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ABSTRACT: 

 

Timely availability of crop acreage estimation is crucial for maintaining economic and ecological sustainability or modelling 

purposes. Remote sensing data has proven to be a reliable source for crop mapping and acreage estimation on parcel-level. However, 

when relying on a single source of remote sensing data, e.g. multispectral sensors like RapidEye or Landsat, several obstacles can 

hamper the desired outcome, for example cloud cover or haze. Another limitation may be a similarity in optical reflectance patterns 

of crops, especially in an early season approach by the end of March, early April. Usually, a reliable crop type map for winter-crops 

(winter wheat/rye, winter barley and rapeseed) in Central Europe can be obtained by using optical remote sensing data from late 

April to early May, given a full coverage of the study area and cloudless conditions. These prerequisites can often not be met. By 

integrating dual-polarimetric SAR-sensors with high temporal and spatial resolution, these limitations can be overcome. SAR-

sensors are not influenced by clouds or haze and provide an additional source of information due to the signal-interaction with plant-

architecture. The overall goal of this study is to investigate the contribution of Sentinel-1 SAR-data to regional crop type mapping 

for an early season map of disaggregated winter-crops for a subset of the Rur-Catchment in North Rhine-Westphalia (Germany). For 

this reason, RapidEye data and Sentinel-1 data are combined and the performance of Support Vector Machine and Maximum 

Likelihood classifiers are compared. Our results show that a combination of Sentinel-1 and RapidEye is a promising approach for 

most crops, but consideration of phenology for data selection can improve results. Thus the combination of optical and radar remote 

sensing data indicates advances for crop-type classification, especially when optical data availability is limited. 
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1. INTRODUCTION 

Timely and accurate information on crop type and crop acreage 

is vital for monitoring and modelling purposes at different 

scales. For regional modelling approaches on matter fluxes in 

the soil-vegetation-atmosphere system (SVA) annual data on 

crop types are important, to assess impacts of crop-rotations and 

management practices.  

Remote sensing (RS) plays an important role in providing data 

for agricultural crop type mapping. For modelling purposes at 

regional scales crop-type input maps at various seasonal stages 

are often desired, to assess N and C in- and output at different 

temporal resolutions and to validate model performance (Lenz-

Wiedemann et al. 2010). The use of multitemporal data from 

optical sensors is a common approach to derive crop type maps 

and usually provides better accuracies than data from 

microwave sensors alone. However, when relying on optical RS 

data, several limitations like overcast conditions (clouds, haze) 

or even spectral similarities of crops depending on the 

acquisition date may produce inadequate results (Whitcraft et al. 

2015), especially in an early season approach for winter crops 

by the end of March, early April. As crops like cereals have 

similar reflectance patterns early in the season, their 

differentiation is often limited, until a certain stage of crop 

development is reached. Usually, a reliable crop type map for 

winter-crops in Central Europe can be obtained by using optical 

remote sensing data from late April to early May, when canopy 

closure of crops is reached, given a full coverage of the study 

area and cloudless conditions (Waldhoff 2014). These 

prerequisites can often not be met. By integrating dual-

polarimetric SAR-sensors with high temporal and spatial 

resolution, these limitations can be overcome. SAR-sensors are 

not influenced by clouds or haze and provide an additional 

source of information due to the signal-interaction with plant-

architecture (McNairn et al. 2014).  

Thus the combined analysis of optical and SAR data can 

improve crop classification early in the season and can be 

applied in case no additional optical data is available for the 

desired timeframe.  

The overall goal of this study is to demonstrate the contribution 

of Sentinel-1 SAR-data to regional crop type mapping for an 

early season map of disaggregated winter-crops for a subset of 

the Rur-Catchment in North Rhine-Westphalia (Germany). For 

this reason, synergies of combining one RapidEye image with 

three dual-polarimetric Sentinel-1images are used to classify 

crop types at 15 meter spatial resolution in a pixel-based 

classification approach. This contribution is based on the Multi-

Data Approach (MDA) by Bareth (2008) and Waldhoff (2014). 

