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ABSTRACT:

Wildfire detection and attribution is an issue of importance due to the socio-economic impact of fires in Australia. Early detection of
fires allows emergency response agencies to make informed decisions in order to minimise loss of life and protect strategic resources
in threatened areas. Until recently, the ability of land management authorities to accurately assess fire through satellite observations of
Australia was limited to those made by polar orbiting satellites. The launch of the Japan Meteorological Agency (JMA) Himawari-8
satellite, with the 16-band Advanced Himawari Imager (AHI-8) onboard, in October 2014 presents a significant opportunity to improve
the timeliness of satellite fire detection across Australia. The near real-time availability of images, at a ten minute frequency, may also
provide contextual information (background temperature) leading to improvements in the assessment of fire characteristics. This paper
investigates the application of the high frequency observation data supplied by this sensor for fire detection and attribution. As AHI-8 is
a new sensor we have performed an analysis of the noise characteristics of the two spectral bands used for fire attribution across various
land use types which occur in Australia. Using this information we have adapted existing algorithms, based upon least squares error
minimisation and Kalman filtering, which utilise high frequency observations of surface temperature to detect and attribute fire. The
fire detection and attribution information provided by these algorithms is then compared to existing satellite based fire products as well
as in-situ information provided by land management agencies. These comparisons were made Australia-wide for an entire fire season -
including many significant fire events (wildfires and prescribed burns). Preliminary detection results suggest that these methods for fire
detection perform comparably to existing fire products and fire incident reporting from relevant fire authorities but with the advantage
of being near-real time. Issues remain for detection due to cloud and smoke obscuration, along with validation of the attribution of fire
characteristics using these algorithms.

1. INTRODUCTION

The use of remote sensing satellites for detecting and imaging
natural disasters has steadily increased with the availability and
reliability of sensors in orbit. The ability of emergency respon-
ders to view objective information about the location, size and
impact of an incident enables timely response and accurate as-
sessment, with benefits such as advanced warning of the impend-
ing event, the ability to prioritise resources to mitigate impact
where feasible, and enabling planning of relief measures in the
aftermath of an event. Remotely sensed information can also be
tied to models to simulate the incident at hand, which allows for
more accurate estimates of the change of an incident over time.

A common way to determine sudden change in an environment
caused by an external influence can be through the use of thermal
infra red imaging. Changes to the thermal signature of the land
surface can be caused by a number of disaster types - flooding
will cause a flattening of temperature response in a diurnal cy-
cle, with cooler high temperatures and warmer minimums, and
fire will cause temperatures to increase, with a significant impact
in the medium wave infra-red due to fire temperatures and their
corresponding blackbody radiation outputs. These changes can
occur rapidly with the spread of the event, so they can easily be
used to determine the extents of the affected area.
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1.1 Identifying fire

Traditional methods for the detection and monitoring of fire events
have generally consisted of in-situ fire detection personnel and re-
ports from members of the public. These methods tend to detect
the initial fire activity very quickly as smoke from fire events can
be spotted easily from a distance. Shortcomings of these meth-
ods include where a fire is in a remote area or in rugged terrain,
and where weather conditions such as cloud mask visual identi-
fication of smoke. These information sources also provide poor
information of the ongoing nature of fire events - subjective re-
ports of fire extent and intensity can vary between observers, and
terrain and vegetation may mask observation of the full extent of
fire through over or under reporting. Monitoring of fire events can
also take place from airborne platforms, and while these are very
effective at collecting information about fire extent, the availabil-
ity of aerial devices, and the cost and risk involved to personnel
and equipment can limit or preclude their use in many situations.

The use of satellite sensors to provide remotely sensed images
of fire can address some of these shortcomings. By their nature,
satellite sensors provide a more global coverage of fire activity,
with little difference in detection capability due to remoteness or
inaccessibility (Roy et al., 2013). The sensor provides objective
information about fire activity at a given time - the fire size and
intensity information derived from imagery is superior to subjec-
tive assessment of fire. Using remote sensing also reduces the
infrastructure, assets and personnel required to monitor fire ac-
tivity, with an associated reduction of risk and cost. With the use
of a range of different sensors, ongoing monitoring of fire activ-
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ity and spread can occur, leading to better decisions about the
mitigation of fire along with disaster relief planning.

