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ABSTRACT:

Hyperspectral remote sensing is more effective than multispectral remote sensing in many application fields because of having hundreds
of observation bands with high spectral resolution. However, hyperspectral remote sensing resources are limited both in temporal and
spatial coverage. Therefore, simulation of hyperspectral imagery from multispectral imagery with a small number of bands must be
one of innovative topics. Based on this background, we have recently developed a method, Pseudo-Hyperspectral Image Synthesis
Algorithm (PHISA), to transform Landsat imagery into hyperspectral imagery using the correlation of reflectance at the corresponding
bands between Landsat and EO-1 Hyperion data. This study extends PHISA to simulate pseudo-hyperspectral imagery from EO-1
ALI imagery. The pseudo-hyperspectral imagery has the same number of bands as that of high-quality Hyperion bands and the same
swath width as ALI scene. The hyperspectral reflectance data simulated from the ALI data show stronger correlation with the original
Hyperion data than the one simulated from Landsat data. This high correlation originates from the concurrent observation by the ALI
and Hyperion sensors that are on-board the same satellite. The accuracy of simulation results are verified by a statistical analysis and
a surface mineral mapping. With a combination of the advantages of both ALI and Hyperion image types, the pseudo-hyperspectral
imagery is proved to be useful for detailed identification of minerals for the areas outside the Hyperion coverage.

1. INTRODUCTION quiring pseudo-hyperspectral images inside the area covered by
original hyperspectral image scenes.

Recent advances in hyperspectral remote sensing (also known as
imaging spectroscopy) have demonstrated that hyperspectral im-
agery is more effective than multispectral imagery in many appli-
cation fields because of having hundreds of observation bands
with high spectral resolution. However, hyperspectral remote

We have recently developed a new method, Pseudo—Hyperspectral
Image Synthesis Algorithm (PHISA), to transform Landsat ETM+
imagery into hyperspectral imagery using the correlation of re-
flectance at the corresponding bands between ETM+ and Hyper-

sensing resources are limited both in temporal and spatial cov-
erage. Therefore, simulation of hyperspectral imagery from mul-
tispectral imagery with a small number of bands must be one of
innovative topics.

The National Aeronautics and Space Administration EO-1 satel-
lite was successfully launched on November 21, 2000. EO-1
brings three sensors including the multispectral Advanced Land
Imager (ALI), the hyperspectral Hyperion sensor, and the Lin-
ear Etalon Imaging Spectrometer Array (LEISA) Atmospheric
Corrector (LAC). EO-1 Hyperion, a representative space-based
imaging spectroscopy, enables a wide range of applications, in-
cluding mining, geology, forestry, agriculture and environmental
management. Hyperion covers the 0.4 - 2.5 ym wavelength range
with 242 bands at approximately 10 nm spectral resolution and 30
m spatial resolution. Despite this spectral superiority, its image
scene is narrower than ALI image scene (Table 1). In addition,
ALI data are much less noise than Hyperion data. If ALI imagery
can be successfully transformed into Hyperion data, this pseudo-
hyperspectral imagery must be more helpful because of a combi-
nation of the advantages of both image types. Since 2008 some
researchers have addressed the simulation of Hyperion data from
ALIimages. Chen et al. (2008) used a model of spectrum mixing
based on spectral library and Liu et al. (2009) used the univer-
sal pattern decomposition method (UPDM) to acquire simulated
hyperspectral images. Both their studies have only focused on ac-
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ion data (Hoang and Koike, 2015). This study extends PHISA to
simulate the pseudo-hyperspectral imagery from EO-1 ALI im-
agery. The pseudo-hyperspectral imagery can have the number
of bands with the same number as high-quality Hyperion bands
and with the same swath width as ALI scene.