The MDA focuses on integrating as much spatial information as 

there is available (multi-sensor RS data, official land use data, 

OpenStreetMap data etc.) to compile disaggregated land use 

information for regional agro-ecosystem modelling. Here we 

focus on the RS part of the MDA.  
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2. STUDY AREA AND DATA 

The study area is part of the Rur-Watershed in North Rhine-

Westphalia, Germany. Major land use patterns are intensive 

agriculture in the rather flat north-eastern parts and pasture-

forage and forestry in the mountainous south-western parts of 

the study area. Typical winter crops grown in the study area are 

winter wheat (triticum aestivum) winter rye (secale cereale), 

winter barley (hordeum vulgare) and rapeseed (brassica napus). 

    

 
Figure 1. Overview of the study area. Colour-composite of three 

Sentinel-1 images (see Table 1). Red polygon indicates Rur-

Watershed (Background SRTM)  

 

For a more accurate crop type classification an additional 

dataset of agricultural boundaries provided by the agricultural 

chamber of North Rhine-Westphalia was implemented to 

separate agricultural land and pasture from other land use/land 

cover (LULC) types (Waldhoff et al., 2012).  

Crop type mapping was conducted using single-date 

multispectral RapidEye data and multi-date dual-polarimetric 

(VV/VH) C-band SAR Sentinel-1 data (orbit 37, incidence 

angle ~ 34-35°). 

 

No. Sensor Acquisition date 

RE RapidEye  11.03.2015 

S1 Sentinel-1  13.03.2015 

S2 Sentinel-1  25.03.2015 

S3 Sentinel-1  06.04.2015 

 
Table 1. Remote Sensing data obtained for this study 

  

RapidEye data was radiometrically calibrated to radiance and 

atmospheric correction was applied using the FLAASH module 

in ENVI. Orthorectification was performed with the RPC-

Orthorectification workflow in ENVI. The image was 

resampled to 15m spatial resolution and projected to WGS84, 

UTM Zone 32N.  

Sentinel-1 Interferometric Wide Swath data was acquired in 

high-resolution Level-1 Ground Range Detected processing 

level from the Sentinel-Data-Hub website, already multi-looked 

(5x1) and with a pixel-spacing of 10x10 meter. Terrain 

correction was performed in ESA´s Sentinel-1 Toolbox/SNAP 

using Range-Doppler Terrain Correction module, including a 

calibration to Sigma nought. The images were resampled to 

15m spatial resolution and projected to WGS84, UTM Zone 

32N. A Gamma-MAP speckle filter with a 3x3 moving window 

was run twice on the SAR-data to suppress inherent speckle-

noise.  

All images were combined to a stacked dataset and masked 

using the aforementioned layer of agricultural boundaries. 

Although this layer provided information on permanent 

grassland and crops separately, both classes were combined for 

the assessment of discrimination between cereals and grassland, 

since annual types of grassland are seeded as well on permanent 

agricultural fields.  

Independent training and testing data on crop type and 

development stage was gathered on several field trips during the 

growing season 2015. 

 

3. METHODS 

Choosing the appropriate classification algorithm is critical to 

classification success, thus two different classification 

approaches are implemented to assess their performance on the 

multi-source datasets. The parametric Maximum Likelihood 

Classification (MLC) algorithm is widely adopted, provides 

good results and was tested for example by Ban (2003) on 

optical and SAR data. As parametric algorithms draw statistical 

assumptions on the data, which are heterogeneous in a 

multisource approach, the non-parametric Support Vector 

Machine (SVM) algorithm was adopted as well to compare the 

classifier performances (Mountrakis et al., 2011; 

Watanachaturaporn et al., 2008).  

Classification was performed in ENVI on the data-stack with 

different band combinations (see table 2). Since the focus of 

this study is on crop types, no other LULC classes were 

included in the classification. Training data were the same for 

every band-combination and classification algorithm. Because 

of differences in phenological development, two sub-classes per 

information class (winter wheat, winter barley, rapeseed, 

grassland, bare soil) were implemented, which were merged 

prior to error assessment. For each class at least 60 training-

pixels were identified.   

To assess the classification performance accuracies a standard 

error matrix was calculated with independent testing data for 

each classification result, including user´s accuracy (UA), 

producer´s accuracy (PA), overall accuracy (OA) and Kappa-

coefficient (K) (Foody, 2002).  