Current algorithms for the detection of fire in the environment are
based on either empirical thresholds applied to brightness tem-
peratures of middle infra red bands of satellite sensors, or more
complicated contextual algorithms based on the comparison of
potential fire pixels to their surrounds (Roy et al., 2013). Cur-
rently the use of contextual algorithms is considered state of the
art, and when tuned correctly produce significantly higher rates
of detection, especially for smaller, low intensity incidents (Li
et al., 2013). Contextual algorithms for fire rely on deriving the
fire pixel’s radiant output in comparison to what the equivalent
background temperature output should be, generally based upon
the brightness temperature of surrounding pixels. A number of
factors can lead these techniques to producing less than desirable
results - surrounding pixels can be fire affected in themselves,
spreading the area required to acquire fire-free pixels for the algo-
rithm calculation; the point spread of the sensor can lead to false
detection in adjacent pixels; and the adjacent pixels used to cal-
culate the theoretical background temperature of the target pixel
may have significant differences in landform, surface emissivity,
land cover percentage and solar reflectivity, leading to large dif-
ferences between the actual and calculated fire background tem-
peratures from these algorithms.

1.2 Himawari AHI-8 sensor

The Japan Meteorological Agency (JMA) launched the Himawari-
8 geostationary satellite, the latest in their line of MTSAT plat-
forms, in October 2014. The sensor onboard this platform is the
Advanced Himawari Imager (AHI-8), which delivers 16 bands of
imaging information at ten minute intervals, and is used primarily
for weather forecasting and monitoring. The sensor has coverage
of the area bounded by western India, Hawaii, Eastern Antarc-
tica and Eastern Siberia. Generally there are two housekeeping
timeslots for each day, at 0240 and 1440 UTC, meaning a maxi-
mum of 142 images are obtained on any one day. Station keeping
for navigation and image calibration purposes occurs on a reg-
ular basis, with announcements of these activities on the Japan
Meteorological Agency mission website.

Of importance for event monitoring are the many bands of this
sensor located in the medium wave and thermal infrared, along
with visible and near-infrared imagery, which is supplied at a
spatial resolution of 2km at nadir (0.5km for one visible chan-
nel). This is a vast improvement of performance compared to
the previous sensor MTSAT-2, both in the spatial and spectral
resolution, and refresh rate. The sensor also has far higher satu-
ration temperatures in the medium wave infrared Band 7, which
enables the attribution of larger fires than its predecessor, along
with greater radiometric depth and higher signal to noise ratios
for the corresponding bands. Images have been available from
this sensor since JMA switched from MTSAT-2 in July 2015. A
comparison showing the improved abilities of AHI-8 compared
to MTSAT-2 can be found in Table 1.

This ability to monitor change rapidly increases with the use of
geostationary imagers, which can provide near real-time updates
of incidents from a fixed viewpoint. Most remotely sensed im-
ages used for this kind of disaster mapping and planning in the
past have come from low earth orbiting satellites. These have
the advantage of being much closer to the earth’s surface, with
the benefits of a higher spatial and radiometric resolution than
geostationary satellites viewing the same scenes. The major dis-
advantage of the low earth orbit systems in use are their temporal
availability - the systems currently in place can supply imagery

Table 1: Comparison of MTSAT-2 and AHI-8 sensors for fire
detection

Sensor MTSAT-2 AHI-8
Number of bands 5 16
Temporal Resolution 30 min 10 min
Spatial Resolution (nadir) 4x4 km 2x2 km
Medium wave infra-red channel
saturation temperature

330 K 400 K

Quantisation (MWIR) 10 bit 14 bit
Noise equivalent delta tempera-
ture (NE∆T )

0.09 @
300 K

≤ 0.16 @
300 K

at a revisit rate of no better than four hours, leaving large gaps in
the supply of images, especially for highly dynamic systems such
as fire. The use of geostationary sensors with a higher revisit rate
can overcome the issues caused by lower spatial and radiometric
resolution by simply supplying data more often. Geostationary
sensors also have the advantage of viewing incidents from the
same viewpoint over time, meaning less geometric correction of
images is required, leading to far easier analysis of change over
time.

