm g−1
b which takes input u ∈ Rkq and

outputs R = g−1
b (u) such that R ∈ [−b, b]k×kR and gbR = u.

Note that we abuse the notation g−1
b by viewing it as a function rather than a vector. Namely,

for any u ∈ Rkq there are many choices for R ∈ Rk×k such that gbR = u, and g−1
b (u) is a function

that deterministically outputs a particular short matrix from the possible candidates. Since we
have s1(R) ≤ b · nk for any R ∈ [−b, b]k×kR , s1(g−1

b (u)) ≤ bnk holds for arbitrary u ∈ Rkq .

Homomorphic Computation. Let d be a natural number. We introduce the function PubEvald :
(Rkq )d → Rkq as in [Yam16], which takes a set of vectors b1, b2, . . . , bd ∈ Rkq as inputs and out-

puts a vector in Rkq . This function wil be used to hash identities to Rkq in our lattice-based IBE
construction. The function is defined recursively as follows:

PubEvald(b1, . . . , bd) =

{
b1 if d = 1

b1 · g−1
b

(
PubEvald−1(b2, . . . , bd)

)
if d ≥ 2.

4 We combine several lemmas from [MP12] and the regularity lemma (Lemma 4) to show correctness of TrapGen.
See Appendix B.4 for further detail. Further, the unusual lattice Λ⊥(rot(aT )T ) is used only to be consistent with
the other algorithms. Namely, we could have instead defined the trapdoor for the lattice Λ⊥(rot(a)).

5We have rot(gTb )T = rot(gb) since all the entries of gb are integers.
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The proof of the following lemma can be found in Appendix B.5.

Lemma 6. Let y1, . . . , yd be elements in R, a, b1, . . . , bd be vectors in Rkq and R1, . . . ,Rd be ma-

trices in Rk×k such that bi = aRi + yigb for i ∈ [d]. Furthermore, we assume that s1(Ri) ≤
B, ‖φ(yi)‖1 ≤ δ for i ∈ [d]. Then, there exists an efficient algorithm TrapEvald that takes
R1, . . . ,Rd, y1, . . . , yd as inputs and outputs R′ ∈ Rk×k such that

PubEvald(b1, . . . , bd) = aR′ + y1 · · · ydgb ∈ Rkq (12)

and s1(R′) ≤ Bδd−1 +Bbnk
(
δd−1−1
δ−1

)
.

3.4 Other Facts

The proof of the following lemmas will appear in Appendix B.6 and B.7.

Lemma 7 (Expansion of Coefficients). Let c1, c2, B1, B2 ∈ N. Let also u = u0 + u1X +
· · ·uc1−1X

c1−1 ∈ R and v = v0 + v1X + · · · vc2−1X
c2−1 ∈ R be ring elements. We further

assume that c1 + c2 < n and ‖φ(u)‖∞ < B1 and ‖φ(v)‖∞ < B2. Then we have ‖φ(uv)‖∞ ≤
min{c1, c2} ·B1B2.

The following Lemma addresses a general statement for bounding the success probability of an
adversary engaging with the security game of IBE. In more detail, when the partitioning technique
is used to prove security, the guess returned by the adversary is correlated with the key extraction
queries it has made. Therefore, we need to argue with care to obtain a meaningful bound on the
success probability that holds for arbitrary key extraction queries.

Lemma 8 (Implicit in [BR09, Yam16]). Let us consider an IBE scheme and an adversary A that
breaks adaptive security (adaptively-anonymous security) with advantage ε. Let us also consider a
map γ that maps a sequence of identities to a value in [0, 1]. We consider the following experiment.
We first execute the security game for A. Let ID? be the challenge identity and ID1, . . . , IDQ be the
identities for which key extraction queries were made. We denote ID = (ID?, ID1, . . . , IDQ). At

the end of the game, we set coin′ ∈ {0, 1} as coin′ = ĉoin with probability γ(ID) and coin′
$← {0, 1}

with probability 1− γ(ID). Then, the following holds.∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ ≥ γmin · ε−
γmax − γmin

2

where γmin (resp. γmax) is the maximum (resp. minimum) of γ(ID) taken over all possible ID.

Injective map. Let d and κ be some integers. Furthermore, let ` be ` = dκ1/de. Then, an
element of [1, κ] can be written as an element of [1, `]d using some canonical map. Furthermore, it
is also possible to write a subset of [1, κ] as a subset of [1, `]d by naturally extending the canonical
map. By identifying a bit string in {0, 1}κ with a subset of [1, κ] (for example, by regarding
the former as the indicator vector of a subset of [1, κ]), we can define an efficiently computable
injective map S that maps a bit string ID ∈ {0, 1}κ to a subset S(ID) of [1, `]d.

3.5 Core Lemma for Our Partitioning

We make a general statement concerning the partitioning technique for IBEs, which we use during
the security analysis for both our lattice and bilinear map based constructions. Namely, we
use the following Lemma in order to argue that the probability of the hash value for identities
corresponding to the key extraction queries being invertible and the hash value for the challenge
identity being zero is non-negligible.
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Lemma 9. Let ν, µ, d,Q ≥ 1 be any integers. Let Φ be a ring and Ω1, . . . ,Ων be a set of fields
equipped with homomorphisms πj : Φ → Ωj for j ∈ [ν]. Assume that the map Π defined as Π :
Φ 3 y 7→ (π1(y), . . . , πν(y)) ∈ Ω1×· · ·×Ων is an isomorphism. Let S0 and S1 be subsets of Φ with
finite cardinality. Let us consider a set of multivariate polynomials fi(Y1, . . . , Yµ) ∈ Φ[Y1, . . . , Yµ]
for i ∈ [0, Q] We further assume the following properties:

1. The map πj is injective on S1 for all j ∈ [ν].

2. We have πj(f0) − πj(fi) is a non-zero polynomial with degree d for all i ∈ [Q] and j ∈ [ν].
Here πj is extended to πj : Φ[X]→ Ωj [X] in a natural way.

3. We have S0 ⊇ ∪i∈[0,Q]{−fi(y1, . . . , yµ)|y1, . . . , yµ ∈ S1}.

Then, for y0
$← S0 and y1, . . . , yµ

$← S1, we have

1

|S0|

(
1− dνQ

|S1|

)
≤ Pr

y0,y′
[ y0 + f0(y′) = 0 ∧ y0 + f1(y′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y′) ∈ Φ∗] ≤ 1

|S0|

where we denote y′ = (y1, . . . , yµ) and Φ∗ = Π−1(Ω∗1 × · · · × Ω∗ν).

Proof. Let us denote γ := Pry0,y′ [ y0 + f0(y′) = 0 ∧ y0 + f1(y′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y′) ∈ Φ∗]

where the probability is taken over y0
$← S0 and y1, . . . , yµ

$← S1. We first show the upper bound.
We have

γ ≤ Pr
y0,y′

[y0 + f0(y′) = 0] = Pr
y0,y′

[y0 = −f0(y′)] =
1

|S0|
.

The last equation follows since there exists unique y0 ∈ S0 such that y0 = −f0(y′), for any y′ ∈ Sµ1
from our third assumption. We then proceed to show the lower bound. We have

γ = Pr
y0,y′

[ y0 + f0(y′) = 0 ∧ y0 + f1(y′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y′) ∈ Φ∗]

= Pr
y0,y′

[ y0 + f0(y′) = 0 ]

− Pr
y0,y′

[y0 + f0(y′) = 0 ∧ ¬
(
y0 + f1(y′) ∈ Φ∗ ∧ · · · ∧ y0 + fQ(y′) ∈ Φ∗

)
] (13)

= Pr
y0,y′

[y0 + f0(y′) = 0]− Pr
y0,y′

[

Q∨
i=1

(
y0 + f0(y′) = 0 ∧ y0 + fi(y

′) 6∈ Φ∗
)

] (14)

≥ Pr
y0,y′

[y0 + f0(y′) = 0]−
∑
i∈[Q]

Pr
y0,y′

[ y0 + f0(y′) = 0 ∧ y0 + fi(y
′) 6∈ Φ∗ ] (15)

=
1

|S0|
−
∑
i∈[Q]

Pr
y0,y′

[ y0 + f0(y′) = 0 ∧ y0 + fi(y
′) 6∈ Φ∗ ]︸ ︷︷ ︸

:=γ′i

(16)

where Eq.(13) is a general equation that holds for any event, Eq.(14) follows from De morgan’s
laws and the distributive property, Eq.(15) follows from the union bound, Eq.(16) is again from
our third assumption. We then have to show an upper bound for γ′i.

γ′i = Pr
y0,y′

[ y0 + f0(y′) = 0 ∧ y0 + fi(y
′) 6∈ Φ∗ ]

= Pr
y0,y′

[ y0 + f0(y′) = 0 ∧ f0(y′)− fi(y′) 6∈ Φ∗ ] (17)
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= Pr
y0,y′

[ y0 = −f0(y′) | f0(y′)− fi(y′) 6∈ Φ∗ ] · Pr
y0,y′

[ f0(y′)− fi(y′) 6∈ Φ∗ ] (18)

=
1

|S0|
· Pr
y0,y′

[ f0(y′)− fi(y′) 6∈ Φ∗ ] (19)

=
1

|S0|
· Pr
y′

[ f0(y′)− fi(y′) 6∈ Φ∗ ]︸ ︷︷ ︸
:=γ′′i

(20)

where Eq.(17) is just an equivalent expression, Eq.(18) is trivial, Eq.(19) is from the fact that for
any y′ ∈ Sµ1 there exists unique y0 ∈ S0 such that y0 = −f0(y′) (from our third assumption),
and in Eq.(20) we omit y0 since it is independent of the probability. It suffices to show an upper
bound for γ′′i . We have

γ′′i = Pr
y′

$←Sµ1

[
f0(y′)− fi(y′) 6∈ Φ∗

]
(21)

= Pr
y′

$←Sµ1

 ν∨
j=1

Π(f0(y′)− fi(y′)) ∈ Ω1 × · · · × Ωj−1 × {0} × Ωj+1 × · · · × Ων

 (22)

≤
ν∑
j=1

Pr
y′

$←Sµ1

[Π(f0(y′)− fi(y′)) ∈ Ω1 × · · · × Ωj−1 × {0} × Ωj+1 × · · · × Ων ] (23)

=
ν∑
j=1

Pr
y′

$←Sµ1

[
πj(f0(y′)− fi(y′)) = 0

]
(24)

=
ν∑
j=1

Pr
y′

$←Sµ1

[(
πj(f0 − fi)

)
(πj(y

′)) = 0
]

(25)

=
ν∑
j=1

Pr
z

$←πj(S1)µ

[(
πj(f0 − fi)

)
(z) = 0

]
(26)

≤
ν∑
j=1

d

|πj(S1)|
(27)

=
dν

|S1|
(28)

where in Eq.(21) we made the distribution of y′ explicit, Eq.(22) is from the fact that Φ\Φ∗ =

Π−1
(
∪νj=1(Ω1 × · · · × Ωj−1 × {0} × Ωj+1 × · · · × Ων)

)
, Eq.(23) follows from the union bound,

Eq.(24) is by the definition of Π, Eq.(25) follows since πj is a homomorphism, Eq.(26) follows
since πj is injective on S1 (our first assumption), Eq.(27) is from the fact that πj(f0−fi) ∈ Ωj [X]
is a non-zero polynomial with degree d (our second assumption) and the Schwartz-Zippel lemma,
and Eq.(28) follows since πj is injective on S1.

4 Construction from RLWE

In this section, we show our IBE scheme from the RLWE assumption. Let d be a (flexible) constant
number. In addition, let the identity space of the scheme be ID = {0, 1}κ for some κ ∈ N and
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the message space be {0, 1}n ⊂ R.6 For our construction, we consider an efficiently computable
injective map S that maps an identity ID ∈ {0, 1}κ to a subset S(ID) of [1, `]d, where ` = dκ1/de.
Such a map can be constructed easily as we explained in Sec. 3.4. Let n := n(λ), b := b(n),
ρ := ρ(n), m := 2n, k := k(n), q := q(n), ` := `(n), α := α(n), α′ := α′(n), and σ := σ(n) be
parameters that are specified later. Let also Φm(X) = Xn + 1 be the mth cyclotomic polynomial
and R = Z[X]/(Φm(X)).

Setup(1λ) : On input 1λ, it first runs (a,Ta)
$← TrapGen(1n, 1k, q, ρ) to obtain a ∈ Rkq and

Ta ∈ Rk×k. It also picks u
$← Rq, b0, bi,j

$← Rkq for (i, j) ∈ [d]× [`] and outputs

mpk = (a, b0, {bi,j}(i,j)∈[d]×[`], u) and msk = Ta.

In the following, we use a deterministic function H : ID → Rkq defined as

H(ID) = b0 +
∑

(j1,...,jd)∈S(ID)

PubEvald(b1,j1 , b2,j2 , . . . , bd,jd) ∈ R
k
q .

KeyGen(mpk,msk, ID) : It first computes H(ID) and picks e ∈ R2k such that

[a|H(ID)] · eT = u

using SampleLeft(a,H(ID), u,Ta, σ)→ e. It returns skID = e.

Encrypt(mpk, ID,M) : To encrypt a message M ∈ {0, 1}n ⊂ R, it first picks s
$← Rq, x0

$← Dcoeff
Zn,αq,

x1,x2
$←
(
Dcoeff

Zn,α′
)k

. Then it computes

c0 = su+ x0 + bq/2e ·M, c1 = s[a|H(ID)] + [x1|x2].

Finally, it outputs the ciphertext C = (c0, c1) ∈ Rq ×R2k
q .

Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (c0, c1) using a private key skID = e, it
computes (

b(2/q) · φ(c0 − c1e
T )e mod 2

)
= m. (29)

Here, the rounding function b·e is applied componentwise.

4.1 Correctness and Parameter Selection.

The proof of the following lemma can be found in Appendix C.

Lemma 10 (Correctness). Assume αqω(
√

log n) +
√
nkα′σω(

√
log nk) ≤ q/5 holds with over

whelming probability. Then the above scheme has negligible decryption error.

Parameter selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

− the error term is less than q/5 with overwhelming probability (i.e., αqω(
√

log n)+
√
nkα′σω(

√
log nk).