 

4. RESULTS  

Main results of the accuracy assessment (overall accuracy and 

Kappa-Coefficient) are summarized in Table 2 per applied 

combination of image-band.  
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Combined Images OA % Kappa OA % Kappa

RE 79.41 0.73 76.08 0.69

RE+S1 78.33 0.72 77.37 0.71

RE+S2 88.10 0.84 79.54 0.74

RE+S1+S2 88.58 0.85 81.38 0.76

RE+S2+S3 90.28 0.87 81.20 0.76

RE+S1+S2+S3 90.69 0.88 83.04 0.78

SVM MLC

 
 

Table 2. Overall accuracies and Kappa-values for all image-

combinations for SVM and MLC  

 

As expected, the classification results of the RE data alone lead 

to good results, with better performance by the SVM classifier. 

Adding the first Sentinel-1 image into the classification process 

only leads to minor improvements in overall accuracies and 

Kappa when using the MLC, but decreases OA and Kappa for 

the SVM approach. By adding the second Sentinel-1 image to 

the RE image (without S1), accuracies are boosted by almost 

10% to 88.58% using the SVM classifier, but remain below 

80% using MLC. The combination of RE+S1+S2 yields almost 

similar accuracies like the combination of RE+S2 using SVM, 

but increases accuracies slightly more for MLC. Classification 

of all available images of the timeframe leads to the highest 

accuracies of almost 91% for SVM (Kappa of 0.88) and 83% 

for MLC (Kappa of 0.78). In general, accuracies of 85% or 

higher are considered reliable for mapping purposes (LANDIS & 

KOCH 1977). 

However, examination of class-wise accuracies provides more 

insight into classification performance.  

 

 
Figure 2. Producer´s and user´s accuracies for winter wheat for 

all image combinations 

 

Accuracies for winter barley show higher discrepancies of PA 

and UA for both classification approaches using the RE image 

alone, as well as for the combination of RE+S1. Both cases can 

be attributed to the inclusion of winter barley-pixels into the 

winter wheat class (commission error of 56%). Adding the S2 

image to RE, the UA for both SVM and MLC are significantly 

boosted (SVM from 43% to 75%), but PA declines. Classifying 

RE in combination with S2 and S3 finally leads to PA and UA 

of above 80% using the SVM classifier. For the MLC approach 

PA remains constantly high (around 90%) in all image-

combinations, but UA could not reach a level of 80%. 

 

 
Figure 3. Producer´s and user´s accuracies for winter barley for 

all image combinations 

 

For winter wheat RapidEye data alone leads to acceptable 

results regarding PA and UA of above or almost 80% with 

SVM but with lower PA for MLC. Adding the S1 image could 

not boost the accuracies significantly. However, when 

combining RE and the S2 image, both UA and PA are boosted 

above 80% for the SVM approach, but remain almost on the 

same level as with RE alone for the MLC approach. The 

combination of all available images finally leads to accuracies 

of almost 90% using SVM.  

 

 
Figure 4. Producer´s and user´s accuracies for rapeseed for all 

image combinations 

 

For rapeseed, RE data alone leads to acceptable results using 

SVM, but PA and UA for MLC are only around 60%. Adding 

S1 leads to a decline in UA for SVM and has only little effect 

on MLC accuracies. Adding the S2 image boosts PA to almost 

98% and UA to 80% using SVM. For the MLC approach PA is 

boosted to 84% and UA to 69%. Finally, when classifying all 

images in combination, rapeseed reaches very high accuracies 

using SVM.  

 

 
Figure 5. Producer´s and user´s accuracies for grassland for all 

image combinations 
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Grassland reaches the highest accuracies using MLC on only 

the RE data with PA of 83% and UA of 81%. Adding the SAR 

images could not significantly improve the class-wise 

accuracies to an acceptable level for both measures. Although 

adding S2 boosts UA to 94% for SVM, PA remains at 71% and 

an error of omission of 29%, because grassland-pixels are 

included to a large amount into the winter wheat class.  