All of these improvements in sensor ability and availability con-
tribute to improved ability to image change in the environment
and monitor it in near real-time. The AHI-8 sensor is also sim-
ilar in construction to the ABI system that will be deployed on
the third generation GOES satellite platform, which is due for its
first launch in October 2016, and initial findings from the images
produced by AHI-8 will be able to be applied almost directly to
ABI imagery from launch.

This paper looks to evaluate the ability of the AHI-8 sensor to
detect initial fire activity in the environment, with a specific fo-
cus on the application of a temporal-based algorithm, rather than
the current contextual-based algorithms used by polar orbiting
sensors. The paper will describe the importance of background
temperature in the determination of fire characteristics, introduce
a new method of defining background temperature for a specific
pixel, and demonstrate some initial findings from its application.

2. LAND SURFACE TEMPERATURE
DETERMINATION

Derivation of fire attributes from remotely sensed images can oc-
cur using either of two methods. The method of bi-spectral re-
trieval of fire characteristics was first proposed by (Dozier, 1981),
which uses differences in the radiometric returns of a medium
wave infra red and thermal infra red channel to determine the
fire size and intensity. The other method used for fire charac-
terisation is the calculation of fire radiative power, proposed by
(Kaufman et al., 1998) and refined by (Wooster et al., 2003),
which uses a number of thermal components of a pixel to gen-
erate total fire energy output. Both of these methods rely on an
accurate measure of the background temperature of the analysed
pixel. A study by (Giglio and Kendall, 2001) highlighted issues
with fire retrievals using the bi-spectral method, especially with
regard to smaller fires, and suggested that differences in the back-
ground characterisation of fire of 1K can produce fire attribution
errors of a factor of 100 or more. Issues also occur with deriv-
ing the background temperature from adjacent pixels. In some
cases, as highlighted by (Giglio and Schroeder, 2014), estimation
of the background temperature from adjacent pixels has produced
a background temperature higher than the brightness temperature
of the detected fire, leaving the fire’s characteristics unable to be
derived. These issues highlight the necessity of generating an ac-
curate value for the background temperature.
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A method to circumvent this issue with regard to fire attribution
is to derive the background temperature of the target pixel using
a temporal based method to model a diurnal temperature cycle
(DTC). This method uses a-priori knowledge of a pixel’s DTC
over a time period to project a background temperature of a tar-
get pixel if no affecting phenomenon was present. With the addi-
tion of geostationary sensors in recent years, the ability to utilise
algorithms with a temporal component for land surface tempera-
ture (LST) determination has improved. Modelling of the DTC
for LST from geostationary images has been undertaken using
absolute descriptive models (Göttsche and Olesen, 2001, Jiang et
al., 2006), Reproducing Kernel Hilbert Space models (van den
Bergh et al., 2006, Udahemuka and Bergh, 2008), Fourier anal-
ysis (van de Kerchove et al., 2013), Artificial Neural Networks
(Voyant et al., 2014) and Kalman filtering (Masiello et al., 2013,
van den Bergh et al., 2009). Utilisation of a single value decom-
position (SVD) method, such as that proposed in (Black and Jep-
son, 1998), has been applied by (Udahemuka and Bergh, 2008)
and extended by (Roberts and Wooster, 2014) as part of a robust
matching algorithm with significant improvements in the ability
to handle temperature anomalies in the observation data.

2.1 Robust Matching Algorithm

This study make use of the robust matching algorithm described
in (Roberts and Wooster, 2014), which adapted a form of single
value decomposition described in (Black and Jepson, 1998) in-
clusive of a method to reduce the influence of outliers on the de-
rived DTC. This method isolates 10 contamination-free DTCs in
a 30-day period for use in a SVD, which, depending on the loca-
tion, prevailing weather conditions and persistent thermal anoma-
lies, may not always be achievable for every pixel in a dataset.
(Roberts and Wooster, 2014) utilised a database of contamination-
free DTCs to populate the training dataset of a pixel which suf-
fered from a deficit of its own DTCs for the SVD process. De-
pending on the number of supplemental DTCs used, coupled with
the potential variation of the supplemental pixel’s nominal DTC
from the target pixel, using these supplemental DTCs to fill out an
SVD could introduce error into the principal components of the
DTC defined by the SVD, with subsequent errors in the fitting
process.