See Lemma 10,),

6Note that we regard m as an elements in R via φ−1 : Zn → R (the inversion of coefficient embedding).
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− TrapGen can operate (i.e., ρ < 1
2

√
q/n and k ≥ 2 logρ q. See Lemma 5.),

− the gadget matrix gb can be defined (i.e., k ≥ dlogb qe. See Lemma 5.),

− the regularity lemma (Lemma 4) can be applied in the security proof (i.e., k
2

(
q2

(2ρ+1)k

)n
2

=

negl(n).),

− σ is sufficiently large so that SampleLeft and SampleRight work (i.e., σ > O(bρ ·
√
n logρ q) ·

ω(
√

log nk) and σ > s1(R)
√
b2 + 1·ω(

√
log n), where s1(R) ≤ C ′′·κρ

√
n(
√
k+ω(

√
log n))

(
(cn)d−1+

bnk (cn)d−1−1
cn−1

)
for some absolute constant C ′′. See Eq.(37). The latter condition turns out to

be more restrictive.),

− ReRand algorithm in the security proof works (i.e., α′ > 2αq(s1(R) + 1), αq > ω(
√

log nk)
where s1(R) is the same as the one defined above. See Lemma 1.),

− the worst case to average case reduction works (i.e., αq ≥ n3/2k1/4ω(log9/4 n). See Theorem
1.).

Recall that d is a (flexible) constant which may be set very small (e.g., d = 2 or 3) in a typical
setting, and κ(n) = n is the size of the identity space ID. To satisfy the above requirements, we
propose two candidate parameter selections as follows:

Type 1 IBE. For this construction we set b = 2 and ρ = 1 in order to reduce the modulus size
q. Recalling that we defined log1 q := log2 q, we can set the parameters as follows:

k = 4(d+ 1) log n, q = n2d+2, b = 2, ρ = 1,

σ = nd−
1
2 · ω(log n), α = n−2d+ 1

2 · ω(log
9
2 n)−1, α′ = nd+2η+2 · ω(log3 n)−1.

We denote this specific instantiation as the Type 1 IBE scheme.

Type 2 IBE. For this construction we set b = ρ = nη for an arbitrary positive real η in order to
reduce the size of the public parameters, private keys, and ciphertexts. Namely, one way to set
the parameters is as follows:

k = 4 +
2d+ 2

η
, q = n2d+2+4η, b = ρ = nη,

σ = nd+2η− 1
2 · ω(log n), α = n−2d− 7

2
η+ 1

2 · ω(log2 n)−1, α′ = nd+2η+2 · ω(log
3
4 n)−1.

By plugging in η = 1
4 we obtain the following concrete parameter selection:

k = 8d+ 12, q = n2d+3, b = ρ = n
1
4 ,

σ = nd · ω(log n), α = n−2d− 3
8 · ω(log2 n)−1, α′ = nd+ 5

2 · ω(log
3
4 n)−1.

We denote this specific instantiation as the Type 2 IBE scheme.

4.2 Security Proof for the Scheme

The following theorem addresses the security of the scheme. The proof proceeds in a similar
manner as in [Yam16], but we incorporate several novel ideas as we explained in Sec. 2.
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Theorem 2. The above IBE scheme is adaptively-anonymous secure assuming RLWEn,k+1,q,Dcoeff
Zn,αq

is hard, where the ciphertext space is C = Rq ×R2k
q .

Proof. Let A be a PPT adversary that breaks the adaptively-anonymous security of the scheme.
In addition, let ε = ε(n) and Q = Q(n) be its advantage and the upper bound of the number of
key extraction queries, respectively.

Since A is PPT and λ and n are polynomially related (namely, n = O(λδ) for some constant
δ), there exists a constant number c1 ∈ N such that 4(dQ+ 1) ≤ nc1 for all n that are sufficiently
large. Similarly, since A breaks the security of the scheme, there exists c2 ∈ N such that 2ε ≥ n−c2
holds for infinitely many n. By setting c = c1 + c2, we have that

4dQ ≤ nc for all n ∈ N and
ε

2(dQ+ 1)
≥ 1

nc
for infinitely many n ∈ N. (30)

In the proof, we will assume d(c− 1) < n. Since both c and d are constant numbers, this holds
for sufficiently large n.

We show the security of the scheme via the following games. In each game, a value coin′ ∈ {0, 1}
is defined. While it is set coin′ = ĉoin in the first game, these values might be different in the
later games. In the following, we define Xi to be the event that coin′ = coin.

Game0 : This is the real security game. Recall that since the ciphertext space is C = Rq × R2k
q ,

in the challenge phase, the challenge ciphertext is set as C? = (c0, c1)
$← Rq × R2k

q if

coin = 1. At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
sets coin′ = ĉoin. By definition, we have∣∣∣∣Pr[X0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε.

Game1 : For integers t0, t1 ∈ Z such that t0 ≤ t1 and positive integer c ∈ N, let us denote [t0, t1]R,c
as

[t0, t1]R,c :=

{
c−1∑
i=0

aiX
i

∣∣∣∣∣ ai ∈ [t0, t1] for all i ∈ [0, c− 1]

}
⊆ R. (31)

In words, [t0, t1]R,c denotes the set of polynomials of degree less then c − 1 with all of its
coefficients in the interval [t0, t1]. Note that c is the constant defined in Eq.(30). In this
game, we change Game0 so that the challenger performs the following additional step at the
end of the game. First, the challenger picks y = (y0, {yi,j}(i,j)∈[d,`]) as

y0
$← [−κ(cn)d,−1]R,(c−1)d+1 and yi,j

$← [1, n]R,c (32)

for (i, j) ∈ [d] × [`]. Recall κ is the length of the identities. We then define a function
Fy : ID → Rq as follows:

Fy(ID) = y0 +
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd .

Then the challenger checks whether the following condition holds:

Fy(ID?) = 0 ∧ Fy(ID1) ∈ R∗q ∧ · · · ∧ Fy(IDQ) ∈ R∗q , (33)
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where ID? is the challenge identity, and ID1, . . . , IDQ are identities for which A has made

key extraction queries. If it does not hold, the challenger ignores the output ĉoin of A, and
sets coin′

$← {0, 1}. In this case, we say that the challenger aborts. If condition (33) holds,

the challenger sets coin′ = ĉoin. As we will show in Lemma 11, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

(κcdnd)(c−1)d+1

(
ε

2
− dQ

nc

)
.

So as not to interrupt the proof of Theorem 2, we intentionally skip the proof for the time
being.

Game2 : In this game, we change the way b0 and bi,j are chosen. At the beginning of the game,

the challenger picks R0,Ri,j
$← [−ρ, ρ]k×kR for (i, j) ∈ [d]× [`]. It also picks y as in Game1.

Then, a, b0, and bi,j are defined as

b0 = aR0 + y0gb, bi,j = aRi,j + yi,jgb, (34)

for (i, j) ∈ [d]× [`]. The rest of the game is the same as in Game1.

Now, we bound |Pr[X2]− Pr[X1]|. By Lemma 4, the distributions(
a,aR0 + y0gb, {aRi,j + yi,jgb}(i,j)∈[d]×[`]

)
and

(
a, b0, {bi,j}(i,j)∈[d]×[`]

)
are negl(n)-close, where b0, bi,j

$← Rkq . Therefore, we have |Pr[X1]− Pr[X2]| = negl(n).

Game3 Recall that in the previous game, the challenger aborts at the end of the game if condition
(33) is not satisfied. In this game, we change the game so that the challenger aborts as
soon as the abort condition becomes true. Since this is only a conceptual change, we have
Pr[X2] = Pr[X3].

Before describing the next game, we define RID ∈ Rk×k for an identity ID ∈ ID as

RID = R0 +
∑

(j1,...,jd)∈S(ID)

TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd). (35)

Note that by the definition of RID, H(ID), PubEval and TrapEval (Lemma 6) we have

H(ID) = b0 +
∑

(j1,...,jd)∈S(ID)

PubEvald(b1,j1b2,j2 , . . . , bd,jd)

= aRID + Fy(ID)gb. (36)

Since R0,Ri,j
$← [−ρ, ρ]k×kR , from Lemma 2 we have s1(R0), s1(Ri,j) ≤ B with all but neg-

ligible probability where B = C ′ · ρ
√
n(
√
k + ω(

√
log n)) for some positive absolute constant C ′.

Furthermore, we have ‖yi,j‖1 ≤ cn from Eq. (32). Therefore by Lemma 6, we have

s1(RID) ≤ s1(R0) +
∑

(j1,...,jd)∈S(ID)

s1(TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd))

≤ B

(
1 + κ(cn)d−1 + κbnk

(cn)d−1 − 1

cn− 1

)
, (37)

for any ID ∈ ID with all but negligible probability.
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Game4 In this game, we change the way the vector a is sampled. Namely, Game4 challenger picks
a

$← Rkq instead of generating it with a trapdoor. By Lemma 5, this makes only negligible
difference. Furthermore, we also change the way the key extraction queries are answered.
When A makes a key extraction query for an identity ID, the challenger first computes RID

as in Eq.(35). It aborts if Fy(ID) 6∈ R∗q as in the previous game and runs

SampleRight(a, gb,RID,Fy(ID), u,Tgb , σ)→ e,

otherwise. Note that in the previous game the private key was sampled as

SampleLeft(a,H(ID), u,Ta, σ)→ e.

By Eq.(37) and for our choice of σ, the output distribution of SampleRight is negl(n)-close to
Dcoeff

Λ⊥
φ(u)

([rot(aT )T |rot(H(ID)T )T ]),σ
. Furthermore, by the choice of σ, this distribution is negl(n)-

close to the output distribution of SampleLeft. Therefore, the above change alters the view
of A only negligibly. Thus, we have |Pr[X3]− Pr[X4]| = negl(n).

Game5 : In this game, we change the way the challenge ciphertext is created when coin = 0.
Recall in the previous games when coin = 0, we created a valid challenge ciphertext as in
the real scheme. If coin = 0 and Fy(ID?) = 0 (i.e., if it does not abort), to create the

challenge ciphertext Game5 challenger first picks s
$← Rq and x

$← (Dcoeff
Zn,αq)

k and computes

v = sa+ x ∈ Rk. It then runs the algorithm

ReRand

(
rot
(
[Ik|RID? ]

)
, φ(v), αq,

α′

2αq

)
→ c ∈ Z2nk

q

from Lemma 1, where Ik ∈ Rk×k is the identity matrix of size k × k. Finally, it picks
x0

$← Dcoeff
Zn,αq and sets the challenge ciphertext as

C? =
(
c0 = v0 + bq/2e ·M, c1 = φ−1(c)

)
∈ Rq ×R2k

q , (38)

where v0 = su+x0 and M is the message chosen by A. We claim that this change alters the
view of A only negligibly. To show this, observe that the input to ReRand is rot

(
[Ik|RID? ]

)
∈

Znk×2nk
q and

φ(v) = φ(sa+ x) = φ(s)rot(a) + φ(x) ∈ Znkq ,

where φ(x) is distributed as φ(x)
$← DZnk,αq. Therefore, by the property of ReRand and

our choice of α and α′, the output c ∈ Z2nk
q is

c =
(
φ(s)rot(a)

)
· rot

(
[Ik|RID? ]

)
+ x′

= φ(s) · rot
(
[a|H(ID?)]

)
+ x′

= φ
(
s
[
a|H(ID?)

])
+ x′,

where the distribution of x′ is within negligible distance from x′
$← DZ2nk,α′ due to Lemma

1. Here, we use the fact that H(ID?) = aRID? holds since Fy(ID?) = 0. It can be readily
seen that the distribution of c1 = φ−1(c) in Game5 is statistically close to that in Game4.
Therefore, we have |Pr[X4]− Pr[X5]| = negl(n).

21



Game6 In this game, we change the way the challenge ciphertext is created when coin = 0.
If coin = 0 and the abort condition is not satisfied, to create the challenge ciphertext
for identity ID? and message M, Game6 challenger first picks v0

$← Rq, v
′ $← Rkq and

x
$← (Dcoeff

Zn,αq)
k, and runs

ReRand

(
rot
(
[Ik|RID? ]

)
, φ(v), αq,

α′

2αq

)
→ c ∈ Z2nk

q , (39)

where v = v′ + x. Then, the challenge ciphertext is set as in Eq.(38). As we will show in
Lemma 12, assuming RLWEn,k+1,q,Dcoeff

Zn,αq
is hard, we have |Pr[X5]− Pr[X6]| = negl(n).

Game7 In this game, we further change the way the challenge ciphertext is created. When coin = 0
and the abort condition is not satisfied, the challenge ciphertext for ID? is created as

C? =
(
c0 = v0 + bq/2e ·M, c1 = [v′|v′RID? ] + [x1|x2]

)
∈ Rq ×R2k,

where v0
$← Rq, v

′ $← Rkq and x1,x2
$← (Dcoeff

Zn,α′)
k.

We claim that this change alters the view of A only negligibly. This can be seen by a similar
argument to that we made in the step from Game3 to Game4. We first observe that in Game6

the input to ReRand is rot
(
[Ik|RID? ]

)
∈ Znk×2nk

q and

φ(v) = φ(v′ + x) = φ(v′) + φ(x) ∈ Znkq , (40)

where φ(x) is distributed as DZnk,αq. Therefore, the output c ∈ Z2nk
q of ReRand is

c = φ(v′) · rot
(
[Ik|RID? ]

)
+ x′ = φ

(
[v′|v′RID? ]

)
+ x′,

where the distribution of x′ is within negligible distance from x′
$← DZ2nk,α′ due to Lemma

1. Hence, the distribution of c1 = φ−1(c) in Game6 is statistically close to that in Game7.
Therefore, we have |Pr[X6]− Pr[X7]| = negl(n).

Game8 In this game, we change the way the key extraction queries are answered. Instead of
running SampleLeft or SampleRight, the (possibly inefficient) challenger directly picks a

secret key skID for identity ID as skID
$← Dcoeff

Λ⊥
φ(u)

([rot(aT )T |rot(H(ID)T )T ]),σ
without using RID.