2. DATA AND STUDY AREA

We used three cloud-free images acquired on 23 July 2001, EO-1
ALI EO-1 Hyperion and Landsat 7 ETM+ images, which were
obtained from USGS Earth Explorer. Figure 1 illustrates the over-
lap in surface area coverage of the ALI and Hyperion scenes,
compared to the Landsat 7 ETM+ ground track. EO-1 flies ap-
proximately one minutes behind Landsat 7 with the same sun-
synchronous orbit at an altitude of 705 km. Because PHISA was
originally developed for Landsat data, the ETM+ imagery was

Parameters ALI EO1-Hyperion
Spectral range 04-24 pum 04-25pum
Spectral resolution Variable ~10 nm
Spectral coverage Discrete Continuous
Number of bands 10 220

Swath width 37 km 7.5 km

Spatial resolution 30m,PAN: 10m | 30 m
Temporal resolution | Variable Variable

Table 1: ALI and Hyperion technical specifications
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Figure 1: Locations of EO1-Hyperion, ALI and Landsat 7 ETM+
scenes used in this study

Band | Wavelength (um) Description
PAN 0.48 - 0.69 Panchromatic
MS-1° 0.433-0.453 VNIR (blue)
MS-1 0.45-0.515 VNIR (blue)
MS-2 0.525 - 0.605 VNIR (green)
MS-3 0.63 - 0.69 VNIR (red)
MS-4 0.775 - 0.805 VNIR
MS-4’ 0.845 - 0.890 VNIR
MS-5’ 1.2-1.3 SWIR
MS-5 1.55-1.75 SWIR
MS-7 2.08-2.35 SWIR

Table 2: Spectral characteristics for the ALI bands

used to simulate the pseudo-hyperspectral data for comparison
with the one simulated from ALI. The spectral characteristics of
ALI bands are summarized in Table 2. In the VNIR and SWIR
spectral ranges, ALI image consists 9 multispectral bands versus
6 bands of ETM+ image (except for the panchromatic band). All
images are cloud-free and located in an area lying on the border
of California and Nevada in US (path 41 and row 34).

The ALI scene covers the Cuprite alteration zones while the Hy-
perion scene does not cover this area. Therefore, Cuprite was
chosen for validation of the pseudo-hyperspectral data outside the
Hyperion scene. With an extremely arid climate condition, the
Cuprite site is barren and sparsely vegetated land, which is suit-
able for remote sensing-based mineral mapping. Cuprite served
as the test site of many remote sensing instruments including air-
borne and orbital visible, near-infrared, thermal-infrared, and hy-
perspectral sensors (Swayze et al., 2014). To further evaluate
PHISA, we selected the AVIRIS image as a ground truth data
collected on July 12, 2002 for mineral mapping. The AVIRIS
data having a spatial resolution of 15.7 meters was provided in
an orthocorrected radiance data format by Jet Propulsion Labora-
tory. The mineral map for the Cuprite site built from the pseudo-
hyperspectral data was validated by a map classified from the
AVIRIS data.

7/ ALl Image: A /// Hyperion Image: H //

Pre-processing Pre-processing

! !

Geometric intersection data

'

- p
fori=1,...,155

A

9
Hi; = Boi + Z/Bbi'Abj + €ij
b=1

!

Variable selection (BMA)

!

Best model of all pixels
for Band i

.

Model Dictionary

.

> Data Simulation
/ Pseudo-hyperspectral Imagery %

Figure 2: Flow chart of the PHISA method
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3. METHODS
3.1 PHISA

Every reflectance spectra of surface materials usually follow cer-
tain rules or “behaviours” in which a reflectance value at a chan-
nel can be predicted from reflectance values of “key” channels.
Based on this idea, PHISA has been developed by assuming that
multiple linear regression models can be hold between each of
Hyperion bands and Landsat ETM+ bands, in which each Hype-
rion band is a response variable and Landsat bands are predictor
variables (Hoang and Koike, 2015). In this study, we used ALI
bands as substitutes of Landsat bands, and then the general form
of the multiple linear regression is defined as