2.2 Wide Area DTC Derivation

A brightness temperature return in the medium wave infra-red
consists of two main components - reflection of solar radiation
from the earth’s surface, and emission of blackbody radiation
from the surface due to temperature. The skin surface temper-
ature of the earth is influenced by a number of factors - rain low-
ers surface temperatures very effectively, convective cooling and
heating due to air masses can influence surface temperatures, and
percentage land cover can affect the magnitude of temperature
change - but the most notable influence is heating by solar radia-
tion.

For an area of given latitude, the influence of solar radiation in
both reflection from the surface and the heating of the surface
should be similar for a time period given that these areas receive
similar amounts of solar radiation (Bojanowski et al., 2014). The
method outlined in this paper seeks to utilise this relationship to
derive a wide area training DTC dataset for a band of latitude,
which can then be applied to raw temperature data from pixels
within this band of latitude to produce a fit for the DTC on a
given day.

3. METHOD

3.1 Derivation of Training Data

To provide an estimate of a DTC for a specific day we will look to
gather information about the pixel’s ideal DTC behaviour in the
previous seven days. This method will focus primarily on Band 7
brightness temperatures produced from AHI, as positive anoma-
lies in this band are generally indicative of fire. The brightness
temperature values for a pixel are extracted from the day’s im-
ages, and these brightness temperatures are standardised for the
day (mean = 0, standard deviation = 1). The pixel’s latitude and
longitude are used to provide both the latitude of the estimated
DTC band and the time offset from this series that needs to be
applied to align local solar noon with the estimated solar noon, as
in Eq. 1:

ts = UTCimage + longitude× 240(secs) (1)

The dataset this method has been applied to consists of the conti-
nent of Australia. The width of the landmass varies up to a max-
imum of 39°of longitude, approximately corresponding to two
hours and twenty minutes of elapsed time. For this study, a cell
size of 0.25°has been chosen, meaning that each cell roughly cor-
responds to one minute of solar time difference from an adjacent
cell on the same latitude. If the maximum number of AHI images
are available to be used in this process, around 13 estimates of the
local temperature at solar time ts can be utilised in the broadest
areas of the Australian continent.

For each image in the training data set, an ocean mask is applied
to the original image, the brightness temperatures of pixels cor-
responding to each 0.25°cell are grouped together, pixel values
below 270K are discarded to eliminate opaque clouds, and a me-
dian value is taken as an aggregation of the remaining non-cloud
pixel values. The cell median temperatures are standardised in a
similar way to the pixel for each day in the training data set. Each
of the cells at each image is then assigned an apparent solar time,
as in Eq. 1. With this time value assigned cells in the latitudinal
set can be related to each other. At this stage all cells in the latitu-
dinal band for all images in the set are merged together. As there
are generally multiple returns at each time ts another median is
taken to provide one value for each time in the series. A Butter-
worth low pass filter with a cut off frequency of six hours is then
applied to the time series to eliminate standing variations in the
training data.

3.2 SVD of individual pixels

In a similar fashion to the training data set, each pixel brightness
temperature value in the DTC is assigned an apparent solar time
given by Eq. 1. These times are rounded to the nearest minute to
more easily correspond with the training dataset. The time off-
set between the first brightness temperature measurement of the
pixel and the training data is calculated, and the values are ex-
tracted from the training dataset corresponding to the image times
of the pixel dataset. This leaves the training dataset consisting of
a number of daily vectors that correspond directly to the times
that brightness temperatures were measured for the pixel’s DTC.

A single value decomposition decomposes the training data ma-
trix A into a number of principal component vectors U which
describe the training data as a series of orthogonal vectors, along
with the diagonal matrix Σ which contains sorted decreasing eigen-
values for each component, and the matrix V which contains co-
efficients for the reconstruction of the basis DTCs, as shown in
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Eq. 2:
A = UΣV T (2)

For a vector of observations from a pixel e, an approximation of
the DTC e∗ can be created from a reconstruction of the prinicpal
components:

e∗ =

K∑
i=1

ciUit (3)

where K is the number of principle components used and ci is a
series of scalar values derived by taking the inner product of the
observations from the pixel and the principle components (eTU ).
ci essentially describes the contribution of each of the component
vectors in U to the fitted estimate of the DTC e∗.

