
PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS

V. Petrasa∗, A. Petrasovaa, J. Jeziorskaa,b H. Mitasovaa,

a Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University - (vpetras, akratoc, hmitaso @ncsu.edu)
b Department of Geoinformatics and Cartography, University of Wroclaw - (jajezior@ncsu.edu)

Commission VII, SpS10 - FOSS4G: FOSS4G Session (coorganized with OSGeo)

KEY WORDS: 3D rasters, decimation, sampling, binning, LAS, PDAL, PCL, Kinect

ABSTRACT:

Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect
or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density,
or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from
motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we
demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classi-
fication methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various
techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and
the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely
Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in
GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects,
specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from
the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the
scientific community but also by the original authors themselves.

1. INTRODUCTION

Current methods of acquiring data to represent terrain or surface
are often associated with large number of points in unordered
point clouds. These points are collected non-selectively in case
of lidar devices or generated during imagery processing as in the
case of imagery collected by unmanned aerial vehicles (UAV).
Not all of these points are necessarily important for creating a
digital elevation model (DEM) of a given area (Brasington et al.,
2012). Thus omitting the unnecessary points is desired since it is
computationally challenging to process the acquired point clouds
(Rychkov et al., 2012). Even with increasing hardware power, we
are collecting larger points clouds which are more challenging to
process.

There are two basic approaches for processing large number of
points. The first approach is binning which creates a raster from
a point cloud. Binning is a powerful analytical method which can
be extended into 3D space in order to reveal vertical structure of
vegetation (Gorte and Winterhalder, 2004). The second approach
is decimation, also referred to as thinning or sampling, which re-
duces number of points of a point cloud. In this research, we
are testing two decimation techniques, count-based decimation
(Pirotti and Tarolli, 2010) and grid-based decimation, to see how
they perform when applied to different types of data. Our ob-
jective is to determine how many points we can remove from a
point cloud and still preserve enough details in the digital ele-
vation model. Additionally, we compare the performance of the
two techniques to evaluate whether there is a need for both tech-
niques.

Geospatial methods can be implemented either as standalone tools
or integrated into a larger software package. We want the im-
plementation of our methods to be accessible in the long-term,

∗Corresponding author

and available for further review and improvement. Furthermore,
the methods should be easily used with other geospatial process-
ing tools. For these reasons, we use GRASS GIS (Neteler et
al., 2012), a free, libre and open source geospatial information
system, for our geospatial processing. We also implemented the
methods presented in this paper, namely count-based decimation,
grid-based decimation and three dimensional binning, in GRASS
GIS.

2. DATA

For this study we are using four different point cloud types: air-
borne lidar and ground-based lidar point clouds, points from a
low-cost indoor scanner (the Microsoft Kinect), and a point cloud
derived from data obtained from UAV imagery using structure
from motion (SfM) technique. Our study site is a rural area south
of Raleigh, North Carolina, USA. The data for our study area,
the Sediment and Erosion Control Research and Education Fa-
cility (SECREF) at the Lake Wheeler Road Field Laboratory of
North Carolina State University, were collected in 2013 by Wake
county with airborne lidar. The point cloud was classified by the
data provider. We used only points classified as ground (class 2)
for our study. The ground-based lidar measurements were done
in 2009 on a small part of the SECREF site (Starek et al., 2011)
using Leica Geosystems ScanStation 2. The measurement was
done from two sites and the point clouds were merged together.
The data obtained by the Kinect scanner capture a scaled physical
model molded from sand. The 0.37 m × 0.35 m mold was de-
rived from the airborne lidar data for the SECREF site. The data
generated by SfM from UAV imagery are from a location west of
the SECREF site and not from the SECREF site itself due to the
limits on where the UAV could be flown (Jeziorska et al., 2016).

To understand the spatial distribution of points in the point cloud
we look at the number of points per raster cell. Figure 1 shows

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
945



Figure 1: The number of points per cell for point cloud obtained
using airborne lidar (raster resolution 1.5 m)

Figure 2: The number of points per cell for point cloud obtained
using UAV imagery (raster resolution 0.5 m)

uniform distribution of the points classified as ground in the air-
borne lidar dataset. The only non-uniformities we can see are
caused by presence of buildings (places without any points), veg-
etation (places with lower point density) and the scanning pat-

Figure 3: The number of points per cell for point cloud obtained
using ground-based lidar (raster resolution 0.5 m). Note that the
color table uses red color for values from 80 up to the maximum

which is 18 thousand points per cell.

