内蒙东部晚古生代构造格局:来自中、晚二叠-早三叠世砂岩碎屑锆石 U-Pb 年代学的证据^{*}

赵英利¹ 李伟民^{2,3} 温泉波^{2,3} 梁琛岳^{2,3} 冯志强⁴ 周建平² 申亮² ZHAO YingLi¹, LI WeiMin^{2,3}, WEN QuanBo^{2,3}, LIANG ChenYue^{2,3}, FENG ZhiQiang⁴, ZHOU JianPing² and SHEN Liang²

- 1. 吉林大学古生物学与地层学研究中心,长春 130026
- 2. 吉林大学地球科学学院,长春 130061
- 3. 东北亚矿产资源评价国土资源部重点实验室,长春 130061
- 4. 太原理工大学地球科学与工程系,太原 030024
- 1. Research Center of Paleontology & Stratigraphy, Jilin University, Changchun 130026, China
- 2. College of Earth Sciences, Jilin University, Changchun 130061, China
- 3. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources, Changchun 130061, China
- 4. Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2016-04-01 收稿, 2016-07-24 改回.

Zhao YL, Li WM, Wen QB, Liang CY, Feng ZQ, Zhou JP and Shen L. 2016. Late Paleozoic tectonic framework of eastern Inner Mongolia: Evidence from the detrital zircon U-Pb ages of the Mid-late Permian to Early Triassic sandstones. *Acta Petrologica Sinica*, 32(9):2807-2822

Abstract The studied Hexigten Banner-Lixin-Ar Horqin Banner-Jarud Banner-Suolun-Moguqi areas in eastern Inner Mongolia, tectonically locate between the Xar Moron suture zone and the Hegenshan-Heihe suture zone, and belong to the eastern segment of the Central Asian Orogenic Belt (CAOB) between the North China and Siberia cratons. These areas significantly preserved records related to the Late Paleozoic closure of the Paleo-Asian Ocean, as well as the information of tectonic evolution of the Xar Moron suture and the Hegenshan-Heihe suture. This study focuses on the researches of detrital zircon LA-ICP-MS U-Pb ages of the Mid-late Permian to Early Triassic sandstones derived from the above mentioned areas. Petrologically, the detrital compositions indicate that the investigated sandstones are immature, probably due to the results of rapid erosion, transport, and diagenetic process and nearly supplying derived from the source. Additionally, the abundance of volcanic lithic significantly reveals the magmatic provenance mainly dominated. Meanwhile, the cathodoluminescence (CL) images of analyzed zircons and their Th/U ratios also imply the igneous origin. By combining our new geochronological data with previously reported data, total 2533 detrital zircon U-Pb ages are compiled and show three distinct dominant populations of ca. 230 ~ 570Ma (peak at ca. 270 ~ 315Ma, 430Ma and 500Ma), ca. 700 ~ 1100Ma (peak at 970Ma) and >1500Ma (peak at ca. 1800Ma and 2500Ma). The peak ages of ca. 1800Ma and 2500Ma are considered as typical age members of the North China Craton basement, suggesting the possible provenance derived from the North China Craton. Moreover, the other two age populations are closely consistent with the timing of magmatic events took place in the Erguna-Xing' an-Xilinhot blocks to the north of the Xar Moron suture zone. In comparison with variation trends of detrital components in sandstones which expose in the different regions (including, from southwest to northeast, the Hexigten Banner-Lixin area, the Ar Horqin Banner-Jarud Banner area and the Suolun-Moguqi area) with varying deposited time ranging from Mid-late Permian to Early Triassic, reveal that the 'scissorlike' closure process of the Paleo Asian Ocean, from west to east, and the terminated at least last to Early Triassic. In addition, the relative stable sources supplying of the Mid-late Permian to Early Triassic sandstones in the Suolun-Moguqi area, indicates that the Erguna-Xing' an block and Songliao-Xilinhot block has already collided along the Hegenshan-Heihe suture zone at the time before Mid-Permian deposits, should be as the previous report that of end of Early Carbonadoes.

Key words Eastern Inner Mongolia; Central Asian Orogenic Belt (CAOB); Mid-late Permian to Early Triassic; Detrital zircon U-

^{*} 本文受科技部"973"项目(2013CB429802)和国家自然科学青年基金项目(41502207、41302175)联合资助.