Similarly to the change from Game3 to Game4, by the choice of σ and Eq.(37), this alters
the view of A only negligibly. Therefore, we have |Pr[X7]− Pr[X8]| = negl(n). Note that
this is only a conceptual game in order to get rid of any (negligible) correlation between the
secret key and RID so as not to interfere with the statistical argument using RID? in the
following game.

Game9 In this game, we change the challenge ciphertext to be a random vector, regardless of
whether coin = 0 or coin = 1. Namely, Game9 challenger generates the challenge ciphertext
C? = (c0, c1) as

c0
$← Rq, and c1

$← R2k
q .

We now proceed to bound |Pr[X8]− Pr[X9]|. Since Game8 and Game9 differ only in the
creation of the challenge ciphertext when coin = 0, we focus on this case. First, it is easy to
see that c0 is uniformly random over Rq in both of Game8 and Game9. Therefore, we only
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need to show that the distribution of c1 in Game8 is negl(n)-close to the uniform distribution
over R2k

q . To see this, it suffices to show that [v′|v′RID? ] is distributed statistically close

to the uniform distribution over R2k
q . First, observe that the following distributions are

negl(n)-close:

(a,aR0,v
′,v′R0) ≈ (a,a′,v′,v′′) ≈ (a,aR0,v

′,v′′), (41)

where a,a′
$← Rkq , R0

$← [−ρ, ρ]k×kR , v′,v′′
$← Rkq . It can be seen that the first and the

second distributions are negl(n)-close, by applying Lemma 4 for [a;v′] ∈ R2×k
q and R0. It

can also be seen that the second and the third distributions are negl(n)-close, by applying
the same lemma for a and R0. From the above, the following distributions are statistically
close:

(a,aR0,v
′,v′RID?)

=

a,aR0,v
′,v′

R0 +
∑

(j1,...,jd)∈S(ID)

TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)


≈

a,aR0,v
′,v′′ + v′

 ∑
(j1,...,jd)∈S(ID)

TrapEvald(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)


≈ (a,aR0,v

′,v′′)

where a,a′
$← Rkq , R0

$← [−ρ, ρ]k×kR , v′,v′′
$← Rkq . The second and the third distributions

above are negl(n)-close by Eq.(41). Note that we intentionally ignored all the aRi,j terms
to keep the argument simple, since focusing on the aR0 term is enough to prove randomness
of [v′|v′RID? ]. Therefore, we conclude that |Pr[X8]− Pr[X9]| = negl(n).

Analysis. From the above, we have∣∣∣∣Pr[X9]− 1

2

∣∣∣∣ =

∣∣∣∣∣Pr[X1]− 1

2
+

8∑
i=1

(Pr[Xi+1]− Pr[Xi])

∣∣∣∣∣
≥

∣∣∣∣Pr[X1]− 1

2

∣∣∣∣− 8∑
i=1

|Pr[Xi+1]− Pr[Xi]|

≥ 1

(κcdnd)(c−1)d+1

(
ε

2
− dQ

nc

)
− negl(n)

=
1

poly(n)

(
ε

2
− dQ

nc

)
− negl(n) (42)

where the last equality follows from the facts that c and d are constants and κ = poly(n). Since
the challenge ciphertext is independent from the value of coin in Game9, we have Pr[X9] = 1/2
and thus |Pr[X9]− 1/2| = 0. Therefore, we have that ε/2 − dQ/nc is negligible. However, by
Eq.(30),

ε

2
− dQ

nc
≥ dQ+ 1

nc
− dQ

nc
=

1

nc

holds for infinitely many n, which is a contradiction.
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To complete the proof of Theorem 2, it remains to prove Lemma 11 and 12.

Lemma 11. For any PPT adversary A, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

(κcdnd)(c−1)d+1

(
ε

2
− dQ

nc

)
.

Proof. For a sequence of identities ID = (ID?, ID1, . . . , IDQ) ∈ IDQ+1, we define γ(ID) as

γ(ID) = Pr
y

[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0]

where the probability is taken over y = (y0, {yi,j}(i,j)∈[d,`]), which is chosen as specified in Game1.
Then, it suffices to show

1

(κcdnd)(c−1)d+1

(
1− 2dQ

nc

)
≤ γ(ID) ≤ 1

(κcdnd)(c−1)d+1
(43)

since by Lemma 8, this implies∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ ε

(κcdnd)(c−1)d+1

(
1− 2dQ

nc

)
− 1

2(κcdnd)(c−1)d+1

(
1−

(
1− 2dQ

nc

))
=

1

(κcdnd)(c−1)d+1

(
ε

(
1− 2dQ

nc

)
− dQ

nc

)
≥ 1

(κcdnd)(c−1)d+1

(
ε

2
− dQ

nc

)
where the last inequality follows from Eq.(30). In the following, we will prove Eq.(43) by applying
Lemma 9. We set

ν = 2, µ = d` Φ = Rq,

Ωj = Rq/〈tj〉, πj : Rq → Rq/〈tj〉, for j ∈ [2],

S0 = [−κ(cn)d,−1]R,(c−1)d+1, S1 = [1, n]R,c

where πj is a natural homomorphism and t1, t2 are elements in Rq as defined in Lemma 3.
Therefore, the map Π : Φ 3 y 7→ (π1(y), π2(y)) ∈ Ω1 × Ω2 is an isomorphism. We define
fi({Yj,j′}(j,j′)∈[d]×[`]) for i ∈ [0, Q] as

fi
(
{Yj,j′}(j,j′)∈[d]×[`]

)
=

∑
(j′1,...,j

′
d)∈S(IDi)

Y1,j′1
Y2,j′2

· · ·Yd,j′d

where we define ID0 := ID?. Note that we have Fy(IDi) = y0 + fi({yi,j}(i,j)∈[d]×[`]). We now check
that the three conditions for Lemma 9 hold.

• We prove that πj is injective on S1 for j ∈ {1, 2}. Assume for contradiction that there are
a1, a2 ∈ S1 with a1 6= a2 and πj(a1) = πj(a2)⇔ πj(a1−a2) = 0. We then have a1−a2 6∈ R∗q .
On the other hand, we have ‖φ(a1 − a2)‖2 ≤

√
cn <

√
q. However, this contradicts Lemma

3.
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• For i ∈ [1, Q], we have

f0

(
{Yj,j′}

)
− fi

(
{Yj,j′}

)
=

∑
(j′1,...,j

′
d)∈S(ID?)

Y1,j′1
Y2,j′2

· · ·Yd,j′d −
∑

(j′1,...,j
′
d)∈S(IDi)

Y1,j′1
Y2,j′2

· · ·Yd,j′d .

Since ID? 6= IDi and S is an injective map, we have S(ID?) 6= S(IDi). Therefore, there
exists (j?1 , . . . , j

?
d) ∈ [`]d such that (j?1 , . . . , j

?
d) ∈ S(ID?) 4 S(IDi), where S(ID?) 4 S(IDi)

denotes the symmetric difference of S(ID?) and S(IDi). Thus, the above polynomial is a
non-zero polynomial with degree d. Since the coefficients of f0 − fi are all in {−1, 0, 1} and
πj(±1) = ±1, πj(f0 − fi) is a non-zero polynomial for j ∈ {1, 2} as well.

• We prove S0 ⊇ {−fi({yj,j′}(j,j′)∈[d]×[`])|y1,1, . . . , yd,` ∈ S1} for all i ∈ [0, Q]. By our assump-
tion d(c − 1) < n and by regarding elements yj,j′ as polynomials in Z[X]/(Xn + 1) with
degree c − 1, we have fi({yj,j′}) are all in [∗, ∗]R,d(c−1)+1 where ∗ represents some integer.

It then suffices to show ‖φ(fi({yj,j′}(j,j′)∈[d]×[`]))‖∞ ≤ κ(cn)d. For any {yj,j′}(j,j′)∈[d]×[`], we
have

‖φ(fi({yj,j′}(j,j′)∈[d]×[`]))‖∞ =

∥∥∥∥∥∥φ
 ∑

(j′1,...,j
′
d)∈S(IDi)

y1,j′1
y2,j′2

· · · yd,j′d

∥∥∥∥∥∥
∞

(44)

=

∥∥∥∥∥∥
∑

(j′1,...,j
′
d)∈S(IDi)

φ(y1,j′1
y2,j′2

· · · yd,j′d)

∥∥∥∥∥∥
∞

(45)

≤
∑

(j′1,...,j
′
d)∈S(IDi)

∥∥∥φ(y1,j′1
y2,j′2

· · · yd,j′d)
∥∥∥
∞

(46)

≤ κ(cn)d (47)

where Eq.(44) follows from the definition, Eq.(45) holds because φ−1 is a homomorphism,
Eq.(46) is from the triangle inequality, and Eq.(47) is from Lemma 7 and the fact that
‖yj,j′‖∞ ≤ n.

This completes the proof of Lemma 11.

Lemma 12. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[X5]− Pr[X6]| ≤ Adv
RLWE

n,k+1,q,Dcoeff
Zn,αq

B .

In particular, under the RLWEn,k+1,q,Dcoeff
Zn,αq

assumption, we have |Pr[X5]− Pr[X6]| = negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game5 and
Game6. We use A to construct an RLWE algorithm denoted B, which proceeds as follows.

Instance. B is given the problem instance of RLWE ({ai, vi}ki=0) ∈ (Rq×Rq)k+1. We can assume

without loss of generality that vi = v′i + xi for xi
$← Dcoeff

Zn,αq. Then B’s task is to distinguish

whether v′i = ais for some s ∈ Rq or v′i
$← Rq. We note this subtle change from the standard

RLWE problem is done only for convenience of the proof.

Setup. To construct master public key mpk, B first sets

u := a0, a := (a1, . . . , ak), v0 := v0, v := (v1, . . . , vk)
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It also picks y as in Game1, R0,Ri,j as in Game2 and sets b0 and bi,j as in Eq.(34). Finally, it

returns mpk = (a, b0, {bi,j}(i,j)∈[d,`], u) to A. B also picks a random bit coin
$← {0, 1} and keeps

it secret.

Phase 1 and Phase 2. The key extraction queries made by A are answered as in Game4. This
is done by using R0 and Ri,j .

Challenge Query. When Amakes the challenge query for the challenge identity ID? and message
m, B first computes Fy(ID?). Then, it aborts and sets coin′

$← {0, 1} if Fy(ID?) 6= 0. Otherwise,
it proceeds as follows. If coin = 0, it computes RID? and c ∈ Z2k

q as in Eq.(39). It then sets the

challenge ciphertext C? as in Eq. (38). In the case of coin = 1, B picks c0
$← Rq, c1

$← R2k
q and

sets C? = (c0, c1). In both cases, B returns C? to A.

Guess. At last, A outputs its guess ĉoin (if the abort condition has not been satisfied). Then, B
sets coin′ = ĉoin. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

Analysis. It can be seen that B perfectly simulates the view of A in Game5 if {ai, v′i +xi}ki=0 are

valid RLWE samples (i.e., v′i = ais) and Game6 otherwise (i.e., v′i
$← Rq). We therefore conclude

that Adv
RLWE

n,k+1,q,Dcoeff
Zn,αq

B = |Pr[X5]− Pr[X6]| as desired.

5 Construction from Bilinear Maps

In the following, we present our IBE scheme from bilinear maps. Here, for simplicity, we present
the scheme with only single-bit message space. A variant of our scheme that can deal with longer
message space will appear in Appendix D.1. Let the identity space of the scheme be ID = {0, 1}κ
for some κ ∈ N. For our construction, we consider an efficiently computable injective map S
that maps an identity ID ∈ {0, 1}κ to a subset S(ID) of [1, `]× [1, `], where ` = d

√
κe. We would

typically set κ = O(λ), and thus ` = O(
√
λ) in such a case. We also use GL(K, rand) to denote

the Goldreich-Levin hardcore bit [GL89] of K using randomness rand. Recall that GL(K, rand) is
the bitwise inner product between K and rand.

Setup(1λ) : On input 1λ, it chooses an asymmetric bilinear group G1,G2,GT with efficiently
computable map e : G1 × G2 → GT of prime order p = p(λ). Let g and h be generators

of G1 and G2 respectively. It then picks w0, w1,1, . . . , w1,`, w2,1, . . . , w2,`, α, β
$← Zp and

rand
$← {0, 1}|GT |. It finally outputs

mpk = (g,W0 = gw0 , {W1,i = gw1,i}`i=1, {W2,i = gw2,i}`i=1, g
α, hβ, rand) and

msk = (h, α, β, w0, w1,1, . . . , w1,`, w2,1, . . . , w2,`)

In the following, we use a deterministic function H : ID → Zp that is defined as follows.

H(ID) = w0 +
∑

(i,j)∈S(ID)

w1,iw2,j ∈ Zp. (48)

KeyGen(mpk,msk, ID) : It first computes H(ID) using msk and picks r
$← Zp. It then returns

skID = ( A1 = hαβ+r·H(ID), A2 = h−r, {Bj = hrw2,j}`j=1 ). (49)
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Encrypt(mpk, ID,M) : To encrypt a message M ∈ {0, 1}, it picks s, t1, . . . , t`
$← Zp and computes

C0 = M⊕ GL
(
e(gα, hβ)s, rand

)
, C1 = gs, C2 = W s

0 ·
∏
j∈[1,`]

W
tj
2,j ,

Dj = gtj ·

 ∏
i∈{i∈[1,`]|(i,j)∈S(ID)}

W1,i

−s for j ∈ [1, `] (50)

Finally, it returns the ciphertext C = (C0, C1, C2, {Dj}`j=1).

Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (C0, C1, C2, {Dj}`j=1) using a private key

skID = (A1, A2, {Bj}`j=1), it first computes

e(C1, A1) · e(C2, A2) ·
∏
j∈[1,`]

e(Dj , Bj) = e(g, h)sαβ. (51)

Then it retrieves the message by C0 ⊕ GL(e(g, h)sαβ, rand).

5.1 Correctness of the Single-bit Variant

To verify the correctness of the scheme, it suffices to show Eq.(51). Let gT := e(g, h). We have

loggT

e(C1, A1) · e(C2, A2) ·
∏
j∈[1,`]

e(Dj , Bj)


= loggT e(C1, A1)− r

sw0 +
∑
j∈[1,`]

tjw2,j

+
∑
j∈[1,`]

rw2,j

tj − s ∑
i∈{i∈[1,`]|(i,j)∈S(ID)}

w1,i


= loggT e(C1, A1)− rsw0 − rs

∑
j∈[1,`]

 ∑
i∈{i∈[1,`]|(i,j)∈S(ID)}

w1,iw2,j


= sαβ + rs

w0 +
∑

(i,j)∈S(ID)

w1,iw2,j

− rs
w0 +

∑
(i,j)∈S(ID)

w1,iw2,j


= sαβ.