Figure 4: The number of points per cell for point cloud obtained
using Kinect scanner (0.37 m × 0.35 m, raster resolution

0.002 m)

tern (lines of slightly higher and lower density). Figure 2 shows
the spatially variable number of points per cell for the the UAV
dataset which is primarily caused by the variable vegetation cover
(areas with and without crops) and by artifacts from the SfM pro-
cessing step. Figure 3 shows the number of points per cell for the
ground-based lidar measurement. The highest density of points
is in 10 m radius around the ground-based lidar stations. Figure 4
reveals the regular, grid pattern of the point cloud acquired by the
Kinect scanner.

3. APPROACH

In this section, we first reiterate why we choose an open source
implementation in GRASS GIS. We follow with an overview
of how point clouds are processed in GRASS GIS highlighting
newly implemented 3D binning and integration with other open
source projects. Then, we explain the binning process in detail

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
946



which is also important as a base for the grid-based decimation
technique. Further, we discuss both newly implemented tech-
niques for decimating point clouds, namely count-based decima-
tion and grid-based decimation. Finally, we discuss our approach
for comparing decimated point clouds.

3.1 Open source implementation

We want to assure that the newly developed methods and other
methods used in this study can be reviewed. To review a method’s
implementation, its source code must be publicly accessible. In
order to build or improve upon the source code, the code should
be available under an open source1 license. Furthermore, we
want to ensure that all methods we are using and developing will
remain accessible in the long term. GRASS GIS has long his-
tory of preserving algorithms over several decades (Chemin et
al., 2015) with changes and updates to reflect new hardware, plat-
forms, types of data and user needs. The implementation of the
methods in GRASS GIS ensures long-term accessibility thanks to
an active community which has now worked on GRASS GIS for
more than 30 years. We can also see a wide variety of tools being
constantly2 added. In order to build complex analytic workflows,
we can take advantage of the wide range of geospatial tools of-
fered by GRASS GIS such as remote sensing (Neteler and Mi-
tasova, 2008) or spatio-temporal data processing tools (Gebbert
and Pebesma, 2014), and use them together with our newly de-
veloped methods.

3.2 Processing point clouds in GRASS GIS

The first step in the typical point cloud processing workflow in
GRASS GIS is to explore the point cloud by counting the number
of points per raster cell using r.in.lidar module3 with different
resolutions. We determine the spatial distribution and density of
points of different classes and the optimal resolution for further
analysis.

Further processing typically consists of computing digital ele-
vation model, height above surface, and several other statistics
based on point count, height of points, and intensity of points.
This functionality is available in r.in.lidar module for 2D rasters
and in r3.in.lidar for 3D rasters. Both 2D and 3D rasters can
be further processed by corresponding processing tools. The 3D
raster can also be decomposed into series of 2D rasters to take
advantage of the standard tools for image processing and classi-
fication available in GRASS GIS.

To create a smooth surface based on a point cloud, we can import
the points to GRASS GIS using v.in.lidar module which creates
vector points. These points can be later interpolated to create
a smooth surface typically representing digital elevation model.
Several interpolation methods are available for example, inverse
distance weighting implemented in v.surf.idw module, bicubic
and bilinear spline interpolation with Tykhonov regularization
(Brovelli et al., 2002) both implemented in v.surf.bspline mod-
ule, and regularized spline with tension technique (Mitasova et
al., 2005) implemented in v.surf.rst module. The aforementioned
lidar modules can limit the import through a number of parame-
ters including spatial extent, area, and return number or class if
these are available.

1We understand open source as defined by the Open Source Initiative
at opensource.org/osd.

2At the time of writing last added GRASS GIS add-on module called
r.randomforest was added less than a week ago.

3The individual programs, tools, plug-ins, and functions in GRASS
GIS are called modules.

Figure 5: Point cloud obtained using airborne lidar in a small
selected area with a patch of trees in the middle and a building

(same as in Figure 6). Points classified as ground by progressive
morphological filtering from PDAL are in yellow; all the other

points are in green.