第一作者简介:赵英利,女,1980年生,讲师,从事构造地质学,地质年代学研究,E-mail: yingliz@jlu.edu.cn

Pb ages; Tectonic framework

摘 要 内蒙东部的克旗-林西-阿鲁科尔沁-扎鲁特-索伦-蘑菇气地区位于华北板块与西伯利亚板块所夹持的中亚造山带 东段,西拉木伦缝合带与贺根山-黑河缝合带之间,是古亚洲洋晚古生代残余海盆最后消失的地区,保存了上述两缝合带构造 演化过程的相关信息。本文针对中、晚二叠-早三叠世砂岩开展碎屑锆石 LA-ICP-MS U-Pb 年代学研究。测试的上二叠统林西 组与下三叠统陶海营子组、老龙头组砂岩均具有成分成熟度低,近源快速沉积的特点,碎屑骨架成分显示多为火山岩区物源 供给。锆石 CL 图和 Th/U 值也指示了绝大多数锆石为岩浆成因锆石。结合前人研究成果,区域内已获得的 2533 粒碎屑锆石 U-Pb 年龄主要分为 3 组:约 230 ~ 570Ma (峰值年龄为 270 ~ 315Ma、430Ma 和 500Ma)、700 ~ 1100Ma(峰值 970Ma)及 > 1500Ma (峰值 1800Ma 和 2500Ma)。较古老的峰值年龄 1800Ma 和 2500Ma,暗示了华北克拉通基底的物源信息。其余两组年龄则与 西拉木伦缝合带北侧的额尔古纳-兴安-锡林浩特地块内部岩浆事件的时间相吻合。对比分析内蒙东部不同区域(克旗-林西 地区、阿鲁科尔沁-扎鲁特地区和索伦-蘑菇气地区)、不同时代(中、晚二叠世-早三叠世)沉积物碎屑组分变化趋势,推测古亚 洲洋最终沿西拉木伦缝合带自西向东呈"剪刀"式闭合,时间持续至早三叠世。此外,索伦-蘑菇气地区中、晚二叠-早三叠世 相对稳定的物源供给,证实了额尔古纳-兴安地块与松辽-锡林浩特地块至少在中二叠世沉积以前就已经沿贺根山-黑河缝合 带完成拼贴,应为前人提出的早石炭世末。

关键词 内蒙东部;中亚造山带;中、晚二叠-早三叠世;碎屑结石 U-Pb 年龄;构造格局
 中图法分类号 P542; P597.3

1 引言

中亚造山带被认为是全球显生宙大陆增生与改造最显著的地区,也是全球最大的增生型造山带,地处西伯利亚板块与塔里木-华北板块之间,西起乌拉尔山地区,经哈萨克斯坦、中国西北、蒙古、中国东北,一直延伸至俄罗斯远东地区的鄂霍茨克海(Şengör et al.,1993;Xiao et al.,2003)。典型的大陆增生和陆内改造所蕴含的科学问题,使得中亚造山带成为探索大陆动力学问题最佳的天然实验室(肖文交等,2008)。

内蒙东部地区大地构造属性上归属于中亚造山带东 段——兴蒙造山带(图1a)。在构造演化方面,该区域形成 于古生代古亚洲洋构造体制,又经历了中生代以来鄂霍茨克 构造体制和古太平洋构造体制的叠合与改造,产生了"三种 体制,两次叠合"的复杂过程,故成为地学界研究古亚洲洋构 造域、鄂霍茨克构造域与古太平洋构造域演化与转化的热点 区域(唐克东,1989;Şengör et al.,1993;徐备和陈斌,1997; Xiao et al.,2003;Li,2006;Miao et al.,2007,2008;Jian et al., 2008;Chen et al.,2009;Xu et al.,2015)。