H;j = Boi + Pri-Arj + B2i.Azj + B3i.Azj + Pai-Aaj + Bsi.
Asj + Bei-Aej + Bri-Avj + Psi.Asj + Poi.Agj + €ij,
(1)

where H;; represents pixel value of Hyperion image at band ¢ and
location j; Bo; is intercept at Hyperion band i; 314, 82:, B3i, Buis
Bsi, Beis Bris Bsi, and Bg; are unknown regression coefficients
between ALI bands and Hyperion band i; A1, A2j, Asj, A4j,
Asj, Asj, A7j, Asj, and Agj represent pixel values at location j
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Figure 3: (A) Comparison between two cases of the pseudo-hyperspectral data simulated from ALI and Landsat ETM+ images for
PCCs of the original Hyperion data and the pseudo-hyperspectral data; (B) Boxplot of PCCs between the original Hyperion data and

the ALI based pseudo-hyperspectral data for 155 simulated bands
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Figure 4: Histogram of multiple R-squared

of ALIBand 1°, 1, 2, 3,4, 4°, 5, 5, and 7, respectively; and ¢;;
is random error (residual) at band ¢ and location j.

Bayesian model averaging (BMA) method is applied to correctly
determine the relevant ALI bands in every Hyperion band re-
generating models. The variable selection was done using BMA
package in R programming language. The best model, which was
selected from a set of possible models, has the lowest Bayesian
Information Criterion (BIC) and the highest posterior probability
(Raftery et al., 2005). This model is used to build the correspond-
ing pseudo-hyperspectral band which has the same swath width
as the ALI scene. Flow chart of the PHISA method is shown in
Figure 2.

Hyperion data suffer from systematic and random noise which
was reduced prior to further processing. Accordingly, the Hype-
rion image was corrected at first for smile effects by the mov-
ing linear fitting and interpolation method (Goodenough et al.,
2003), and then, for vertical strips at outlier pixels by the local
de-striping method (Datt et al., 2003). The ENVI MODTRAN-

based Fast Line-of-sight Atmospheric Analysis of Spectral Hy-
percubes (FLAASH) module was used for atmospheric correc-
tion and producing surface reflectance images from both ALI and
Hyperion data. The C-correction method, a non-Lambertian tech-
nique, was chosen for topographic correction. Hyperion scene
was co-registered to ALI scene. Only the overlapped area of ALI
and Hyperion data were used to build the model dictionary.

3.2 Validation

The quality of the pseudo-hyperspectral data are verified by sta-
tistical analysis and an application of mineral mapping. Two sta-
tistical metrics used in the validation are Pearson’s correlation co-
efficient (PCC) and the root mean square error (RMSE) between
the original Hyperion data and the pseudo-hyperspectral data. For
mineral mapping, a hyperspectral data analysis approach imple-
mented in the ENVI software, Spectral Hourglass Wizard, was
used for both pseudo-hyperspectral and AVIRIS data. The details
of this technique are described in Kruse et al. (2003).

4. RESULTS AND DISCUSSION
4.1 Statistical analysis

The accuracy of each multiple linear regression model between
Hyperion and ALI bands was confirmed by a high coefficient of
determination (multiple R-squared). Most models had the multi-
ple R-squared higher than 90% (Figure 4). The highest, mean and
lowest values are 92.7%, 90.4% and 74.8%, respectively. Some
models include all multispectral bands of ALI imagery but some
have only 6 bands as predictor variables. Band 2 of ALI imagery
appears the most frequently (155 times), while Band 4’ is less
frequently observed (128 times) in the models. However, we are
of the opinion that these frequencies may be changed according
to study area because types and area ratios of surface materials
are different.

Since all multiple linear regression models achieved high accura-
cies, ALI imagery was transformed into 155 bands of the pseudo-
hyperspectral imagery. The most remarkable result to emerge
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Figure 5: Examples of linear regression between the original Hy-
perion data and the pseudo-hyperspectral data at Bands 157 and
185

from the statistical analysis is that most bands have PCCs >
0.95. Only a small fraction of pseudo-bands has the coefficients
< 0.93 like outliers in the dataset (Figure 3B). Even the low-
est correlation coefficient was still high at 0.86. In addition, the
RMSE values, which are consistent with PCCs, are mainly low,
smaller than 0.016. Figure 3A shows plots of PCCs between the
original Hyperion data and the pseudo-hyperspectral data for two
cases of the pseudo-hyperspectral data simulated from ALI and
Landsat ETM+ images. It is noteworthy that the curve of ALI
based pseudo-data is above that of the Landsat based pseudo-
data, which means the pseudo-hyperspectral data simulated from
the ALI data is more strongly correlated with the original Hy-
perion data than the one simulated from Landsat data. This high
correlation originates from the concurrent observation by the ALI
and Hyperion sensors that are on-board the same satellite.