Besides GRASS GIS functionality we can take advantage of meth-
ods and tools implemented in other open source packages. We
present a prototype of v.in.pdal module which integrates several
features from the Point Data Abstraction Library (PDAL) includ-
ing progressive morphological filter for ground point classifica-
tion (Zhang et al., 2003) from the Point Cloud Library (PCL).
This method can be used as an alternative to the multiscale cur-
vature classification algorithm (Evans and Hudak, 2007), imple-
mented in v.lidar.mcc add-on4 module, and the edge-based li-
dar data filtering method (Brovelli et al., 2004), implemented in
v.lidar.edgedetection, v.lidar.growing, and v.lidar.correction mod-
ules in GRASS GIS. An example result from the progressive mor-
phological filter is in Figure 5.

For reading data from the low-cost indoor scanner, Microsoft
Kinect, we use a module called r.in.kinect which uses OpenK-
inect libfreenect2 library (Xiang et al., 2016) to communicate
with the device. This module is used in Tangible Landscape sys-
tem which is a collaborative modeling environment for analysis
of terrain changes coupling a scanner, projector and a physical
3D model with GRASS GIS (Petrasova et al., 2015).

3.3 Binning

Binning is the conversion of points into a regular grid. The bin-
ning of points with X and Y coordinates starts with the overlay of
a grid of bins over the points. A bin can be a rectangle, hexagon
or generally any shape which can create continuous grid. When
creating a raster from a point cloud, the bin is a raster cell which
is square or rectangular. The value associated with a bin is the
count of points falling into the given bin (Lewin-Koh, 2011). The
analogous concept in univariate statistics (one dimension – 1D)
is a histogram, so the result of this binning can be called 2D (two
dimensional) histogram. We use binning to count the number of
points per raster cell to see the density of points.

The concept of binning can be extended when the points have an-
other value associated with them. For lidar data this value can
be the Z coordinate or intensity. The value for a bin is computed
as univariate statistics from the values of all points in the bin.
For example, computing the mean value of Z coordinates yields
a raster representing the digital elevation model. Another exam-
ple is the range of Z coordinates which can be used as a rough
estimate of vegetation height.

4Add-on modules are not part of the standard installation of GRASS
GIS but can be installed separately using the g.extension module.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
947

https://opensource.org/osd


Figure 6: The result of 3D binning a point cloud obtained using
airborne lidar (using all classes) in a small selected area with a
patch of trees in the middle. The visualization shows slices of

the resulting 3D raster. The variable visualized in yellow, green,
and red is the proportional count of points per vertical column

where yellow means 0% of points from a vertical column are in
the given 3D cell (voxel) and red means that more than 40% of

points from a given vertical column are in the given 3D cell. The
horizontal plane is colored in gray scale according to the number

of points per 2D cell which is a result of 2D binning at 2 m
resolution.

Binning into a 3D (three dimensional) grid of cubes (rectangular
cuboids) creates a 3D raster. Same statistics can be computed as
in the case of 2D raster but not from the Z coordinate as it is used
to determine position in the 3D grid in the same way as X and
Y coordinates are used. By dividing bin values in each vertical
column by value of a corresponding bin from a 2D binning result,
we obtain the proportional (relative) value of a given variable that
is not influenced by relative point density. The example result
for the selected section of the airborne lidar dataset is shown in
Figure 6 which represents vegetation structure as vertical slices
of a 3D raster.

3.4 Count-based decimation

Count-based decimation is the removal (or preservation) of ev-
ery n-th point based on its ordinal number in the set of points.
Depending on the dataset structure and selected n, such point se-
lection may be biased and does not ensure spatialy homogenious
decimation. The advantage of this method is, however, its sim-
plicity resulting in very fast point processing.

Specifying value r to “remove every n-th point” or value k to
“keep every n-th point” is reasonably straighforward. For exam-
ple, it is clear that removing every third point results in removal
of one third of points. However, when we need to preserve a
given percentage p of points, specifying the right values r and k
gets more complicated, because we can remove only certain frac-
tions of points. Some percentage values can be easily converted
to r and k values as visible in the Table 1. For a specific per-
centage p of points the following equations can be used to obtain
approximate values of r and k. For p >= 0.5 the value r is:

r =

⌊
1

1− p
+ 0.5

⌋
(1)

where bac is the whole part of a obtained by trimming the deci-
mal part of the number a.