前人研究指明内蒙东部地区由众多微地块组成,自北西 向南东依次为:额尔古纳地块、兴安地块和松辽-锡林浩特地 块(松辽地块和锡林浩特微地块的合称),各地块之间分别以 新林-喜桂图缝合带、黑河-贺根山缝合带为界(张兴洲等, 2006;刘永江等,2010;Liu et al.,2016;图1)。古生代以来, 各地块伴随着古亚洲洋的消减、关闭而相继拼贴形成统一的 东北地块群(Xiao et al.,2003;李锦铁等,2007;Miao et al., 2008;王成文等,2008;Jian et al.,2008;Chen et al.,2009;Xu et al.,2015;Liu et al.,2016),本文描述中延用 Xiao et al. (2003)和 Miao et al. (2008)的观点称之为"南蒙古地块"。 然而,关于各地块最终的拼贴位置、时间与过程仍存在很大 的争议:比如新林-喜桂图缝合带的拼贴位置、俯冲方向以及 形成时代问题(李瑞山,1991;葛文春等,2005;Zhou et al., 2015; Feng et al., 2015); 黑河-贺根山缝合带的时代、性质以 及向东或是北东的延伸问题(Nozaka and Liu, 2002; Miao et al.,2008; Han et al.,2012; 冯志强等, 2014; Xu et al.,2015)。 此外,统一的"南蒙古地块"与西伯利亚板块和华北板块相继 汇聚、拼合,最终形成了南北两条缝合带(图1a)。北侧与西 伯利亚板块碰撞闭合的最终缝合线为蒙古-鄂霍茨克缝合 带,闭合时间为晚侏罗-早白垩世的观点已达成了共识(赵越 等,1994; van der Voo et al., 1999; Li, 2006), 而对于南侧缝合 带的研究,由于在华北板块北缘北侧存在可标志缝合带位置 的多条断续出露的不同时代的蛇绿岩、蓝片岩(包志伟等, 1994; 王玉净和樊志勇, 1997; 刘敦一等, 2003; Miao et al., 2008)以及与板块俯冲、碰撞有关的火山-深成岩带(Chen et al.,2000,2009;石玉若等,2004,2007;Shi et al.,2004;Ge et al.,2005;刘建峰等,2009),并夹杂着性质不明的肢解的古老 岩块,使得问题变得极为复杂。关于缝合带最终位置的讨论 主要存在以下几种观点:(1)西拉木伦-长春-延吉缝合带(以 下简称西拉木伦缝合带)作为最终缝合线(王鸿祯,1982;王 玉净和樊志勇,1997;孙德有等,2004;Li,2006;李锦轶等, 2007; Wu et al., 2011); (2) 两大板块的最终缝合线沿索伦 山-贺根山-嫩江-黑河一带展布(苏养正,1981; Nozaka and Liu,2002; Miao et al., 2008); (3) 缝合线介于贺根山和西拉 木伦缝合带之间,索伦-苏尼特左旗-林西一线应为中亚造山 带东段的最终缝合带(Tang, 1990; Sengör et al., 1993; Xiao et al., 2003; Li, 2006; Jian et al., 2008; 李益龙等, 2012)。关于 缝合时间也存在(1)中泥盆世(Tang, 1990;徐备和陈斌, 1997; Xu et al., 2015); (2) 晚泥盆世至早石炭世(任纪舜等, 1990; 邵济安, 1991); (3) 二叠纪晚期甚至三叠纪初(Sengör et al., 1993; Chen et al., 2000; Badarch et al., 2002; Xiao et

图1 区域大地构造图

(a)中亚造山带构造简图(据Şengör et al.,1993 修改);(b)中国东北地区大地构造单元划分:EB-额尔古纳地块;XB-兴安地块;SXB-松辽-锡 林浩特地块;JB-佳木斯地块;NT-那丹哈达增生地体;NMNCC-华北北缘增生带;XXS-新林-喜桂图缝合带;HHS-贺根山-黑河缝合带;MYS-牡 丹江-依兰缝合带;XCYS-西拉木伦-长春-延吉缝合带

Fig. 1 Tectonic map showing the subdivisions of the Central Asian Orogenic Belt (a, after Şengör et al., 1993) and NE China (b)

al.,2003;李锦铁等,2007;Wu et al.,2011)等观点。上述科学问题直接制约着对中国东北地区古生代构造演化的认识。

造山带与沉积盆地是大陆结构中紧密相关、相伴生的两 个基本构造单元,沉积盆地与周边造山带通过物质的相互迁 移和构造相互制约形成一个具有内在联系的统一体。这就 意味着盆地中的沉积记录能够反映造山作用的性质、特征和 过程以及隆升时代、速度及其变化,可用来判别沉积物源区 的性质和大地构造背景,进而推断该区的构造演化历史(赵 红格和刘池洋,2003;徐亚军等,2007)。本次研究选择区域 内发育的中、晚二叠-早三叠世的碎屑岩,试图通过碎屑锆石 U-Pb 年龄来示踪物源区及其相关的构造-热事件,进而探讨 内蒙东部地区晚古生代构造演化,为研究中亚造山带东段的 形成与演化提供重要线索。