The results revealed consistent agreements between the original
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Figure 6: Mineral maps of spectrally dominant selected end-

members for the pseudo-hyperspectral data (A) and AVIRIS (B).
Background is grayscale of the pseudo-hyperspectral band 190

Hyperion data and the pseudo-hyperspectral data, with correla-
tion slopes close to one (Figure 5). Each coefficient of determi-
nation was calculated by using all pixel values of the correspond-
ing band. The highest linearity (R? = 0.93) that was identified
in the case of Band 157 confirmed the strong similarity of the
pseudo-data to the original data for this band. Even the lowest
coefficient of determination was still high in the case of Band
185 (R? = 0.75). Those observations suggest the statistical suit-
ability of PHISA for transforming ALI imagery into the pseudo-
hyperspectral imagery.

4.2 Mineral mapping

Spectral bands covering the SWIR ranges (2.0 - 2.4 um) of the
pseudo-hyperspectral and AVIRIS data were selected for mineral
mapping. The pseudo-data was co-registered and resampled to
AVIRIS data. Five basic mineral endmembers, which consists of
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AVIRIS Ground Truth (%)
Pseudo-data endmembers | Alunite | Kaolinite | Muscovite | Buddingtonite | Hydrated silica
Alunite 89.40 81.35 0.08 0.00 0.00
Kaolinite 9.54 16.84 0.00 0.00 0.00
Muscovite 0.00 0.06 99.92 0.00 0.00
Buddingtonite 1.03 1.75 0.00 100.00 0.00
Hydrated silica 0.03 0.00 0.00 0.00 100.00

Table 3: Confusion matrix comparing the mineral mapping results between pseudo-hyperspectral and AVIRIS images

kaolinite, alunite, muscovite, hydrated silica (chalcedony and/or
opal), and buddingtonite, were determined based on the result of
purest pixels in n-dimensional space (n-D Visualizer). Spectral
Angle Mapper (SAM) method was used to produce distribution
and abundance maps of selected minerals.

One ALI band in the 2.2 ym region was transformed into 37
bands of the pseudo-hyperspectral data. This result is very impor-
tant to identify mineralogical composition by exploiting absorp-
tions found in the SWIR region. The mineral maps show both
satisfactory and unexpected results (Figure 6). Muscovite and
hydrated silica were well identified from the pseudo-data while
most pixels classified by AVIRIS as kaolinite were misclassified
as alunite on the pseudo-data. It is interesting to note that bud-
dingtonite that isolated into small areas can be extracted from the
pseudo-data. The confusion matrix revealed that there were two
high classification errors in alunite mapped by the pseudo-data
as kaolinite (9.54%) and kaolinite mapped by the pseudo-data as
alunite (81.35%) (Table 3). Despite the fact that the classifica-
tion accuracy of muscovite, hydrated silica, and buddingtonite
were 99.9%, 100%, and 100%, respectively, the kaolinite classi-
fication error declined the overall agreement of the pseudo-data
with AVIRIS fall to 63%. This requires further improvements of
PHISA to separate endmembers having similar reflectance spec-
tra.

5. CONCLUSIONS

We applied PHISA to transform EO-1 ALI imagery into 155

bands of the pseudo-hyperspectral imagery and produced the pseudo-

data with the same swath width as ALI scene. Most pseudo-bands
have PCCs bigger than 0.95 and RMSE values smaller than 0.016.
The strong similarities between each band data of Hyperion and
the pseudo-hyperspectral reflectances have further strengthened
our confidence in extending applications of PHISA. Despite the
statistical suitability and very high classification accuracy of mus-
covite, hydrated silica, and buddingtonite, the mineral mapping
result showed that kaolinite were mostly misclassified as alu-
nite. Future work should concentrate on improving PHISA by
assigning the best model to each surface pattern over all bands.
We believe that the improvement can reduce the unexpected per-
formance by separating endmembers having similar reflectance
spectra.
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