For p < 0.5 the value k is:

k =

⌊
1

p
+ 0.5

⌋
(2)

p r

16.6% 6

20.0% 5

25.0% 4

33.3% 3

50.0% 2

p k

66.6% 3

75.0% 4

80.0% 5

83.3% 6

90.0% 10

Table 1: Values of r and k for selected fractions of removed
points p in percent

3.5 Grid-based decimation

2D grid-based decimation of points creates a subset of spatially
uniformly distributed points with representative heights. This
subset of points can later be used to interpolate smooth digital
terrain model and topographic parameters. When binning vector
points to raster, Z coordinates of points in a grid cell are counted,
summed, averaged or processed in other ways. To perform the
grid-based decimation, we average the X and Y coordinates of all
the points in the given grid cell to get a position of a new point.
Average is defined as a sum of all values divided by the number
of values. However, considering the often large numbers repre-
senting horizontal coordinates, summing all the X or Y coordi-
nates of all points in a grid cell could result in truncating the sum
and loosing precision. For this reason, we use cumulative mov-
ing mean5 which requires us to store only one value rescaled by
the number of values we processed up to that point. Cumulative
moving mean c in i-th step is defined as:

ci = ci−1 +
xi − ci−1

i
(3)

where ci is cumulative mean in the current step, ci−1 is cumula-
tive mean in the previous step, xi is the current value and i is the
current step number.

3.6 Comparing decimated point clouds

To compare the two newly implemented decimation techniques,
we decimated the given point cloud using count-based decima-
tion and grid-based decimation with different settings influenc-
ing the number of preserved points. We interpolated a surface
from each decimated point cloud using regularized spline with
tension technique (Mitasova et al., 2005) as implemented in the
v.surf.rst module. We are interested in how the distinct terrain
features are preserved when lower number of points is used. To
identify these features we use local relief model (LRM) extraction
algorithm (Hesse, 2010), implemented in the r.local.relief add-on
module which identifies terrain features based on their difference
to terrain trend. The example of LRM enhancing digital elevation
model visualization is shown in Figure 7.

We decimated each point cloud using the count-based method
several times while changing number of removed points from
less progressive removal to more progressive removal. Similarly,
we decimated the point clouds using the grid-based method with
coarser resolution each step. After interpolating and computing
the local relief models, we correlated the local reliefs with the lo-
cal relief from the original point cloud using the r.covar module
which computes correlation matrix of given rasters.

5Wikipedia: Moving average, last revision September 18, 2015, ac-
cessed November 18, 2015

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
948

https://en.wikipedia.org/w/index.php?title=Moving_average&oldid=681689446#Cumulative_moving_average


Figure 7: An example of a terrain interpolated from airborne
lidar point cloud. The left image shows terrain interpolated from

the original point cloud. The right image shows terrain
interpolated from the point cloud decimated using count-based
decimation with preserving every 10th point. The colors shows

elevation while shading is done using the local relief model.
Darker areas denote terrain features below the trend surface,

while lighter areas denote terrain features above the trend
surface.

4. RESULTS

We compared the two newly implemented decimation techniques,
count-based decimation and the grid-based decimation by corre-
lating LRMs as described in Section 3.6. Figures 8, 9, 10, and 11
show how the correlation coefficient is affected by the percentage
of removed points during the decimations for the four datasets
described in Section 2. We performed all the interpolations and
local relief model computations at resolution 0.5 m with the ex-
ception of the scaled sand model dataset where we used resolu-
tion 0.001 m.

Figure 8: Comparison of the performance of count-based and
grid-based decimation applied to a point cloud obtained using

airborne lidar

Figure 8 shows that the correlation of the original LRM and the
LRM from the count-based and grid-based decimated point clouds
derived from the airborne lidar dataset decays in a very simi-
lar way as the number of points decreases. The correlation de-
cay for the UAV dataset is much slower at the given resolution
compared to the airborne lidar dataset. Figure 9 shows that the
results are similar for count-based and grid-based decimations.
The grid-based decimation performed worse than the count-based

Figure 9: Comparison of the performance of count-based and
grid-based decimation applied to a point cloud obtained using

UAV imagery

Figure 10: Comparison of the performance of count-based and
grid-based decimation applied to a point cloud obtained using

ground-based lidar

decimation with a low number of removed points, but performed
better with a high number of removed points. For the ground-
based lidar dataset, the correlation for the grid-based decima-
tion is high even with a large number of removed points as Fig-
ure 10 shows. With the Kinect scanner dataset, the differences
between count-based and grid-based decimations are also not sig-
nificant, although the correction for grid-based decimations de-
cays in more predictable way. The behavior is similar to UAV
dataset and also partially to the airborne lidar dataset as is visible
in Figure 11.