Therefore, Eq.(51) follows.

5.2 Security Proof for the Single-bit Variant

The security of the scheme is proven under the 3-CBDHE assumption defined below.

Definition 2 (3-Computational Bilinear Diffie-Hellman Exponent (3-CBDHE) Assumption). We
say that 3-CBDHE holds on (G1,G2,GT ) if

Pr[A(g, gs, ga, ga
2
, h, ha, ha

2
)→ e(g, h)sa

3
]

is negligible for any PPT adversary A where g
$← G1, h

$← G2, s, a
$← Zp.
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We also introduce the following lemma concerning the Goldreich-Levin hardcore bit function
which we use during our security proof.

Lemma 13 ([GL89]). Let us assume that the 3-CBDHE assumption holds. Then, for any PPT
adversary A,

Adv3CBDHE
A =

∣∣∣Pr[A
(
Ψ, rand,GL(e(g, h)sa

3
, rand)

)
→ 1]− Pr[A

(
Ψ, rand, T

)
→ 1]

∣∣∣
is negligible where Ψ = (g, gs, ga, ga

2
, h, ha, ha

2
), a, s

$← Zp, T $← {0, 1} and rand
$← {0, 1}|GT |.

The following theorem addresses the security of the scheme.

Theorem 3. The above IBE scheme is adaptively secure assuming the 3-CBDHE assumption.

Proof. Let A be a PPT adversary that breaks adaptive security of the scheme. In addition, let
ε = ε(λ) and Q = Q(λ) be its advantage and the upper bound on the number of key extraction
queries, respectively. Since A is PPT, there exists a constant number c1 ∈ N such that 4(Q+1) ≤
λc1 for all λ ∈ N. Similarly, since A breaks the security of the scheme, there exists c2 ∈ N such
that 2ε ≥ λ−c2 holds for infinitely many λ. By setting c = c1 + c2, we have that

4Q ≤ λc for all λ ∈ N and
ε

2(Q+ 1)
≥ 1

λc
for infinitely many λ ∈ N. (52)

In the following, we assume that p > λc. Since the size of p is exponential in λ, this holds for
sufficiently large λ.

We show the security of the scheme via the following games. In each game, a value coin′ ∈ {0, 1}
is defined. While it is set coin′ = ĉoin in the first game, these values might be different in the
later games. In the following, we define Xi be the event that coin′ = coin in Gamei.

Game0 : This is the real security game. Since the message space is {0, 1}, without loss of generality,
we assume that the adversary always chooses M0 = 0 and M1 = 1 as its target in the
challenge phase. Then the challenger picks a random coin coin

$← {0, 1} and returns an
encryption of Mcoin = coin as the challenge ciphertext. At the end of the game, A outputs
a guess ĉoin for coin. Finally, the challenger sets coin′ = ĉoin. By the definition, we have∣∣∣∣Pr[X0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε.

Game1 : In this game, we change Game0 so that the challenger performs the following additional
step at the end of the game. First, the challenger picks y = (y0, {yi,j}(i,j)∈[2]×[`]) as

y0
$← [−κλ2c,−1] and yi,j

$← [1, λc] for (i, j) ∈ [2]× [`]. (53)

We define a function Fy : ID → Zp as follows:

Fy(ID) = y0 +
∑

(j1,j2)∈S(ID)

y1,j1y2,j2 .

Then the challenger checks whether the following condition holds:

Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0 (54)
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where ID? is the challenge identity, and ID1, . . . , IDQ are identities for which A has made

key extraction queries. If it does not hold, the challenger ignores the output ĉoin of A, and
sets coin′

$← {0, 1}. Otherwise, the challenger sets coin′ = ĉoin. In Lemma 14, we will show
that ∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

κλ2c

(
ε

2
− Q

λc

)
.

Game2 In this game, we change the way α, β, w0, and wi,j are chosen. At the beginning of the

game, the challenger picks y as in Game1. It then picks a, w̃0, w̃1,1, . . . , w̃1,`, w̃2,1, . . . , w̃2,`
$←

Zp, α̃, β̃ $← Z∗p and sets

α = aα̃, β = a2β̃, w0 = a2y0 + w̃0, wi,j = ayi,j + w̃i,j for (i, j) ∈ [2]× [`]. (55)

This change does not alter the distribution of w0, wi,j , α, and β. Since this change is only
conceptual, we have

Pr[X2] = Pr[X1].

Game3 Recall that in the previous game, the challenger aborts at the end of the game, if the
condition (54) is not satisfied. In this game, we change the game so that the challenger
aborts as soon as the abort condition becomes true. Since this is only a conceptual change,
we have

Pr[X3] = Pr[X2].

Before describing the next game, we observe that H(ID) can be written as an polynomial in a
with degree 2 whose coefficients depend on ID and y.

H(ID)

= w0 +
∑

(i,j)∈S(ID)

w1,iw2,j

= y0a
2 + w̃0 +

∑
(i,j)∈S(ID)

(y1,ia+ w̃1,i)(y2,ja+ w̃2,j)

=

y0 +
∑

(i,j)∈S(ID)

y1,iy2,j


︸ ︷︷ ︸

=Fy(ID)

a2 +

 ∑
(i,j)∈S(ID)

w̃1,iy2,j + y1,iw̃2,j


︸ ︷︷ ︸

:=Gy(ID)

a+

w̃0 +
∑

(i,j)∈S(ID)

w̃1,iw̃2,j


︸ ︷︷ ︸

:=Iy(ID)

= Fy(ID)a2 + Gy(ID)a+ Iy(ID).

Game4 : In this game, we change the way the key extraction queries are answered. When A makes
a key extraction query for an identity ID, the challenger aborts if Fy(ID) = 0 as the previous

game. Otherwise, it first picks r̃
$← Zp and sets r as

r = r̃ − α̃β̃

Fy(ID)
a. (56)
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Then the private key is generated as Eq.(49). Clearly, this is only a conceptual change and
does not change the view of A. Therefore, we have

Pr[X4] = Pr[X3].

Here, we observe that

αβ + rH(ID)

= a3α̃β̃ +
(
Fy(ID)a2 + Gy(ID)a+ Iy(ID)

)(
r̃ − α̃β̃

Fy(ID)
a

)

=

(
r̃Fy(ID)− α̃β̃Gy(ID)

Fy(ID)

)
a2 +

(
r̃Gy(ID)− α̃β̃Iy(ID)

Fy(ID)

)
a+ r̃ · Iy(ID) (57)

and

rw2,j =

(
r̃ − α̃β̃

Fy(ID)
a

)
(y2,ja+ w̃2,j)

= − α̃β̃y2,j

Fy(ID)
a2 +

(
r̃y2,j −

α̃β̃w̃2,j

Fy(ID)

)
a+ rw̃2,j . (58)

It can be seen that the term a3α̃β̃ cancels out in Eq.(57). Looking ahead, this is essential
for the reduction from the 3-CBDHE assumption (Lemma 15) to be possible.

Game5 In this game, we change the way the challenge ciphertext is created. When creating the
challenge ciphertext, the challenger first picks s′, t̃1, . . . , t̃`

$← Zp and sets

s =
s′

α̃β̃
, tj =


t̃1 + s

−Gy(ID?)

y2,1
+

∑
i∈{i∈[1,`]|(i,1)∈S(ID?)}

w1,i

 for j = 1

t̃j + s

 ∑
i∈{i∈[1,`]|(i,j)∈S(ID?)}

w1,i

 for j ∈ [2, `].

(59)

Then, the challenge ciphertext is computed as Eq.(50). Note that since 1 ≤ y2,1 ≤ λc < p
and thus y 6= 0 mod p, the denominator in Eq.(59) is well-defined. Clearly, this is only a
conceptual change and does not change the view of A. Therefore, we have

Pr[X5] = Pr[X4].

Here, we observe that

C0 = coin⊕ GL
(
e(g, h)s

′a3
, rand

)
, D1 = gt̃1(gs

′
)−Gy(ID?)/α̃β̃y2,1 , Dj = gt̃j for j ∈ [2, `] (60)

and

logg C2

= sw0 +
∑
j∈[1,`]

w2,jtj
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= sw0 − w2,1s

(
Gy(ID?)

y2,1

)
+
∑
j∈[1,`]

w2,j

t̃j + s

 ∑
i∈{i∈[1,`]|(i,j)∈S(ID?)}

w1,i


= −w2,1s

(
Gy(ID?)

y2,1

)
+

 ∑
j∈[1,`]

w2,j t̃j

+ s

w0 +
∑
j∈[1,`]

∑
i∈{i∈[1,`]|(i,j)∈S(ID?)}

w1,iw2,j


︸ ︷︷ ︸

=H(ID?)

= −s(y2,1a+ w̃2,1)

(
Gy(ID?)

y2,1

)
+

 ∑
j∈[1,`]

w2,j t̃j

+ s

Fy(ID?)︸ ︷︷ ︸
=0

a2 + Gy(ID?)a+ Iy(ID?)


= −������

Gy(ID?)sa− s
(
w̃2,1Gy(ID?)

y2,1

)
+

 ∑
j∈[1,`]

w2,j t̃j

+������
Gy(ID?)sa+ s · Iy(ID?)

= s′

(
y2,1 · Iy(ID?)− w̃2,1 · Gy(ID?)

α̃β̃y2,1

)
+ a

 ∑
j∈[1,`]

y2,j t̃j

+

 ∑
j∈[1,`]

w̃2,j t̃j

 . (61)

It can be seen that the term −Gy(ID?)sa cancels out in Eq.(61). Looking ahead, this is
essential for the reduction from the 3-CBDHE assumption (Lemma 15) to be possible.

Game6 In this game, the component C0 in the challenge ciphertext is changed to be a random
bit. As we will show in Lemma 15, assuming the 3-CBDHE assumption is hard, we have

|Pr[X6]− Pr[X5]| = negl(n). (62)

Analysis. From the above, we have∣∣∣∣Pr[X6]− 1

2

∣∣∣∣ =

∣∣∣∣∣Pr[X1]− 1

2
+

5∑
i=1

Pr[Xi+1]− Pr[Xi]

∣∣∣∣∣
≥

∣∣∣∣Pr[X1]− 1

2

∣∣∣∣− 5∑
i=1

|Pr[Xi+1]− Pr[Xi]|

≥ 1

κλ2c

(
ε

2
− Q

λc

)
− negl(λ)

=
1

poly(λ)

(
ε

2
− Q

λc

)
− negl(λ). (63)

Since the challenge ciphertext is independent from the value of coin in Game6, we have Pr[X6] =
1/2 and thus |Pr[X6]− 1/2| = 0. Therefore, we have that ε/2−Q/λc is negligible. However, by
Eq.(52),

ε

2
− Q

λc
≥ Q+ 1

λc
− Q

λc
=

1

λc

holds for infinitely many λ, which is a contradiction.

To complete the proof of Theorem 3, it remains to show Lemma 14 and Lemma 15.
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Lemma 14. For any PPT adversary A, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

κλ2c

(
ε

2
− Q

λc

)
.

Proof. For a sequence of identities ID = (ID?, ID1, . . . , IDQ) ∈ IDQ+1, we define γ(ID) as

γ(ID) = Pr
y

[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0]

where the probability is taken over y = (y0, {yi,j}(i,j)∈[2,`]), which is chosen as specified in Game1.
It suffices to show

1

κλ2c

(
1− 2Q

λc

)
≤ γ(ID) ≤ 1

κλ2c
(64)

since due to Lemma 8, this implies∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ ε

κλ2c

(
1− 2Q

λc

)
− 1

2κλ2c

(
1−

(
1− 2Q

λc

))
≥ 1

κλ2c

(
ε

2
− Q

λc

)
where we used Eq.(52) in the last inequality. In the following, we will prove Eq.(64) by applying
Lemma 9. We would set

d = 2, ν = 1, Φ = Ω1 = Zp,
Π = π1 = idZp , S0 = [−κλ2c,−1], S1 = [1, λc]

where idZp denotes the identity map on Zp. We set µ = 2` and define fi({Yj,j′}(j,j′)∈[2]×[`]) for
i ∈ [0, Q] as

fi
(
{Yj,j′}(j,j′)∈[2]×[`]

)
=

∑
(j′1,j

′
2)∈S(IDi)

Y1,j′1
Y2,j′2

where we define ID0 := ID?. Note that we have Fy(IDi) = y0 + fi({yj,j′}(j,j′)∈[2]×[`]). We now
check that the three conditions for Lemma 9 hold.

• π1 is injective on S1 because it is the identity map on Zp and λc < p.

• For i ∈ [1, Q], we have

f0

(
{Yj,j′}

)
− fi

(
{Yj,j′}

)
=

∑
(j′1,j

′
2)∈S(ID?)

Y1,j′1
Y2,j′2

−
∑

(j′1,j
′
2)∈S(IDi)

Y1,j′1
Y2,j′2

.

Since ID? 6= IDi and S is an injective map, we have S(ID?) 6= S(IDi). Therefore, there
exists (j?1 , j

?
2) ∈ [`]× [`] such that (j?1 , j

?
2) ∈ S(ID?)4S(IDi), where S(ID?)4S(IDi) denotes

the symmetric difference of S(ID?) and S(IDi). Thus, the above polynomial is a non-zero
polynomial with degree 2.

• Since S1 = [1, λc], we have

1 ≤ fi({yj,j′}) =
∑

(j′1,j
′
2)∈S(IDi)

y1,j′1
y2,j′2

≤
∑

(j′1,j
′
2)∈S(IDi)

λc · λc ≤ κλ2c

for i ∈ [Q]. Therefore, we have S0 ⊇ {−fi({yj,j′}(j,j′)∈[2]×[`])|yj,j′ ∈ S1} for all i ∈ [0, Q].
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This completes the proof of Lemma 14.

Lemma 15. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[X5]− Pr[X6]| ≤ Adv3CBDHE
B .