At this point, to minimise the effects of outliers on the robust
determination of the DTCs, a least squares minimisation of Eq. 3
occurs utilising a robust error norm, which identifies outliers that
contribute excessively to error:

σ(x, s) =
x2

σ + x2
(4)

x is the value of e−e∗ at time t, and σ is a scale factor which can
be reduced iteratively to improve the solution given by the error
minimisation. This can lead to the application of an outlier mask
m, such that:

mt =

{
1, |et − e∗t | ≥ σ/

√
3

0, otherwise
(5)

which leads to the minimisation of the error function E(c) as
shown below:

E(c) =

N∑
t=1

mtρ((et − (

K∑
i=1

ciUit)), σ) (6)

This process refines the values of ci applied to the principal com-
ponents Ui in order to reconstruct an approximate value for et.
At this point outliers from the ideal DTC can be identified and
attributed according to their characterstics - whether they area
positive or negative anomalies, and whether the change occurs
suddenly or gradually over time. The idealised DTC curve can
also be subsequently utilised as a state vector for a Kalman filter
estimation of DTC for the pixel over subsequent days.

4. CASE STUDY: ESPERANCE REGION FIRES

On the 15th November 2015, a fire caused by lightning strikes
started in scrub forest near the locality of North Cascade in the
Esperance region, around 700km ESE of Perth, Western Aus-
tralia (location shown in Figure 1). Two days later on the 17th
November, the fire broke containment lines during one of the
worst days in recorded history for fire danger in Australia. The
fire spread across low scrub forest and wheat fields driven by hot,
strong north-westerly winds, stretching almost 90km in length
in a matter of hours, before a weak cool change from the south
west slowed the fire’s spread significantly. An unrelated fire was
also burning to the immediate east of the town of Esperance in
Merivale, but being constrained by the coast it did not exhibit the
intensity or rapid growth of the North Cascade fire.

In figure 2, visual inspection of the medium wave infra red Band
7 image from AHI shows the extents and intensity of the later
stages of the fire. The fire at this point covered around 1800ha,
according to estimates of DFES, the state emergency services or-
ganisation. At several points during the fire’s spread, the intensity

Figure 1: Location of case study area, Esperance region, Western
Australia

and subpixel area of the fire was such that the Band 7 sensor was
saturated, which considering the 400 K saturation temperature of
the AHI sensor in this band demonstrates the coverage and inten-
sity of the fire. This fire is significant not only for its intensity
and spread rate, but also for the strong smoke output driven by
the fire, which caused occlusion of land temperatures ahead of
the North Cascade fire and of the fire output of the Merivale fire,
which was partially downwind of the main complex. This smoke
plume is made evident by the corresponding Band 13 thermal im-
age, with the smoke plume measuring up to 30 K lower than the
surrounding surface returns.

Given the extreme weather conditions, the remoteness of the ig-
nition point of the fire and the subsequent inability to monitor the
fire closely from the surface, the AHI images provide regular up-
dates of the fire spread throughout the day. Secondary metrics
such as rate of spread and fire radiative output are easily derived
once an ignition temperature threshold is defined.

To investigate the robust fitting technique, we applied it to a num-
ber of pixels both within the fire region and surrounding it for the
day prior to the fire and the day of the fire. In figure 3, the robust
fitting algorithm reflects the observations well for the anomaly
free day on the 16th November, but shows distinct issues with
fitting the DTC on the 17th. The normal background on this day
suffers from significant occlusion from around midday local so-
lar time due to smoke passing overhead, depressing brightness
temperatures by up to 10 K below the estimated temperature.
This sustained negative anomaly flips around 0815 UTC when
the area catches alight, and sustained positive brightness temper-
ature anomalies of up to 12 K persist until fire activity subsides
with the full onset of a wind change around 1100 UTC. The ro-
bust fitting algorithm in this case has overfitted to the diminished
smoke affected temperature values, underestimating the surface
temperature by up to 10 K. The dashed line here shows the first
estimate of ci using only the primary component of the SVD,
which shows inflation from the high temperatures detected dur-
ing the fire, but nevertheless follows the understood relationship
of the DTC shape. Of significance here also to the fitting of the
DTC is the change in temperature response to sunlight on the
morning after the fire. The accelerated rate of temperature in-
crease is due to the decreased albedo of the surface after the fire
has passed, and this relationship can be discerned from the bright-
ness temperature response in the thermal band.