2 区域地质背景

研究区地处大兴安岭中、南段,从大地构造位置来看,介 于备受争议的黑河-贺根山缝合线与西拉木伦缝合带之间 (图2),松辽-锡林浩特地块之上,是古亚洲洋晚古生代残余 洋盆最后消失的地区,势必保存了该洋盆地不同演化时期的 沉积记录。区域内出露大面积的古-中生代不同构造背景成 因的岩浆岩、沉积岩系及与板块拼合相关的增生-碰撞杂岩 (李锦轶等,2007)。最古老的变质地层单元为下元古界的 中、低级变质程度的地层-宝音图群,以及一套经绿片岩相变 质为主的寒武纪地层-温都尔庙群。早古生代经历了加里东 期造山运动,上升成陆,直至晚志留世-早泥盆世才开始重新 接受海相沉积,形成西别河组,并在此之后的沉积演化过程 中连续沉积了石炭系、二叠系海相、海陆交互相地层以及三 叠纪以来的陆相碎屑沉积(内蒙古自治区地质矿产局,1991; 李文国等,1996;和政军等,1998;鲍庆中等,2005;王成文等, 2009)。

研究区内上二叠统大石寨组为一套海相火山岩;中二叠 统哲斯组是一套中国北方地区发育的最为广泛的浅海相沉 积地层,而上二叠统林西组则是一套由海相沉积向陆相沉积 过渡的地层序列,标志了西伯利亚和华北两大板块之间古海 洋的消亡与大陆汇聚的重要演化过程(王成文等,2008)。此 外,区域内零星分布了下三叠统幸福之路组、陶海营子组、哈 达陶勒盖组和老龙头组均以一套典型的氧化环境下形成的 红色碎屑沉积为标志的陆相沉积建造(朱儒峰和郑广瑞, 1992;和政军等,1998;杨雅军等,2012;杨兵等,2014)。由此 可见,独特的地理位置和处于关键时间节点的沉积建造,将 成为研究内蒙地块群与华北板块之间缝合带的位置及最终

图 2 研究区地质简图

其他学者的数据引自:①李雨柯,2014;②李晓海等,2015;③张海华等,2015;④郑月娟等,2014;⑤朱俊宾,2015;⑥韩杰等,2011;⑦李红英等,2016;⑧Eizenhöfer et al.,2014

Fig. 2 Simplified geological maps of the study area

闭合时间和过程的最有力场所。

3 样品采集及岩相学

近年来,笔者在内蒙东部开展了部分工作,获得了索伦、 林西、克什克腾旗地区中、晚二叠世哲斯组与林西组砂岩的 碎屑锆石 U-Pb 年龄(赵英利,2010;赵英利等,2012;Han *et al.*,2012)。本次研究重点采集了早三叠世砂岩样品,同时 补充完善晚二叠世样品(采样点见图 2),以求获得更加丰富 的物源信息,并结合区域内其它学者的研究成果,深入探讨 内蒙东部地区晚古生代构造格局。

晚二叠世砂岩 553GD 和 248SL 为中、细粒长石岩屑砂 岩、岩屑砂岩,碎屑颗粒分选中等,磨圆较差,多为棱角状-次 棱角状,少数为次圆状,颗粒支撑,孔隙式或接触式胶结,胶 结物和杂基含量少。颗粒成份主要由石英、长石、岩屑及少 量白云母组成(表1、图 3a, b)。其中,石英颗粒不规则,以 单晶石英为主,表面较为干净,呈一级灰白干涉色,含量为 25%~30%。长石多为斜长石,聚片双晶明显,含量为 15% ~35%。岩屑以火山岩岩屑和沉积岩岩屑为主,含量为 35% ~40%。白云母具有鲜艳的干涉色,含量 <5%。