In particular, under the 3CBDHE assumption, we have |Pr[X5]− Pr[X6]| = negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game5 and
Game6. We use A to construct an 3CBDHE algorithm denoted B, which proceeds as follows.

Instance. B is given the problem instance of 3CBDHE
(
g, gs

′
, ga, ga

2
, h, ha, ha

2
, rand, T

)
. The

task of B is to distinguish whether T = GL(e(g, h)s
′a3
, rand) or T

$← {0, 1}.
Setup. To construct master public key mpk, B first picks y as in Game2. It also picks w̃0, w̃i,j , α̃, β̃
and implicitly sets w0, wi,j , α, β as in Game3. Then, B computes mpk as follows:

mpk =

(
g,

gα = (ga)α̃, W0 = (ga
2
)y0 · gw̃0 ,

hβ = (ha
2
)β̃, {Wi,j = (ga)yi,j · gw̃i,j}(i,j)∈[2,`],

rand

)
. (65)

Note that these values can be computed without explicitly knowing a. Finally, it returns mpk to
A. B also picks a random bit coin

$← {0, 1} and keeps it secret.

Phase 1 and Phase 2. When A makes a key extraction query for ID, B proceeds as follows. We
assume F(ID) 6= 0 since otherwise B aborts. By the change introduced in Game4, we have that
each component of skID can be written as a linear combination of (h, ha, ha

2
) with the coefficients

being known to B (See Eq.(56), (57), and (58)). Therefore, B can compute the secret key without
explicitly knowing the value of a.

Challenge Query. When A makes the challenge query for the challenge identity ID?, B proceeds
as follows. We assume Fy(ID?) 6= 0 since otherwise B aborts. By the change introduced in
Game6, C1, C2, {Dj}`j=1 in the challenge ciphertext can be written as a linear combination of

(gs
′
, g, ga, ga

2
) (See Eq.(60) and (61)). B can therefore compute these components. Finally, B sets

C0 = T ⊕ coin and gives the challenge ciphertext C? = (C0, C1, C2, {Dj = gtj}j∈[1,`]) to A.

Guess. At last, A outputs its guess ĉoin (if the abort condition has not been satisfied). Then, B
sets coin′ = ĉoin. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

Analysis. It can be seen that the view ofA corresponds to that in Game5 if T = GL(e(g, h)s
′a3
, rand)

and Game6 if T
$← {0, 1}. Therefore, we have |Pr[X5]− Pr[X6]| ≤ Adv3CBDHE

B .

6 Comparisons and Discussions

In this section, we compare our IBE schemes obtained in Sec. 4 and 5 with previous schemes.
Throughout this section, |mpk|, |C|, and |skID| denote the sizes of the master public keys, cipher-
texts, and private keys, respectively. We denote by κ the length of the identity, which corresponds
to the output length of the collision resistant hash if we choose to hash the bit string representing
an identity.

Ideal Lattice Based IBE. In Sec. 4. we proposed a new ideal lattice based IBE scheme. By
changing the base b of the gb-trapdoor, we obtain two types of instantiation offering tradeoffs.
Namely, by setting b = 2 we obtain the Type 1 IBE scheme presented in Appendix C, and by
setting b = n

1
4 we obtain the Type 2 IBE scheme presented in Sec. 4.1. The Type 2 IBE allows for
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a more compact size parameters compared to the Type 1 IBE, whereas the Type 1 IBE allows for
a more efficient sampling procedure due to the smaller Gaussian width. Note that the technique of
changing the base b is applicable for other existing IBE schemes as well, offering a similar tradeoff
presented above. Both of our schemes achieve the best efficiency among existing adaptively
secure IBE schemes assuming the fixed polynomial approximation of the RLWE problem. This is
illustrated in Table 1. We point out that the largest improvement from the Yamada’s IBE is that
we greatly weakened the underlying hardness assumption while improving the overall efficiency
of the scheme.

Table 1: Comparison of Lattice-Base IBEs in the Standard Model.

Schemes |mpk| |C|, |skID|
1/α for LWE
Assumption

Anonymous?

[CHKP10] O(nκ log2 n) O(nκ log2 n) Fixed poly(n) Yes

[ABB10]+[Boy10]∗ O(nκ log2 n) O(n log2 n) Fixed poly(n) Yes

[Yam16]: Scheme 1 O(nκ
1
d log4 n) O(n log4 n) nω(1) Yes

[Yam16]: Scheme 2 O(nκ
1
d log4 n) O(n log4 n) All poly(n) No

Ours: Sec. 4. Type 1. O(nκ
1
d log2 n) O(n log2 n) Fixed poly(n) Yes

Ours: Sec. 4. Type 2. O(nκ
1
d log n) O(n log n) Fixed poly(n) Yes

All parameters presented in the table are obtained by instantiating the schemes in
the ring setting. d ∈ N is a flexible constant, which can be set to be any value. “1/α”
for LWE assumption refers to the underlying LWE assumption used in the security
reduction. “Fixed poly(n)” means that the corresponding scheme is proven secure
under the LWE assumption with 1/α being some fixed polynomial (e.g., n3). “All
poly(n)” mean that we have to assume the LWE assumption for all polynomial.

∗ In the security proof for the adaptively secure variant of IBE in [ABB10], we have
a restriction that q > Q. Namely, only bounded form of the security is proven.
This restriction is removed in the refined analysis due to Boyen [Boy10].

Bilinear Map Based IBE. Here, we compare our scheme in Sec. 5 with other adaptively secure
IBE schemes based on the hardness of computational/search problems on bilinear maps in the
standard model. To base the security of IBE schemes on such problems, we have to mask the
message using the Goldreich-Levin hardcore bit [GL89]. To the best of our knowledge, there are
only two IBE schemes that we can apply this modification: Waters IBE [Wat05] and Naccache
IBE [Nac07]. As shown in Table 2, our scheme achieves asymptotically shorter master public key
size than these schemes. We note that to compare the efficiency, we count the number of group
elements. However our method comes at the cost of increasing the ciphertext and private key size
and we further have to rely on a stronger assumption than theirs.

Table 2: Comparison of IBE from Bilinear Maps in the Standard Model.

Schemes |mpk| |C|, |skID| Assumption

[Wat05] + Hardcore bit [GL89] O(κ) 2 CBDH
[Nac07] + Hardcore bit [GL89] O(κ/ log(λ)) = O(κ/ log(κ)) 2 CBDH
Ours: Sec. 5 O(

√
κ) O(

√
κ) 3-CBDHE
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A Supplementary Note on Ring Elements

Useful Formulas. In hope of making the paper more accessible, we provide some formulas
on ring elements when viewed as vectors/matrices over Z. Let R denote the polynomial ring
Z[X]/(Φm(X)) for m a power of 2 and recall that we can view elements of R as Zn through the
coefficient embedding φ(·) and as the subring of anti-circulant marices in Zn×n through the ring
homomorphism rot(·). In addition, vectors are viewed in their row forms. All of the following
statement holds when we view the polynomial ring Rq = Z[X]/(q,Φm(X)) as Zq.

First of all, for any element s ∈ R, vectors a, e ∈ Rk and matrix R ∈ Rk×` recall that we have
the following:

φ(s) ∈ Zn, φ(a) ∈ Znk,
rot(s) ∈ Zn×n, rot(a) ∈ Zn×nk, rot(R) ∈ Znk×n`.

Then, we obtain the following formulas through simple calculation:

1. φ(sa) = φ(s)rot(a) ∈ Znk

2. φ(aeT ) = φ(a)rot(eT ) ∈ Zn

3. φ(aR) = φ(a)rot(R) ∈ Zn`

4. rot(aR) = rot(a)rot(R) ∈ Zn×n`

Gaussian Sampling. The second formula above is mainly used to bridge the gap between the
Gaussian sampling algorithms for normal lattices and for ideal lattices (see Sec. 3.3 Lem. 5).
Suppose we wish to sample a short vector e ∈ Rk (from a certain distribution we discuss later)
such that aeT = u, where a ∈ Rk and u ∈ R. Note that this comes up during the KeyGen
procedure in our lattice-based construction. Applying the second formula in slightly a different
order, we obtain the following:

φ(u) = φ(aeT ) = φ(e)rot(aT ) =

(
rot(aT )Tφ(e)T

)T
⇔ rot(aT )Tφ(e)T = φ(u)T ∈ Znq .

Note that in general rot(a) 6= rot(aT )T . Therefore, we only have to sample a vector e ∈ Znk from
the coset Λ⊥φ(u)(rot(aT )T ) and map it back to its ring representation e = φ−1(e) ∈ Rk to obtain

a short sample e such that aeT = u. This can be done easily by using a basis rot(Ta) for the
lattice Λ⊥(rot(aT )T ).

B Omitted Details/Proofs from Section 3

B.1 Proof of Lemma 1

Before proving Lemma 1 on noise rerandomization, we recall the following two lemmas. Note that
Lemma 17, the special case of the claim from [Reg05], is restated in order to make the comparison
between Lemma 16 more clear.
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Lemma 16 ([Pei10], Special Case of Theorem 3.1). Let n be a positive integer and r be a positive
real satisfying r ≥ ω(

√
log n). Then, if we choose x1 from the continuous Gaussian Dn

r and then
choose x2 from the discrete Gaussian DZn−x1,r, then x1 + x2 is distributed statistically close to
the discrete Gaussian DZn,

√
2r.

Lemma 17 ([Reg05], Special Case of Claim 3.9). Let n be a positive integer and let r a positive
real satisfying r ≥ ω(

√
log n). Then, if we choose x1 from the continuous Gaussian Dn

r and choose
x2 from the discrete Gaussian DZn,r, x1 + x2 is distributed statistically close to the continuous
Gaussian Dn√

2r
.

Then, the proof of Lemma 1 is given as follows.

Proof. The algorithm samples c,d and f as follows:

1. sample c from the continuous Gaussian distribution Dm
r ,

2. sample d from the continuous Gaussian distribution D√2r(σ2I`−VTV)1/2 ,

3. sample f from the discrete Gaussian DZ`−(cV+d),
√

2rσ.

Observe the distribution of d is well-defined. The algorithm outputs the following,

b′ = ((b + x) + c) V + d + f = bV + (x + c)V + d + f︸ ︷︷ ︸
x′:=“noise term”

∈ Z`q.

We analyse the noise term and show that it is distributed as in the statement. Let x′ = (x+c)V+
d + f . Observe that by Lemma 17, x + c is distributed as the continuous Gaussian distribution
Dm√

2r
. Therefore, (x + c)V is distributed as the distribution D√2rVT . Since d is sampled from

the continuous Gaussian distribution D√2r(σ2I`−VTV)1/2 , it follows that y = (x + c)V + d is

distributed as a spherical continuous Gaussian D√̀
2rσ

. Next, observe that since xV ∈ Z`, the two

distributions DZ`−y,
√

2rσ and DZ`−(cV+d),
√

2rσ are equivalent by definition. Therefore, by Lemma
16, adding f chosen from the discrete Gaussian DZ`−(cV+d),

√
2rσ to y, which we can do without

knowledge of the unknown value x, we can discretize y. Hence x′ = y + f is distributed according
to the discrete Gaussian DZ`,2rσ as in the above statement.

B.2 Proof of Lemma 3

Proof. The first part of the lemma is taken from Lemma 2.3 of [SSTX09]. Therefore, we only
prove the latter part of the lemma, which is implicit in [SS11]. If x 6∈ R∗q , x ∈ 〈t1〉 or x ∈ 〈t2〉
holds over Rq. We assume that the former holds without loss of generality. Then, t ∈ 〈t1, q〉 holds
over R. Thus, N (x) = N (〈x〉) ≥ N (〈t1, q〉) = qn/2, where N is the (field) norm. (See [SS11]
for the definition.) Then, by using the additive geometric mean it can be seen that ‖σ(x)‖2 =√∑n

i=1 |σi(x)|2 ≥
√
n· 2n
√∏n

i=1 |σi(x)|2 =
√
n· n
√
N (x) ≥ √nq holds. Since ‖σ(x)‖2 =

√
n‖φ(x)‖2,

the statement follows.

B.3 Proof of Lemma 4

Proof. We first show the former part of the lemma. Let x1 6= x2 ∈ Rk×1
q be arbitrary elements in

[−ρ, ρ]kR and set z = x1−x2 ∈ Rk×1
q . Then we have z ∈ [−2ρ, 2ρ]kR. Assume for some A ∈ Rk′×kq ,

we have hA(x1) = hA(x2), i.e., hA(z) = 0. Since, x1 6= x2, there exists j ∈ [k] such that the
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jth coefficient of x1 and x2 are different. Then, by Lemma 3, since ‖φ(zj)‖2 ≤ 2ρ
√
n <

√
q, zj

must be invertible. Therefore, aj = z−1
j

∑
i 6=j ziai where ai ∈ Rk

′×1
q is the ith column of A. The

probability of a random A ∈ Rk′×kq satisfying this condition is exactly 1/qnk
′

= 1/|Rq|k
′
. Hence

H is universal. We then show the latter part of the lemma. We observe that the case of ` = 1
follows from the leftover hash lemma since the min-entropy of X is (1/(2ρ + 1))kn in this case.
The case of ` ≥ 2 immediately follows from a standard hybrid argument.

B.4 Correctness of TrapGen in Lemma 5

Proof. The proof follows by combining several Lemmas from [MP12] and our Lemma 2 and
Lemma 4. First for simplicity asssume k is even, i.e., k = 2k′ for some k′ ∈ N, and assume that
k′ = dlogb qe for some positive integer b. We first show that a = [a′|gb − a′R] is distributed

uniformly at random over Rk when a′
$← Rk

′
and R

$← [−ρ, ρ]k
′×k′
R . This follows from Lemma 4,

since we have

k′

2

√(
q

(2ρ+ 1)k′

)n
≤ k′

2

(
q

(2ρ)k′

)n
2

≤ k′

2

(
1

2k′

)n
2

≤ k′

2n+1
= negl(n),

when 1 < ρ < 1
2

√
q/n, k′ ≥ logρ q and k′ is polynomial in n. Similar result holds for the case ρ = 1.