At this point we can create a crude map of fire spread for the
day using a basic threshold algorithm. A conservative figure for
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Figure 2: AHI-8 brightness temperature image of the North Cas-
cade and Merivale fires, Esperance region of Western Australia,
2015-11-17 1000 UTC (1800 AWST). a) Band 7 - 3.9µm b) Band
13 - 10.8µm © ABOM 2015

an ignition threshold could be considered as a brightness tem-
perature of an observation which is 5 K above the fitted DTC.
Figure 4 shows the time where Band 7 brightness temperatures
first reach this mark in pixels that recorded at least one brightness
temperature greater than 335 K on the 17th November. The North
Cascade fire shows the expected behaviour early in the day, with
flaming pixels at the source detected early, and the initial spread
mapped well. Issues with the fitting of smoke to the modelled
DTC become apparent here with the false early returns south east
of the fire - these are most likely due to gaps in the smoke show-
ing the true background temperature at these times and causing
large positive anomalies. The figure also demonstrates the wind
change later in the day, with the fire growing in a north easterly
direction later in the day. The Merivale fire is also shown here,
and due to the local geography there is little deviation to the fire
extent with the wind from the north west. This fire finally sees
some growth late in the day with the south easterly change in
wind. Note that fire temperatures above 335 K are being seen in
pixels where the majority of the pixel is water - this suggests that
the sensor may have some contamination of adjacent pixels from
a point spread effect. More analysis will be required to determine
the magnitude of this effect especially in coastal areas.

5. DISCUSSION

Overall, the sensor bands covered in this investigation look to ad-
equately characterise fire in its early stages. Given that this case
is a rather extreme example, with weather conditions increasing
background temperatures well beyond their usual values for this
latitude, coupled with low humidity and dry fuel providing ideal
conditions for fire spread, the extent and intensity of this event are
easy to detect and monitor. This fire also look place in a largely

Figure 3: Robust matching algorithm results for a typical pixel
(-35.2583S, 121.4374E) in the North Cascade complex fire 2015-
11-16 and 17.

Figure 4: Map of first positive anomaly return for calendar day
2015-11-17 for pixels which recorded a brightness temperature
greater than 335 K at any time.

open landscape - the area generally consists of wheatfields and
grassland, interspersed with low woody scrubland which is of
limited height. Investigations should be made into the initial de-
tection of fires which there may be significant in-situ obstacles to
imaging, such as vegetative canopy cover.

Another element of interest highlighted by this investigation is
the effect of smoke on brightness temperatures in the areas ad-
jacent to fire. Particulate matter in the smoke tends to reduce
the amount of solar radiation reaching the surface(Tarasova et al.,
1999), along with scattering the medium wave infrared reflecting
from the surface. Fire activity also increases the turbidity of the
atmosphere (Kumar et al., 2010), increasing the opacity of the
atmosphere resulting in reduced brightness temperatures on the
leeward side of fire events. The presence of smoke particulate in
the atmosphere also tends to attract moisture to condensate and
form clouds, exacerbating scattering further. The reduction of
solar radiation reaching the surface can also contribute to a drop
in surface temperature and subsequent blackbody radiance of the
surface.

The propensity of smoke to lower brightness temperatures in the
area immediately downwind of a fire leads to the misattribution of
fire background temperatures when a contextual algorithm is used
for fire detection. The exact influence of smoke on medium wave
brightness temperatures is poorly known - studies on smoke oc-
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clusion have tended to focus on visible and near infra-red wave-
lengths. The ability of AHI-8 to provide rapid updates of bright-
ness temperature changes downwind of a fire, coupled with in-
situ sensors of downwelling and upwelling radiance, could pro-
vide greater understanding of the effects of smoke on longer wave-
length radiation, and subsequently improve the ability to detect
fires where aerosol characteristics are known.