Figures 8, 9, 10, and 11 show that we can remove significant
number of points (60-90%) from the original point clouds and
still preserve large number of features according to the correla-
tion with LRM of the original dataset. This applies to both count-
based and grid-based decimations. These results are consistent
with the previous studies on lidar data (Singh et al., 2015) which
also showed that a significant portion of the points can be re-
moved. In the case of ground-based lidar, we can even remove
more than 95% points using grid-based decimation and still get
high correlation as Figure 10 shows. This is caused by the ex-
tremely high density of points near the scanning sites.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
949



Figure 11: Comparison of performance of count-based and
grid-based decimation applied to a point cloud obtained using

the Kinect scanner

5. DISCUSSION

In the count-based decimation, the order of points in the input
dataset influences which points are removed. This is simple to
implement, but it can bias the sampling. The closest alternative
decimation method to count-based decimation is the removal of
a certain percentage of points p where points are removed ran-
domly by comparing a (pseudo) random number for each point
with the probability p. This decimates the point cloud indepen-
dent of the order of the points but the processing cost is higher
due to random number generation. The count-based decimation,
on the other hand, only requires the count of processed points be
kept. The low processing cost of the count-based decimation is
even more pronounced in comparison with the grid-based deci-
mation which requires us to keep track of the cells with points
and to compute mean for each cell.

The presented implementation of the count-based decimation lim-
its the choices user have in decimating between 30% and 70% of
the points, namely the choices are skip every third point, skip
every second point, or preserve every third point. This may limit
what we can infer from the graphs in previous sections about Fig-
ure 10. The assumption is that this is not an issue for the actual
users, as one needs fine settings close to 0% and especially close
to 100% of removed points while coarser changes are sufficient
around 50% of removed points.

6. CONCLUSIONS

We presented a suite of tools in GRASS GIS for processing point
clouds from different sources, namely airborne lidar, SfM applied
to UAV imagery, ground-based lidar, and the Kinect scanner. We
tested the tools with datasets representing each of these categories
with focus on the newly developed tools for decimation of point
clouds. The tests show that count-based decimation yields same
results as the grid-based decimation for the tested point clouds
obtained by airborne lidar, UAV, and the Kinect scanner. There-
fore, it is more advantageous to use faster and simpler count-
based decimation for point clouds when we can assume a spa-
tially uniform distribution of points. When point clouds have
spatially variable point density, such as point clouds from ground-
based lidar scans, we can benefit from grid-based decimation
which ensures that areas with extremely high density of points
contain only the desired number of points after the decimation.

At the same time, all points are preserved in areas with extremely
low point density. The grid-based decimation can thus reduce the
processing time of subsequent steps while keeping the quality of
the outputs. This shows us the need for both presented decimation
techniques to be included in GRASS GIS alongside with the tools
currently available. Additionally, we presented two new GRASS
GIS modules which integrate PDAL point cloud processing tools
and employ 3D binning to create a 3D raster representation of
vertical vegetation structure.

SOFTWARE AVAILABILITY

GRASS GIS is free, libre and open source6 software licensed un-
der GNU General Public License 2 or higher (GNU GPL) and
is available for download online. The count-based decimation
was implemented by Vaclav Petras as part of GRASS GIS mod-
ule v.in.lidar. The grid-based decimation also authored by Vaclav
Petras was experimentally included as part of r.in.lidar but in the
future it will be part of a separate module. These extended ver-
sions of modules are currently available in the development ver-
sion of GRASS GIS and we expect them to be part of the next
minor release, namely version 7.2. The r3.in.lidar module newly
developed by Vaclav Petras will be part of the same release. The
v.in.pdal module source code is included in the development ver-
sion of GRASS GIS. All the other presented tools are already
available in the latest stable release of GRASS GIS (currently
7.0.3). Both the latest release and the daily build of the devel-
opment version of GRASS GIS can be obtained from the official
GRASS GIS website7 hosted by Open Source Geospatial Foun-
dation (OSGeo). GRASS GIS module r.in.kinect developed by
Anna Petrasova licensed under GNU GPL 3 is available in a Git
repository8 hosted on GitHub. The libfreenect2 library is part of
OpenKinect9 project and is available in one of the project source
code repositories. PDAL10 and PCL11 are licensed under BSD
licenses and both the source code and the installable binaries are
available from the corresponding project websites.