 

Besides the four classes of emerging crops, one class for 

summer crop fields was introduced, which yields very high user 

and producer accuracies for every image combination (98-

100%), since those areas consist of homogenous fields with no 

vegetation cover (main summer crops like maize, sugar beet or 

potatoes are emerging in May to June). Because of the 

consistent results this class is excluded from Figure 2 – 5, but is 

included into the overall accuracy assessment.   

 

 

 
Figure 6. Subset of classification result (RE+S2+S3) for MLC 

(upper figure) and SVM (lower figure) 

 

Visual comparison of both classification schemes shows a 

coarser speckled appearance for the SVM approach (Figure 6, 

lower) than for the MLC approach. There is still class-wise 

confusion noticeable visually, especially between winter wheat 

and bare ground, which might result from phenological 

differences. 

 

5. DISCUSSION 

As we see from the results, timing of image acquisitions 

remains crucial for accurately discriminating crops along the 

growing season, considering the phenology of observed crop 

types. The speckled appearance of some fields may be due to 

incomplete canopy closure.  

The first Sentinel-1 image could not contribute well to the OA 

and class-wise accuracies, but adding the second Sentinel-1 

image led to improved results for almost all classes. This 

indicates, that Sentinel-1 data is a useful addition for optical RS 

data in an early season multi-temporal approach.  

Incrementally adding images was not found to be the optimal 

approach here, because by combining RE and S1 a decline of 

OA, Kappa and class-wise accuracies was observed. This may 

be attributed to the short timespan between RE and S1.   

Regarding the classification algorithm SVM outperformed 

MLC on the combined data in all instances for the OA and 

Kappa and for almost all class-wise accuracies. This result is 

consistent with the findings that SVM performs better on multi-

source data (Melgani & Bruzzone, 2004; Mountrakis et al., 

2011).  

Discrimination of cereals and rapeseed worked well and was 

most likely due to their different plant structure, with cereals 

being more vertically orientated and thin-leafed and rapeseed 

being more horizontally orientated and broader leafed. This 

leads to different backscatter patterns in VV and VH 

respectively and a higher possibility for separation of these 

classes (Mcnairn et al., 2002; Yang et al., 2014).  

Interesting are the results achieved for grassland, which were 

not expected, as the classification of grassland performed better 

in another study. This may be due to later acquisition dates on 

which the investigation was performed (Lussem, 2016), because 

in mid-March to early April grassland and cereals bear a very 

similar structure and size. Until the heading stage of cereals a 

good discrimination of grassland and cereals cannot be obtained 

with a C-band Sensor (Dusseux et al., 2014). Particularly 

interesting is the good performance of MLC for grassland, since 

the SVM approach shows higher errors of omission and 

commission.  

 

6. CONCLUSION AND OUTLOOK 

This study evaluated the combined classification of RapidEye 

and Sentinel-1 SAR data for early season crop type mapping in 

western Germany, where frequent cloud cover often hinders 

reliable acquisition of optical RS data. Availability of multi-

temporal RS data is key for separating crop types. The start of 

the Sentinel-1 mission provides a rich and continuous data 

source for classifying crops along the growing season: Sentinel-

1 data is available free of charge with a revisiting capacity of 12 

days per orbit and SAR data is not influenced by clouds or haze. 

This study showed, that SAR-data from Sentinel-1 can be a 

useful substitute if no further optical RS data is available, due to 

image-acquisition timing or overcast conditions. Combining 

Sentinel-1 and RapidEye data provides more reliable results 

than relying on one optical image alone for crop type mapping. 

However, image acquisition timing as also crucial using SAR 

data, as the Radar signal interacts with crop structure which is a 

feature of phenological development. The complementary 

nature of SAR-data to optical data can aid in an early season 

crop classification-approach for monitoring and modelling 

purposes.  

The results indicate, that discrimination of winter crops is 

possible early in the growing season (mid to late March) to a 

certain accuracy, but integrating images of early April improves 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-959-2016 

 
962



 

classification results. The machine learning algorithm of SVM 

performed better on the established multi-sensor data set. 

Although high overall accuracies and Kappa-coefficient, the 

visual comparison reveals potential for improvement. 
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