Note that in the case of ρ = 1, we define log1 q := log2 q. Next, by the property of gb there exists a
publicly known basis Tgb ∈ Rk

′×k′ such that rot(Tgb) is a basis for Λ⊥(rot(gTb )T ) (or equivallently
for Λ⊥(rot(gb))) such that ‖rot(Tgb)‖GS ≤

√
b2 + 1. We also have s1(R) ≤ O(ρ ·

√
nk′) with all

but negligible probability from Lemma 2. Then using the fact that rot(RT )T (resp. rot(R))
is a gb-trapdoor for rot(aT )T (resp. rot(a)) and by combining the ring version of Theorem 4.1
and Lemma 5.3 from [MP12], we obtain a basis Ta such that ‖rot(Ta)‖GS = O(bρ ·

√
n logρ q).

Note that we obtain bases for both Λ⊥(rot(aT )T ) and Λ⊥(rot(a)) from Ta by properly rearanging
Ta.

B.5 Proof of Lemma 6

Before proving the lemma, we state the following lemma that provides us with a useful bound for
the singular value of a single element in R.

Lemma 18 ([DM14], Lemma 5). For any ring element a ∈ R, we have s1(a) ≤ ‖φ(a)‖1.

Then, the proof of Lemma 6 is given as follows.

Proof. We prove it by induction. The base case (the case of d = 1) is trivial. Therefore, let us
assume the hypothesis for d− 1 where d ≥ 2. Then, we have

s1(R0) ≤ Bδd−2 +Bbnk
(δd−2 − 1

δ − 1

)
and PubEvald−1(b2, . . . , bd) = aR0 + y2 · · · ydgb

for efficiently computable R0. Therefore, by the definition of PubEvald, we have

PubEvald(b1, . . . , bd)

= (aR1 + y1gb) · g−1
b

(
PubEvald−1(b2, . . . , bd)

)
= aR1 · g−1

b

(
PubEvald−1(b2, . . . , bd)

)
+ y1 · PubEvald−1(b2, . . . , bd)

= aR1 · g−1
b

(
PubEvald−1(b2, . . . , bd)

)
+ y1(aR0 + y2 · · · ydgb)

40



= a(R1 · g−1
b

(
PubEvald−1(b2, . . . , bd)

)
+ y1R0) + y1y2 · · · ydgb.

It can be seen that Eq.(12) holds by setting

R′ = R1 · g−1
b

(
PubEvald−1(b2, . . . , bd)

)
+ y1R0.

It is clear that it can be efficiently computable. Furthermore, we have

s1(R′) ≤ s1(R1) · s1

(
g−1
b

(
PubEvald−1(b2, . . . , bd)

))
+ s1(y1) · s1(R0)

≤ B · bnk + ‖φ(a)‖1 · s1(R0)

≤ Bbnk + δ

(
Bδd−2 +Bbnk

(δd−2 − 1

δ − 1

))
= Bδd−1 +Bbnk

(δd−1 − 1

δ − 1

)
.

The second inequality follows from Lemma 18 and the fact that s1(g−1
b (u)) ≤ bnk holds for any

u ∈ Rkq .

B.6 Proof of Lemma 7

Proof. We have

‖φ(uv)‖∞ =

∥∥∥∥∥∥φ
c1+c2−2∑

j=0

 min{c1−1,j}∑
i=max{0,j+1−c2}

uivj−i

Xj

∥∥∥∥∥∥
∞

= max
j∈[0,c1+c2−2]


min{c1−1,j}∑

i=max{0,j+1−c2}

uivj−i


≤ min{c1, c2}B1B2

where the last equation follows from ‖φ(u)‖∞ ≤ B1, ‖φ(v)‖∞ ≤ B2, and min{c1 − 1, j} + 1 −
max{0, j + 1− c2} ≤ min{(c1 − 1) + 1− 0, j + 1− (j + 1− c2)} = min{c1, c2}.

B.7 Proof of Lemma 8

Proof. For ID = (ID?, ID1, . . . , IDQ), we define Q(ID) as the event that A chooses ID? as its
challenge identity and it makes key extraction queries for ID1, . . . , IDQ. We also define Replace as

the event that coin′ is set as coin′
$← {0, 1}. Then, we have∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[Q(ID)] · Pr[coin′ = coin|Q(ID)]− 1

2

∣∣∣∣∣ (66)

=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[coin′ = coin ∧ ¬Replace|Q(ID)]
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+ Pr[coin′ = coin ∧ Replace|Q(ID)]− 1

2

)∣∣∣∣ (67)

=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)] · γ(ID) +
1

2
·
(
1− γ(ID)

)
− 1

2

)∣∣∣∣∣ (68)

=

∣∣∣∣∣∑
ID
γ(ID) · Pr[Q(ID)] ·

(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣ (69)

≥

∣∣∣∣∣∑
ID
γmin · Pr[Q(ID)] ·

(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣
−

∣∣∣∣∣∑
ID

(γ(ID)− γmin) · Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣ (70)

≥ γmin

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣− γmax − γmin

2

∣∣∣∣∣∑
ID

Pr[Q(ID)]

∣∣∣∣∣ (71)

= γmin

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣− γmax − γmin

2
(72)

= γmin · ε−
γmax − γmin

2
(73)

where the sum is taken over all possible ID (i.e., ID with Q(ID) > 0). In the above, Eq.(66)
follows by the law of total probability, Eq.(67) follows from the law of total probability and∑

ID Pr[Q(ID)] = 1, Eq.(68) follows from the fact that the probability of Replace is γ(ID), when

conditioned on Q(ID) (regardless of the value of ĉoin), Eq.(69) is trivial, Eq.(70) follows from the

triangle inequality, Eq.(71) holds since γ(ID) ≤ γmax and |Pr[ĉoin = coin|Q(ID)] − 1/2| ≤ 1/2,
Eq.(72) follows again from

∑
ID Pr[Q(ID)] = 1, and Eq.(73) is by the definition of ε.

C Correctness of the Decryption Algorithm in Sec 4

Here, we prove Lemma 10, which gives a sufficient condition for the correctness of the decryption
algorithm in our scheme in Sec. 4. Before proving Lemma 10, we prepare the following two
lemmas.

Lemma 19 ([MR04], Lemma 4.4). For any n-dimensional lattice Λ, real ε ∈ (0, 1) and s ≥ ηε(Λ),
we have Pr[‖x‖ > s

√
n| x← DΛ,sω(

√
logn)] ≤ 1+ε

1−ε · 2
−n.

The following is an analogue of [ABB10], Lemma 12 where the error is instead chosen from
the discrete Gaussian.

Lemma 20 (Discrete Gaussian Error Bound). Let e be some vector in Zn and let x ← DZn,αq
for some αq > ω(

√
log n). Then the quantity |exT | treated as an integer in [0, . . . , q − 1] satisfies

|exT | ≤ ‖e‖2αqω(
√

log n) with all but negligible probability in n.

Proof. (of Lemma 20.) By [MP12], Lemma 2.8, each element of xi are δ-subgaussian of pa-
rameter αq, where δ > 0 is negligible in n. Then the random variable exT is nδ-subgaussian
with parameter ‖e‖2αq. Hence by the subgaussian distribution tail bound, we have Pr[|exT | >
‖e‖2αqω(

√
log n)] ≤ negl(n), which proves the lemma.
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Then, the proof of Lemma 10 is given as follows.

Proof. When the Decrypt algorithm operates as specified for a valid encryption of message M ∈
{0, 1}n ⊂ R, we have

φ(c0 − c1e
T ) = bq

2
eφ(M) + φ(x0)− φ([x1|x2])rot(eT )︸ ︷︷ ︸

error term

,

Hence, for the Decrypt algorithm to output M, we need to show that the error term does not exceed,
say q/5. Since x0

$← Dcoeff
Zn,αq, the vector φ(x0) is a subgaussian with parameter αq, i.e., DZn,αq.

Therefore, by the standard subgaussian tail bound argument, |φ(x0)j | ≤ αqω(
√

log n) with all but

negligible probability, where φ(x0)j denotes the jth entry. Furthermore, since x1,x2
$← (Dcoeff

Zn,α′)
k,

we have that φ([x1|x2])
$← DZ2nk,α′ . From the definition of the map rot, we have that each column

of rot(eT ) ∈ Z2nk×n is of norm ‖φ(e)‖2. Hence, by Lemma 19, Lemma 20 and from the fact that

φ(e)
$← DΛ⊥

φ(u)
([rot(aT )T |rot(H(ID)T )T ]),σ, we have |φ([x1|x2])rot(eT )j | ≤ ‖φ(e)‖2 · α′ω(

√
log nk) ≤

√
nkα′σω(

√
log nk) with all but negligible probability, where rot(eT )j denotes the jth column.

Putting all the pieces together, we conclude that the jth entry of the error term is bounded
as ∣∣∣∣(φ(x0)− φ([x1|x2])rot(eT )

)
j

∣∣∣∣ ≤ αqω(
√

log n) +
√
nkα′σω(

√
log nk),

with all but negligible probability. By assumption this is smaller than q/5 with overwhelming
probability. Hence, the error probability for the Decrypt algorithm is negligible.

D Further Details on IBEs from Bilinear Maps

D.1 Multi-bit Variant

Let us try to extend our single-bit scheme in Sec. 5 to be a multi-bit scheme with message space
{0, 1}`M for some `M ∈ N. The most obvious way to achieve this is to just run the encryption
algorithm `M times. However, this naive method will make the ciphertext `M times longer.
Another way would be to prepare `M copies of gα and hβ and put them into the master public
key. However, this approach will result in a scheme with master public key containing extra
O(`M ) group elements. In this section, we show that it is possible to obtain a multi-bit scheme
with the same ciphertext-size as the single-bit scheme, by adding only O(

√
`M ) group elements to

the master public key. This can be accomplished by incorporating our single bit scheme in Sec. 5
with the technique from [HJKS10, YKHK10].

For simplicity, we assume that `M = (`′)2 for some `′ ∈ N in the following.

Setup(1λ) : On input 1λ, it chooses an asymmetric bilinear group G1,G2,GT with efficiently
computable map e : G1×G2 → GT of prime order p = p(λ). Let g and h be generator of G1

and G2 respectively. It then picks w0, w1,1, . . . , w1,`, w2,1, . . . , w2,`, α1, . . . α`′ , β1, . . . , β`′
$←

Zp and rand
$← {0, 1}|GT |. It finally outputs

mpk = (g,W0 = gw0 , {Wi,j = gwi,j}(i,j)∈[2]×[`], {gαi}`
′
i=1, {gβi}`

′
i=1, rand) and

msk = (h, {αi}i∈[`′], {βi}i∈[`′], w0, w1,1, . . . , w1,`, w2,1, . . . , w2,`)
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KeyGen(mpk,msk, ID) : It first computes H(ID) (defined as Eq.(48)) using msk and picks r(i,j) $←
Zp for (i, j) ∈ [`′]× [`′]. It then computes

sk
(i,j)
ID =

(
A

(i,j)
1 = hαiβj+r

(i,j)·H(ID), A
(i,j)
2 = h−r

(i,j)
, {B(i,j)

k = hr
(i,j)w2,k}`k=1

)
for (i, j) ∈ [`′]× [`′]. It then outputs skID = {sk(i,j)

ID }(i,j)∈[`′]×[`′].

Encrypt(mpk, ID,M) : To encrypt a message M = {0, 1}`M , it picks s, t1, . . . , t`
$← Zp and computes

C1 = gs, C2 = W s
0 ·

∏
j∈[1,`]

W
tj
2,j , Dj = gtj ·

 ∏
i∈{i∈[1,`]|(i,j)∈S(ID)}

W1,i

−s for j ∈ [1, `]

It also computes e((gαi)s, hβj ) = e(g, h)sαiβj and sets

K(i,j) = GL(e(g, h)sαiβj , rand)

for all (i, j) ∈ [`′, `′]. It then sets K = K(1,1)‖K(1,2)‖ · · · ‖K(`′,`′) and C0 = K⊕M. Finally, it
returns the ciphertext C = (C0, C1, C2, {Dj}`j=1).

Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (C0, C1, C2, {Dj}`j=1) using a private key

skID = ({A(i,j)
1 , A

(i,j)
2 , {B(i,j)

k }`k=1}(i,j)∈[`′]×[`′]), it first computes

e(C1, A
(i,j)
1 ) · e(C2, A

(i,j)
2 ) ·

∏
k∈[1,`]

e(Dj , B
(i,j)
k ) = e(g, h)sαiβj .

for (i, j) ∈ [`′]×[`′]. Then it sets K(i,j) = GL(e(g, h)sαiβj , rand) and K = K(1,1)‖K(1,2)‖ · · · ‖K(`′,`′).
Finally, it retrieves the message by C0 ⊕ K = M.

Correctness of the scheme can be checked similarly to the single-bit version in Sec. 5.

D.2 Security of the Multi-bit Variant

Security of the multi-bit scheme is reduced to the security of a certain variant of the single-bit
scheme. Concretely, we consider a variant of our single-bit scheme with the master public key
being changed to

mpk = (g,W0 = gw0 , hw0 , {Wi,j = gwi,j}(i,j)∈[2]×[`], {hw2,i}`i=1 , g
α, hβ, {hw1,iw2,j}(i,j)∈[`]×[`] , rand)

Namely, we add hw0 , {hw2,i}i∈[`], and {hw1,iw2,j}(i,j)∈[`]×[`] to mpk. The rest of the scheme is un-
changed. We call the scheme “single bit scheme with redundant key”. We claim that the security
of this scheme can also be proven under the 3-CBDHE assumption with almost an identical proof
to that of Theorem 3. The only place where we need to change is Lemma 15. Here, we have to
simulate the above additional terms. In fact, this can easily be done using the problem instance
of the 3-CBDHE assumption, since we have

hw0 = (ha
2
)y0hw̃0 , hw2,i = (ha)y2,ihw̃2,i , hw1,iw2,j = (ha

2
)y1,iy2,j · (ha)y1,iw̃2,j+y2,jw̃1,i · hw̃1,iw̃2,j .

Summing up the above discussion, we have the following theorem.
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Theorem 4. The single-bit scheme with redundant key is adaptively secure under the 3-CBDHE
assumption.

Therefore, to prove the security of our multi-bit variant, it suffices to show the following.