The sensor shows great promise with regard to mapping the evolv-
ing nature of a fire event. The target fire is quite intense in nature,
and coupled with the open landscape, the initial ignition of fires is
easy to discern from initial investigations of imagery. The meth-
ods used in this paper to map the extents of the fire’s change over
time are very crude, and associated issues with smoke and rapid
temperature change have manifested in the results derived. Ap-
plication of method such as that demonstrated in (Diagne et al.,
2010), where differencing of the medium wave and thermal in-
frared temperatures is used in conjunction with basic thresholds,
should reduce the commission errors in the fitted model caused
by spikes such as smoke boundaries.

The use of this adaption of the robust fitting method presented
in this study for fire background determination has some advan-
tages over previous implementations. Using training DTCs from
a thirty day period increases errors in defining the shape of the
modelled DTC due to factors such as the solar geometry changes
over the time period, changing both the length of day and the to-
tal solar radiation input into the system. The precession of the
earth’s orbit can also lead to changes in the timing of peak solar
radiation for the day. The error budget created by these factors
can be minimised by reducing the number of training DTCs used
to calculate the modelled DTC, at the risk of introducing errors
through a lack of non-cloud influenced training data. In some
places it may be impossible to obtain training DTC profiles, such
as where there is prevailing cloud cover for significant portions
of the training data window, or where there are periodic daily
cycles of cloud formation which cause attribution issues during
that window. By choosing an aggregation method to create the
DTC model, the amount of days required to be sampled can be
decreased to get a finer resolution for the precise modelled DTC
with less noise than the individual pixel method.

Using the method presented in this paper provides an anomaly
free quantification of the typical response curve of a pixel con-
tained within a small area of the earth’s surface. This is of course
not without its shortcomings. The method does not take into ac-
count variations in surface emissivity from pixel to pixel. The
land surface emissivity can have a significant effect on the radi-
ance emitted from an area given a known temperature. Correction
for this could occur using a current model for land surface emis-
sivity from another satellite sensor, or work could be completed
to adapt a land surface emissivity model for the AHI sensor, at
which point a pixel by pixel correction to the modelled DTC
could be applied. This correction would have to be generated
on a regular basis to account for land use and seasonal change in
the environment.

Using this more aggregated model for DTC also eliminates the
ability of the robust fitting algorithm to adjust to standing vari-
ations in a pixel from an ideal candidate. These could include
such things as periodic cloud formation due to weather and to-
pography, and shadowing of the pixel from solar radiation due to
topography and land cover. Further investigation is required to
identify areas that may be affected by such standing anomalies
and steps than can be taken to mitigate their effects on overall fire
detection accuracy.

Formation of the model is also dependent on the landforms present
in the latitudinal band under consideration. The minimum width

of land required to obtain a solution across a full disk image is
2.5°of longitude, and widths of less than 5°of longitude reduce
redundancy of measurements and can lead to standing errors in
the resultant modelled DTC. Creating cells further away from the
satellite nadir can overtly influence the modelled result as well -
the limited number of pixel returns from the cell at the edge of a
full disk can introduce biases especially at times where sun glint
may elevate resultant brightness temperatures.

No correction has been applied for sun glint to this model in this
study, which may cause heightened brightness temperature re-
turns in the medium wave infra red at times where the sensor
viewing angle coincides with the specular reflectance of the sun
from a horizontal surface, and a correction such as that proposed
by (Zhukov et al., 2006) could be applied to each pixel identified
as a potential target.

There is significant scope for the expansion of methods used to
quantify the land surface temperature included in this paper. The
use of a single value decomposition method for the robust fit-
ting method tends to amplify the effect of the secondary eigen-
vectors in determining the DTC for a day. The single value de-
composition process identifies the general shape of the DTC very
well within the first eignevector, with subsequent orthogonal vec-
tors having eigenvalues generally twenty times lower. Using the
weighted norm to reconstruct the DTC tends to treat the influence
of the eigenvectors as uniform, and as such tends to provide over-
fitted solutions for DTCs on days with large number of cloud and
smoke affected pixels. Subsequent work should investigate the
use of a technique such as parallel factor analysis such at that
discussed in (Abdi et al., 2013), which takes into account the
strength of each fitted component in a factored solution. Notwith-
standing this, the likelihood of this method providing improved
results for the generation of DTCs over a more dynamic method
such as Kalman filtering is low, and whilst refinements can be
made, this method for determining thermal anomalies works best
as a starting point for a filtering based solution.
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