ACKNOWLEDGEMENTS

We are grateful to the GRASS development team for maintaining
and developing GRASS GIS software package. We would like
to acknowledge especially Markus Metz who implemented sig-
nificant part of the presented functionality related to processing
lidar data in GRASS GIS. We would also like to thank to GRASS
GIS users, especially to Douglas J. Newcomb, Markus Neteler,
and William W. Hargrove, for feedback and testing. The UAV
imagery was collected by NextGen Air Transportation (NGAT),
Institute for Transportation Research and Education, North Car-
olina State University.

REFERENCES

Brasington, J., Vericat, D. and Rychkov, I., 2012. Modeling
river bed morphology, roughness, and surface sedimentology us-
ing high resolution terrestrial laser scanning. Water Resources
Research. W11519.

6 GRASS GIS fulfills the definition of open source by Open Source
Initiative and also free software definition by Free Software Foundation.

7grass.osgeo.org
8github.com/ncsu-osgeorel/r.in.kinect
9openkinect.org

10pdal.io
11pointclouds.org

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
950

http://grass.osgeo.org
https://github.com/ncsu-osgeorel/r.in.kinect
https://openkinect.org
http://pdal.io
http://pointclouds.org


Brovelli, M. A., Cannata, M. and Longoni, U. M., 2004. LIDAR
data filtering and DTM interpolation within GRASS. Transac-
tions in GIS 8(2), pp. 155–174.

Brovelli, M., Cannata, M. and Longoni, U., 2002. Managing and
processing LIDAR data within GRASS. In: Proceedings of the
GRASS users conference, Vol. 29.

Chemin, Y., Petras, V., Petrasova, A., Landa, M., Gebbert, S.,
Zambelli, P., Neteler, M., Löwe, P. and Di Leo, M., 2015.
GRASS GIS: a peer-reviewed scientific platform and future re-
search repository. In: Geophysical Research Abstracts, Vol. 17,
p. 8314.

Evans, J. S. and Hudak, A. T., 2007. A multiscale curvature algo-
rithm for classifying discrete return LiDAR in forested environ-
ments. Geoscience and Remote Sensing, IEEE Transactions on
45(4), pp. 1029–1038.

Gebbert, S. and Pebesma, E., 2014. A temporal GIS for field
based environmental modeling. Environmental Modelling & Soft-
ware 53, pp. 1–12.

Gorte, B. and Winterhalder, D., 2004. Reconstruction of laser-
scanned trees using filter operations in the 3d raster domain. In-
ternational Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 36(Part 8), pp. W2.

Hesse, R., 2010. LiDAR-derived Local Relief Models–a new
tool for archaeological prospection. Archaeological Prospection
17(2), pp. 67–72.

Jeziorska, J., Mitasova, H., Petrasova, A., Petras, V., Divakaran,
D. and Zajkowski, T., 2016. Overland flow analysis using time
series of sUAS-derived elevation models. Submitted to ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences.

Lewin-Koh, N., 2011. Hexagon binning: an overview. http://
cran.r-project.org/web/packages/hexbin/vignettes/hexagon binn
-ing.pdf (2 Mar. 2016).

Mitasova, H., Mitas, L. and Harmon, R. S., 2005. Simultaneous
spline approximation and topographic analysis for lidar elevation
data in open-source GIS. Geoscience and Remote Sensing Let-
ters, IEEE 2(4), pp. 375–379.

Neteler, M. and Mitasova, H., 2008. Open Source GIS: A GRASS
GIS Approach. Vol. 773, Springer, New York.

Neteler, M., Bowman, M. H., Landa, M. and Metz, M., 2012.
GRASS GIS: A multi-purpose open source GIS. Environmental
Modelling & Software 31(0), pp. 124130.

Petrasova, A., Harmon, B., Petras, V. and Mitasova, H., 2015.
Tangible Modeling with Open Source GIS. Springer.

Pirotti, F. and Tarolli, P., 2010. Suitability of lidar point density
and derived landform curvature maps for channel network extrac-
tion. Hydrological Processes 24(9), pp. 1187–1197.

Rychkov, I., Brasington, J. and Vericat, D., 2012. Computational
and methodological aspects of terrestrial surface analysis based
on point clouds. Computers & Geosciences 42, pp. 6470.