Theorem 5. Assuming the single-bit scheme with redundant key is adaptively secure, so is the
multi-bit scheme.

Proof. Let A be a PPT adversary that breaks the adaptive security of the scheme. To prove the
theorem, we consider the following hybrid games for (i, j) ∈ {(1, 0)}∪([`′]× [`′]). For convenience,
we will denote (i, `′ + 1) := (i+ 1, 1) and (i, 0) := (i− 1, `′).

Game(i,j) : This is the real game except that the challenger encrypts a message

M
(1,1)
1 ‖M(1,2)

1 ‖ · · · ‖M(i,j)
1 ‖M(i,j+1)

0 ‖ · · · ‖M(`′,`′)
0

where M
(i,j)
b denotes the (i− 1)`′ + jth bit of Mb for b ∈ {0, 1}.

It can be seen that Game(1,0) corresponds to the case of coin = 0 (M0 is always encrypted) and
Game(`′,`′) corresponds to the case of coin = 1 (M1 is always encrypted). We denote the event
that A outputs 1 in Game(i,j) be X(i,j). We have∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ =

∣∣∣∣12 Pr[ĉoin = 1|coin = 1] +
1

2
Pr[ĉoin = 0|coin = 0]− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr[ĉoin = 1|coin = 1]− 1

2
Pr[ĉoin = 1|coin = 0]

∣∣∣∣
=

1

2

∣∣∣Pr[X(1,0)]− Pr[X(`′,`′)]
∣∣∣

=
1

2

∣∣∣∣∣∣
∑

(i,j)∈[`′]×[`′]

Pr[X(i,j−1)]− Pr[X(i,j)]

∣∣∣∣∣∣
≤ 1

2

∑
(i,j)∈[`′]×[`′]

∣∣∣Pr[X(i,j−1)]− Pr[X(i,j)]
∣∣∣ .

where the third equality follows from the definition of X(i,j) and the fourth equation follows from
our definition Game(i,0) = Game(i−1,`′). Therefore, to prove the theorem, it suffices to show that
|Pr[X(i,j−1)]− Pr[X(i,j)]| is negligible for all (i, j) ∈ [`′]× [`′].

Lemma 21. For any i?, j? ∈ [`′], there exists PPT adversary B whose advantage against the adap-
tive security of the single-bit scheme with redundant key is at least |Pr[X(i?,j?−1)]−Pr[X(i?,j?)]|/2.

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game(i?,j?−1)

and Game(i?,j?). We use A to construct an adversary B against the variant of the single-bit scheme,
which proceeds as follows.

Setup. At the beginning of the game, B is given the master public key mpk′ = (g,W0, {Wi,j}[i,j]∈[2]×[`],

gα, hβ, {hw2,i}i∈[`], {hw1,iw2,j}(i,j)∈[`]×[`], rand) for the single bit scheme. Then, B picks α̃i
$← Zp for

i ∈ [`′]\{i?} and β̃j
$← Zp for j ∈ [`′]\{j?} and sets

gαi =

{
gα̃i for i ∈ [`′]\{i?}
gα for i = i?

, hβj =

{
hβ̃j for j ∈ [`′]\{i?}
hβ for j = j?

.
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Note that B implicitly sets αi? = α and βj? = β here. Finally, it gives the master public key of
the multi-bit scheme mpk = (g,W0, {W1,i}`i=1, {W2,i}`i=1, {gαi}`

′
i=1, {hβi}`

′
i=1, rand) to A. B does

not give hw0 , {hw2,i}i∈[`], and {hw1,iw2,j}(i,j)∈[`]×[`] to A and keeps them secret.

Phase 1 and Phase 2. When A makes a key extraction query for ID, B proceeds as follows.
We first observe that B can compute hαiβj for all (i, j) ∈ ([`′]× [`′])\{(i?, j?)} as follows:

hαiβj =


hα̃iβ̃j for i 6= i?, j 6= j?

(hα)β̃j for i = i?, j 6= j?

(hβ)α̃i for i 6= i?, j = j?
. (74)

For (i, j) ∈ ([`′]×[`′])\{(i?, j?)}, B picks r(i,j) $← Zp and computes sk(i,j) = (A
(i,j)
1 , A

(i,j)
2 , {B(i,j)

k }`k=1)
as

A
(i,j)
1 = hαiβj ·

hw0
∏

(i′,j′)∈S(ID)

hw1,i′w2,j′

r(i,j)

, A
(i,j)
2 = h−r

(i,j)
,
{
B

(i,j)
k = (hw2,k)r

(i,j)
}`
k=1

.

These can be computed using hw0 , hw2,i′ , and hw1,i′w2,j′ . To generate other parts of the private

key (i.e., sk
(i?,j?)
ID ), B resort to its challenger. Namely, B makes key extraction query for ID and

obtains sk′ID = (A1 = hαβ+r·H(ID) = hαi?βj?+r·H(ID), A2 = h−r, {Bk = hrw2,k}`k=1). Then, it sets

sk
(i?,j?)
ID =

(
A

(i?,j?)
1 = A1, A

(i?,j?)
2 = A2, {B(i?,j?)

k = Bk}`k=1

)
.

Finally, it returns the secret key skID = {sk(i,j)
ID }(i,j)∈[`′]×[`′].

Challenge Query. When A makes the challenge query for the challenge identity ID? and mes-
sages M0,M1 ∈ {0, 1}`M , B proceeds as follows. It makes a challenge query for its challenger for

the identity ID? and messages (M
(i?,j?)
0 ,M

(i?,j?)
1 ), where M

(i?,j?)
b is the (i? − 1)`′ + j?th bit of Mb.

Then, the challenge ciphertext(
C ′0 = M

(i?,j?)
coin ⊕ GL

(
e(g, h)sαβ, rand

)
, C ′1 = gs, C ′2, {D′j}`j=1

)
is given to B. B then computes K(i,j) = GL

(
e(C1, h

αiβj ), rand
)

= GL
(
e(g, h)sαiβj , rand

)
for (i, j) ∈

([`′]×[`′])\{(i?, j?)}. This is possible because hαiβj for (i, j) 6= (i?, j?) can be efficiently computable

as we observed in Eq.(74). Finally, B sets C0 ∈ {0, 1}`M as follows. In the following, C
(i,j)
0 denotes

(i− 1)`′ + jth bit of C0.

C
(i,j)
0 =


K(i,j) ⊕M

(i,j)
1 for (i < i?) ∨ (i = i? ∧ j < j?)

C ′0 for i = i?, j = j?

K(i,j) ⊕M
(i,j)
0 for (i > i?) ∨ (i = i? ∧ j > j?)

.

Finally, B returns the challenge ciphertext (C0, C1, C2, {Dj}`j=1) to B.

Guess. At last, A outputs ĉoin. Then, B outputs coin′ = ĉoin.

Analysis. It can be seen that the view of A corresponds to that in Game(i?,j?−1) if coin = 0 and
Game(i?,j?) if coin = 1. Therefore, B’s advantage is∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣
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=

∣∣∣∣12 Pr[ĉoin = 1|coin = 1] +
1

2
Pr[ĉoin = 0|coin = 0]− 1

2

∣∣∣∣
=

1

2

∣∣∣Pr[ĉoin = 1|coin = 1]− Pr[ĉoin = 1|coin = 0]
∣∣∣

=
1

2

∣∣∣Pr[X(i?,j?−1)]− Pr[X(i?,j?)]
∣∣∣

as desired. This completes the proof of Lemma 21.

This completes the proof of Theorem 5.

E Proof of Theorem 1

Here, we prove Theorem 1. Note that the proof is obtained by the straightforward combination
of previous results (in particular, those of [LPR10] and [LS15]). However, to the best of our
knowledge, there are no papers explicitly proving the theorem. This section is included for the
purpose of completeness.

E.1 Gaussians over Ideal Lattices

We give a brief overview of Gaussians over ideal lattices and introduce the notations we will be
using. We refer the general definitions of rings and ideal lattices to the works of [LPR10, LPR13].
In what follows, ζm is the primitive mth root of unity for m > 2, Φm(X) is the mth cyclotomic
polynomial, K = Q(ζm) is the mth cyclotomic number field of degree n = ϕ(m), R = Z[ζm] ∼=
Z[X]/(Φm(X)) is the ring of integers of K7 , R∨ ⊆ K is the dual ring and KR = K ⊗Q R is the
field tensor product. Furthermore, the number field K has exactly n ring embeddings σi : K → C
that maps ζm to each of the complex roots of the cyclotomic polynomial Φm(X). The canonical
embedding σ : K → Cn is then defined as σ(a)→ (σi(a))i∈Z∗m .

The Space H. Recall that when working with K (or KR) under the canonical embedding σ, it
is convenient to use the following subspace H ⊆ Cn,

H = {(xj)j∈Z∗m | ∀j ∈ Z∗m, xj = xm−j ∈ C}.

The space H is isomorphic as a real vector space to KR via σ. Furthermore, the space H is a R
vector space generated by the columns of the following basis matrix T,

T =
1√
2

[
In/2 iJn/2
Jn/2 −iIn/2

]
∈ Cn×n,

where I is the identity matrix and J is the matrix with ones on the anti-diagonal. Let hj denote
the jth column of T. Then, for any a ∈ K, there is a unique v = (v1, . . . , vn) ∈ Rn such that
σ(a) = TvT =

∑
j∈[n] vjhj , where σ denotes the canonical embedding.

Gaussians over H. For r > 0, the Gaussian function ρr : H → (0, 1] over H is defined as,
ρr(x) = exp(−π‖x‖22/r2) for all x ∈ H. By appropriately normalizing the Gaussian function ρr,
we obtain the continuous spherical Gaussian distribution Dr over H. We use the basis {hj}j∈n
to define the continuous elliptical Gaussian distribution as in [LPR10]. Let r = [r1, . . . , rn] ∈ Rn>0

be a vector of positive real numbers such that rj = rn+1−j for all j ∈ [n]. Then a sample x from

7 Note that in our main body, we view R as Z[X]/(Xn + 1) w.l.o.g .
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the elliptical Gaussian distribution Dr over H is given by
∑

j∈[n] vjhj , where each vj are chosen
independently from the one-dimensional Gaussian distribution Drj over R. One can check that in
case all rj are the same, this distribution coincides with the above spherical Gaussian distribution,
since we have xj = xn+1−j for x ∈ H. In case we want to explicitly express the domain in which
the Gaussian distribution is defined over, we use a superscript to denote it, e.g., DH

r .
The discrete (spherical) Gaussian is defined similarly to the standard lattices in Rn. Namely,

for a lattice in Λ ⊂ H, a vector u ∈ H and a real r > 0, the discrete Gaussian distribution over
the coset Λ + u is defined as DΛ+u,r(x) = ρr(x)/ρr(Λ + u) for all x ∈ Λ + u.

Gaussians over KR. Using the canonical embedding σ : KR → H (which is an isomorphism),
we can consider a continuous Gaussian distribution DKR

r over KR induced by DH
r . Recall we can

uniquely express any a ∈ KR as a R-linear combination of the power basis {ζim}n−1
i=0 . Namely, if

we denote ζ as the ordered power basis, then a = φ(a)ζT for all a ∈ KR, where φ denotes the
coefficient embedding. Next, let ∆m (or CRTm) denote the matrix corresponding with evaluating
a polynomial at all the primitive mth root of unity, i.e., σ(a) = ∆mφ(a)T ∈ H for all a ∈ KR.
Then, using this expression a sample a ∈ KR from DKR

r is given by φ(a)ζT , where x ∈ H is
sampled from the continuous Gaussian distribution DH

r and φ(a) is set as ∆−1
m xT . By definition,

we have DKR
r (a) = DH

r (σ(a)). Furthermore, recalling the definition of DH
r , we can also view DKR

r

being induced by DRn
r = Dr1 × · · · × Drn . Concretely, a sample a ∈ KR of DKR

r can also be
obtained by first sampling v ∈ Rn from DRn

r and then setting a to satisfy φ(a) = ∆−1
m TvT .

Gaussians over Fractional Ideals I in K. Recall that a fractional ideal I in K is a set such
that dI ⊆ R is an integral ideal for some d ∈ R and that has a Z-basis U = {u1, . . . , un} ⊆ K.
Therefore, under the canonical embedding σ, the ideal yields a rank n lattice σ(I) in H having
basis {σ(u1), . . . , σ(un)} ⊂ H. We call this lattice σ(I) created by the fractional ideal I as an
ideal lattice. As in the case of KR, we can consider a discrete Gaussian distribution over the ideal
I. For a fractional ideal I ⊂ K, element t ∈ K, and real r > 0, the discrete Gaussian distribution
over I + t is defined as DI+t,r(a) = Dσ(I)+σ(t),r(σ(a)) for all a ∈ I + t.

Discretization over Ideal Lattices. Theorem 3.1 of [Pei10] holds for lattices in H. Therefore,
we can use it to discretize the contiunous Gaussian distribution DKR

r to the discrete Gaussian
distribution DI+t,r′ as follows. Note that ηε(I) denotes the smoothing parameter for the ideal
lattice σ(I).

Lemma 22. Let s, s1, s2 be positive reals such that s2 ≥ s2
1 + s2

2. Let I be a fractional ideal in
K and t an element in KR. Further assume that s1 ≥ ηε(I) for some positive ε ≤ 1/2.Then, if
we choose a2 from the continuous Gaussian DKR

s2 over KR and then choose a1 from the discrete
Gaussian DI+t−a2,s1, then a1 +a2 is within statistical distance 8ε of the discrete Gaussian DI+t,s.

Proof. The statement is a direct result of [Pei10], Theorem 3.1 by noticing the following facts:
DKR
s2 (a) = DH

s2(σ(a)) for all a ∈ KR, DI+t,s1(a) = Dσ(I)+σ(t),s1(σ(a)) for all a ∈ I + t, t ∈ KR, and
that σ(I) embeds as a lattice in H.

E.2 Power of 2 Polynomial Rings

Here, we discuss the power of 2 polynomial rings and its properties. For the special case when m is
a power of 2, the mth cyclotomic polynomial is given as Φm(X) = Xn+1 where n = ϕ(m) = m/2.
Therefore, R ∼= Z[X]/(Xn + 1). For this special case, all the columns of ∆m are orthogonal to
each other and we have ∆−1

m = 1
n∆∗m, where ∆∗m is the conjugate transpose. In other words,

1√
n

∆m is a unitary matrix. Using the properties σ(a) = ∆mφ(a)T and φ(bR) = φ(b)rot(R) for

any element a ∈ KR, vector b ∈ Ks
R and matrix R ∈ Ks×t

R , we obtain the following facts:
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• ‖σ(a)‖2 =
√
n‖φ(a)‖2,

• s1(R) = max
x∈Rt\{0}

‖σ(xR)‖2
‖σ(x)‖2

= max
x∈Rt\{0}

‖φ(xR)‖2
‖φ(x)‖2

= max
z∈Rtn\{0}

‖z · rot(R)‖2
‖z‖2

.

Recalling the definition of the continuous Gaussian distribution DKR
r and the fact that the space

H has matrix T as its basis, DKR
r can be described by the procedure of first sampling v

$← Dm
r ,

then outputting a = φ(a)ζT where φ(a) is set as 1√
n

( 1√
n

∆∗m)TvT . Therefore, since 1√
n

∆∗m and T

are both unitary matrices, a sample from DKR
r is simply an element with its coefficients sampled

from Dm√
nr

. Finally, for the special power of 2 polynomial ring, we have R∨ = 1
nR.

E.3 Ring LWE on Number Fields

We start with recalling the definition of RLWE assumption on number fields (more precisely, on
KR), whose hardness is shown directly in previous works.

Definition 3 (RLWE on KR). For integers n = n(λ), k = k(n), a prime integer q = q(n) > 2, a
family of error distribution Ψ = Ψ(n) over KR, and an PPT algorithm A, an advantage for the
RLWE problem RLWEKR

n,k,q,Ψ of A is defined as follows:

Adv
RLWE

KR
n,k,q,Ψ

A = |Pr[AOs,χ(1λ, n, k, q) → 1]− Pr[AO$(1λ, n, k, q)→ 1]|

where s
$← R∨q , χ

$← Ψ. The oracles O$ and Os,χ are specified as follows.

Os,χ : When called, it picks a
$← Rq, e

$← χ and returns (a, as/q + e).

O$ : When called, it returns (a, v)
$← Rq ×KR/R

∨.

Both oracles can be called at most k times. If there is no bound on the number of calls, we denote
k = ∞. In case Ψ consists of a single distribution χ we simply treat the set Ψ as a distribution
and write RLWEKR

n,k,q,χ, and for this particular case A further receives as input the distribution χ

used by the oracle. We say that RLWEKR
n,k,q,Ψ assumption holds if Adv

RLWE
KR
n,k,q,Ψ

A is negligible for
all PPT A.

In [LPR10], it is shown that solving RLWEKR
n,∞,p,Ψ with prime p such that p ≡ 1 mod m

and certain Ψ is as hard as quantumly approximating SIVP (or SVP) on ideal lattices in the
worst case. In the subsequent work [LS15], it is shown that the former can be further reduced to
RLWEKR

n,∞,q,Ψ′ with any q and a certain Ψ′. In what follows, Ψ≤α denotes the family of all elliptical

Gaussian distributions DKR
r where each parameter ri ≤ α. Furthermore, Υβ is a certain family of

distribution that is parametrized by β ∈ R. Since the precise definition is not necessary for our
purpose, we omit this and refer to [LPR10, LS15]. Then, we have the following results.

Lemma 23 ([LPR10], Theorem 3.6). Let β > 0 and let p ≥ 2, p ≡ 1 mod m be a polynomially
bounded prime such that βp ≥ ω(

√
log n). Then there is a probabilistic polynomial-time quantum

reduction from Õ(
√
n/β)-approximate SIVP (or SVP) to RLWEKR

n,∞,p,Υβ .

Lemma 24 ([LS15], From Lemma 4.22, 4.24, and 4.26). Let p, q ≥ 2 be polynomially bounded
primes and α, β ∈ (0, 1) such that α ≥ β · max{1, p/q} · n3/4ω(log2 n) and βp ≥ ω(

√
log n/n).

There exists a polynomial reduction from RLWEKR
n,∞,p,Υβ to RLWEKR

n,∞,q,Ψ≤α.
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By combining the above Lemmas, we obtain the hardness of the RLWE with arbitrary modulus
q for a skewed Gaussian. In the next step (Lemma 27), we further reduce it to the RLWE with
spherical Gaussian. To prepare for the proof, we define Réniy Divergence (of order 2) and review
its properties following [LPR10, BLL+15].

Definition 4 (Rényi Divergence). Let us consider two density functions P,Q : Rn → R≥0 where
P (x) = 0 whenever Q(x) = 0. We define the Rényi divergence RD(P‖Q) as

RD(P‖Q) =

∫
Rn

P (x)2

Q(x)
dx.

For Rényi Divergence, the following properties hold. For any distribution P and Q, we have
RD(P‖P ) = 1 and RD(P‖Q) ≥ 1. Let us assume that P (resp. Q) is a direct product of
independent distributions P1 and P2 (resp. Q1 and Q2). Then, we have RD(P‖Q) = RD(P1 ×
P2‖Q1 ×Q2) = RD(P1‖Q1) ·RD(P2‖Q2).

Lemma 25 ([LPR10], Claim 5.15). Let r1, . . . rn ∈ R+ and s1, . . . , sn ∈ R+ be such that for all i,
|si/ri − 1| <

√
log n/n. Then, there exists an polynomial fRD : N→ R such that RD(Dr1 × · · · ×

Drn‖Ds1 × · · · ×Dsn) = fRD(n).

Lemma 26 (Implicit in [LPR10]). Let P and Q denote distributions with Supp(P ) ⊆ Supp(Q).
Let A ⊆ Supp(Q) be any set. Then, we have Q(A) ≥ P (A)2/RD(P‖Q) where P (A) and Q(A)
are measure of A under P and Q, respectively.

Here, we review the proof of [LPR10] that converts the error distribution from the skewed
Gaussian to the spherical Gaussian.

Lemma 27 (Adapted from [LPR10], Lemma 5.16). Let q be a polynomially bounded prime, k a
positive integer and α, β ∈ (0, 1). There exists a polynomial time reduction from RLWEKR

n,∞,q,Ψ≤α
to RLWEKR

n,k,q,χ with χ = DKR
ξ where ξ = α(nk/ log(nk))1/4.

Proof. We construct an adversary B against RLWEKR
n,∞,q,Ψ≤α from adversaryA that solves RLWEKR

n,k,q,χ

with non-negligible advantage ε(λ). By assumption, there exists a constant c ∈ N such that
ε(λ) > 1/λc for infinitely many λ ∈ N.

Reduction. B is equipped with an oracle O and its task is to distinguish whether O = Os,χ′
or O = O$, where χ′ = DKR

r
$← Ψ≤α. B proceeds as follows. It first obtains estimate p̂0 for the

probability

p0 := Pr[A({(ai, vi)}ki=1)→ 1|(a1, v1), . . . , (ak, vk)
$← Rq ×KR/R

∨]

by running A on N := 100λ2c+1 fresh inputs. It then repeats the following M := 4λ2c+1fRD(nk)
times, where fRD is the polynomial specified in Lemma 25.

• It picks random s′
$← R∨q and e′1, . . . , e

′
k

$← DKR
ξ . Then it obtains estimate p̂1(s′, e′1, . . . , e

′
k)

for the probability

p1(s′, e′1, . . . , e
′
k) := Pr[A({(ai, vi + ais

′/q + e′i)}ki=1)→ 1|(a1, v1), . . . , (ak, vk)
$← O]

by running A on N fresh inputs. This can be done by calling the oracle Nk times.
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If it happens that |p̂1(s′, e′1, . . . , e
′
k)− p̂0| > 1/4λc at any point during the loop, it outputs 1.

Otherwise it outputs 0.
Analysis. It is clear that B is a (probabilistic) polynomial time algorithm. It suffices to show
that B has overwhelming advantage when ε > 1/λc. We note that by the Hoeffding bound,
|p0 − p̂0| < 1/10λc and |p1(s′, e′1, . . . , e

′
k)− p̂1(s′, e′1, . . . , e

′
k)| < 1/10λc for any (s′, e′1, . . . , e

′
k) hold

except for probability e−N ·(1/10λc)2
< 2−λ. In the following, we assume that these always hold.

We first observe that if the oracle O = O$, it is clear that both inputs to A follow the the uni-
form distribution over Rq×KR/R

∨. Therefore, p0 = p1(s′, e′1, . . . , e
′
k) holds for any (s′, e′1, . . . , e

′
k).

Thus,

|p̂0 − p̂1(s′, e′1, . . . , e
′
k)| ≤ |p̂0 − p0|+ |p0 − p1(s′, e′1, . . . , e

′
k)|+ |p1(s′, e′1, . . . , e

′
k)− p̂1(s′, e′1, . . . , e

′
k)|

≤ 1/10λc + 1/10λc < 1/4λc.

Hence, B outputs 0 with all but negligible probability.
Next, let us consider the case where O = Os,χ′ . In this case, during the loop, an input to A is

of the form {(ai, ai(s+s′)/q+ei+e
′
i)}ki=1 where ei

$← DKR
r and e′i

$← DKR
ξ for i ∈ [k]. Let us define

the vector r′ with coordinates r′2j = ξ2 − r2
j . We claim that the average of p1(s′, e′1, . . . , e

′
k) over

e′1, . . . , e
′
k chosen independently from DKR

r′ (rather than DKR
ξ , which is the actual distribution)

is at least 1/λc far from p0. This can be seen by observing that the error terms ei + e′i are

distributed as DKR
r + DKR

r′ = DKR
ξ and by our assumption on A. Let us define S as the set of

all tuples (s′, e′1, . . . , e
′
k) such that |p1(s′, e′1, . . . , e

′
k) − p0| > 1/2λc. By the averaging argument,

we have that the measure of S over U(Rq) × (DKR
r′ )k is at least 1/2λc. Now, let us consider the

measure of S over U(Rq) × (DKR
ξ )k, which is the actual distribution. By the definition of DKR

r

and since 1 ≤ ξ/
√
ξ2 − r′2i ≤ ξ/

√
ξ2 − α2 ≤ 1 +

√
log(nk)/nk, we have

RD(U(Rq)× (DKR
r′ )k‖U(Rq)× (DKR

ξ )k) = RD((DKR
r′ )k‖(DKR

ξ )k) = fRD(nk)

by Lemma 25. Hence, by Lemma 26, we have that the measure of S over U(Rq) × (DKR
ξ )k is at

least 1/4λ2cfRD(nk). Therefore, B picks (s′, e′1, . . . , e
′
k) in S at least once during the loop except

for probability (1− 1/4λ2cfRD(nk))M < 2−λ. Furthermore, for (s′, e′1, . . . , e
′
k) ∈ S, we have that

|p̂1(s′, e′1, . . . , e
′
k)− p̂0| ≥ |p1(s′, e′1, . . . , e

′
k)− p0| − |p̂1(s′, e′1, . . . , e

′
k)− p1(s′, e′1, . . . , e

′
k)| − |p̂0 − p0|

> 1/2λc − 1/10λc − 1/10λc > 1/4λc

Therefore, B outputs 1 with all but negligible probability in this case.

Finally, we discretize the error distribution and get rid of R∨ by scaling it appropriately. The
following RLWEn,k,q,χ is the problem we considered in the main body of our work (cf. Definition
1).

Lemma 28. Let m be a power of 2, n = ϕ(m) = m/2, k be an integer, q ≡ 3 mod 8 be a
prime number, and ξ a positive real satisfying ξ ≥ ω(

√
log n/n)/q. There exists a polynomial

time reduction from RLWEKR
n,k,q,χ with χ = DKR

ξ to RLWEn,k,q,χ with χ = Dcoeff
Zn,
√

2nqξ
.

Proof. To show the theorem, it suffices to show an efficient transformation T that takes {(ai, vi)}ki=1 ∈
(Rq ×KR/R

∨)k chosen from either O$ or Os as input and has the following properties.

• If (ai, vi)
$← O$ for i ∈ [k], the output of T is uniform over (Rq ×Rq)k.
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• If (ai, vi)
$← Os for i ∈ [k], the output of T is of the form {(ai, ais′ + e′i)}ki=1 where s′

$← Rq

and e′1 . . . , e
′
k

$← Dcoeff
Zn,
√

2nqξ
.

Given {(ai, vi)}ki=1, T first discretizes vi ∈ KR/R
∨ to v̄i ∈ 1

qR
∨/R∨ while preserving the

correct error distribution by adding samples di chosen from D 1
q
R∨−v′i,ξ

to each vi where v′i = vi

mod 1
qR
∨. We show the validity of this procedure. The case when the input to T is from O$

is trivial. Hence, we assume the input was from Os, i.e., vi = ais + ei for ei
$← DKR

ξ . For the

special case when m is a power of 2, we have ηε(
1
qR
∨) = ω(

√
log n/n)/q for some negligible ε > 0.

Therefore, by the condition on ξ and from Lemma 22, ēi = ei+di is distributed negligibly close to
the discrete Gaussian distribution D 1

q
R∨,
√

2ξ when ei
$← DKR

ξ and di
$← D 1

q
R∨−ei,ξ. Since ei = v′i

mod 1
qR
∨, this di has the same distribution as the di sampled in the above procedure. Therefore,

T outputs v̄i = ais+ ēi where ēi
$← D 1

q
R∨,
√

2ξ if the input is from Os.
Then, T sets v′i = qnv̄i in order to move into R. We can see that {v′i}ki=1 are uniformly

distributed over Rq when the oracle is O$. This is because R∨ = 1
nR, which holds whenever m

is a power of 2. When O = Os, we have v′i = ains+ qnei. We can see that s′ := ns is uniformly
random over Rq. We can also see that the distribution of qnei follows DR,

√
2qnξ. We complete the

proof by observing that for m a power of 2, we have DR,
√

2qnξ = Dcoeff
Zn,
√

2nqξ
, which follows from

the fact that φ(R) = Zn and ‖σ(a)‖ =
√
n‖φ(a)‖ for any a ∈ KR. Recall that Dcoeff

Zn,
√

2nqξ
is the

distribution of a ∈ R where the coefficient vector of a is sampled from DZn,
√

2nqξ
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