Singh, K. K., Chen, G., McCarter, J. B. and Meentemeyer, R. K.,
2015. Effects of LiDAR point density and landscape context on
estimates of urban forest biomass. ISPRS Journal of Photogram-
metry and Remote Sensing 101, pp. 310–322.

Starek, M. J., Mitasova, H., Hardin, E., Weaver, K., Overton, M.
and Harmon, R. S., 2011. Modeling and analysis of landscape
evolution using airborne, terrestrial, and laboratory laser scan-
ning. Geosphere 7(6), pp. 1340–1356.

Xiang, L., Echtler, F., Kerl, C., Wiedemeyer, T., Lars, Gordon, R.,
Facioni, F., Wareham, R. and et al., 2016. libfreenect2: Release
0.2 RC2.

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J. and
Zhang, C., 2003. A progressive morphological filter for re-
moving nonground measurements from airborne LIDAR data.
Geoscience and Remote Sensing, IEEE Transactions on 41(4),
pp. 872–882.

APPENDIX

This section lists selected commands (GRASS GIS module calls)
we used to create results presented in this paper. These com-
mands can be used in the GRASS GIS command line or they can
be executed using graphical user interface (GUI). Each command
starts with the name of the module followed by individual param-
eters separated by spaces. Parameters are in format key=value
where key can be found in the GUI form of the given module and
value is the number or text written into the associated input field.
Some special parameters are specified as letter prefixed by a dash,
for example -b where b is a name associated with a check box in
the module GUI form. Dash followed by multiple letters is the
same as writing each letter with a separate dash.

To count the number of points per raster cell, we used r.in.lidar
module with method=n:

r.in.lidar input=input output=name method=n

To decimate the point cloud we used the v.in.lidar module with
parameters skip=num or preserve=num where num is the num-
ber of points to skip or preserve in the dataset. This is how the
command looks like without any decimation applied:

v.in.lidar -bcr input=points.las output=points

In case of airborne lidar dataset we used also class filter=2 to
select only points classified as ground. We experimentally in-
tegrated the implementation of grid-based decimation into the
r.in.lidar module and enabled it using vector output parameter.

r.in.lidar -b input=input vector_output=points

To get different decimations we used the parameter resolution
which sets the resolution of the grid used for decimation. For
interpolation we used the v.surf.rst module:

v.surf.rst input=points elevation=elevation

There are several parameters which influence the resulting sur-
face, we used npmin=120, tension=20, and smooth=2. For the
purpose of this study, we disabled, using dmin=0, decimation
performed by the v.surf.rst module internally. In certain cases,
we had to leave it enabled to reduce number of points considered
for the interpolation. The local relief model was computed using
the r.local.relief module:

r.local.relief input=elevation output=lrm

In addition to the output parameter which is useful for further
processing, shaded output can be used to obtain colored local re-
lief model with shading which is advantageous for visualization.
To create the relative point density 3D raster we used r3.in.lidar
with the proportional n parameter:

r3.in.lidar input=points.las proportional_n=output

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
951



Additional parameters for the r3.in.lidar module are n, sum, mean,
and proportional sum. To classify points as ground, we used
v.in.pdal:

v.in.pdal -j input=points.las output=ground

The parameter -j extracts only the ground points. To get points
which are not ground, we used the same command, but with -k
parameter to classify ground points and class filter=0 to extract
only the points not classified as ground. To get points scanned
by the Kinect scanner, we used r.in.kinect module with parameter
vector to get the raw point cloud:

r.in.kinect vector=points numscan=1 zexag=3

We used points from one scan, the physical model was 3 times ex-
aggerated, and we applied smoothing using smooth radius=0.009.
Additionally, we set parameters related to calibration of the par-
ticular scanning setup. Since the binning implemented in r.in.lidar
requires the data to be in the LAS format, we needed to convert
some of the data using the v.out.lidar module into the LAS for-
mat:

v.out.lidar input=points output=points.las

The data for the physical model were in their original scale, so
we had to use unusually low scaling for their storage in the LAS
format, namely we used parameter las xyscale=0.00001 and also
las zscale=0.00001.

In addition to processing, we did all 2D and 3D geospatial visu-
alization in GRASS GIS.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-945-2016

 
952


	Introduction
	Data
	Approach
	Open source implementation
	Processing point clouds in GRASS GIS
	Binning
	Count-based decimation
	Grid-based decimation
	Comparing decimated point clouds

	Results
	Discussion
	Conclusions