早三叠世砂岩 ZL009、15MG06 和 15MG09 为中、细粒岩 屑长石砂岩,碎屑颗粒分选一般,磨圆一般,多为次圆状-次 棱角状,颗粒支撑,孔隙式胶结为主,胶结物多为泥质,少量 铁质胶结物。颗粒成份主要为石英、长石、岩屑及少量云母 矿物(图 3c,d)。其中,岩屑成份复杂(以火山岩岩屑为主, 少量变质岩岩屑),含量为20%~25%。长石表面粗糙,绢云 母化严重,偶见聚片双晶,含量为30%~40%。石英以单晶 为主,含量为25%。云母类矿物含量变化较大,含量<10%。 样品中胶结物及杂基含量在5%~15%左右。

岩相学特征表明,上二叠统林西组与下三叠统陶海营子 组、老龙头组砂岩整体呈现其成分成熟度低,源区快速剥蚀、 快速搬运、近源沉积的特点;总体含有大量的火山岩岩屑,推 测碎屑物应主要来自岩浆弧物源。

4 锆石 LA-ICP-MS U-Pb 测年

4.1 分析方法

测试锆石单矿物分选在河北廊坊区域地质调查院完成,

表1 样品的岩性学特征

Table 1 Petrographical characteristics of the investigated sandstone samples

样品号	岩石名称	采样点	采样层位	岩相学特征
15MG06	岩屑长石砂岩	蘑菇气地区	下三叠统老龙头组	中粒碎屑结构,碎屑颗粒分选中等,磨圆一般,次圆-次棱 角状,颗粒支撑,孔隙胶结.胶结物多为泥质胶结,少量 铁质胶结.主要含石英(25%),长石(40%)且绢云母化 严重,岩屑(25%)以火山质岩屑为主,少量变质岩岩屑, 白云母(8%)及杂基<5%
15MG09	岩屑长石砂岩	蘑菇气地区	下三叠统老龙头组	中-细粒碎屑结构,碎屑颗粒分选一般,磨圆一般,次圆-次 棱角状,颗粒支撑,孔隙胶结,胶结物多为泥质胶结.其 中,石英(25%)以单晶石英为主,长石(30%)以斜长石 为主,岩屑(20%)以火山质岩屑为主,云母矿物10%,包 括黑云母(7%)和白云母(3%),杂基(15%)
ZL009	长石岩屑砂岩	阿鲁科尔沁地区	下三叠统陶海营子组	中-细粒碎屑结构,碎屑颗粒分选中等、磨圆较差.次圆-次 棱角状,颗粒支撑,孔隙胶结.矿物包括石英(25%),长 石(35%)多为斜长石,岩屑(35%)以火山质岩屑为主, 云母矿物和杂基占5%
248SL	岩屑砂岩	索伦镇北山地区	上二叠统林西组	中-细粒碎屑结构,碎屑颗粒分选中等,磨圆一般,次圆-次 棱角状,颗粒支撑,孔隙胶结.主要含石英(25%),长石 (15%),岩屑(50%),岩屑以火山质岩屑为主,占35%, 沉积岩屑以硅质为主10%,白云母(1%)及杂基(8%)
553GD	长石岩屑砂岩	林西官地地区	上二叠统林西组	中粒碎屑结构,颗粒分选中等,磨圆较差,以棱角状-次棱 角状.颗粒支撑,接触胶结,胶结物以泥质为主.主要含: 石英以单晶石英为主,含量为30%,长石以斜长石为主, 为20%,岩屑以火山岩岩屑为主,为40%,白云母为5%, 杂基为5%

图 3 晚二叠-早三叠世砂岩薄片显微镜下照片

矿物名称缩写:Qm-单晶石英;Qp-多晶石英;Pl-斜长石;Ls-沉积岩岩屑;Lv-火山岩岩屑;Lm-变质岩岩屑;Mu-白云母;Bt-黑云母;Lim-褐铁矿物 Fig. 3 Microphotographs of Late Permian to Early Triassic sandstones from the eastern Inner Mongolia

图 4 晚二叠世砂岩碎屑锆石 CL 图(a、c)及 LA-ICP-MS U-Pb 年龄(b、d)

(a、b)林西官地地区样品 553GD;(c、d)索伦地区样品 248SL

Fig. 4 CL images (a, c) and age probability diagrams (b, d) of zircons from Late Permian sandstones

将分析样品采用常规方法进行粉碎,并用浮选、电磁选等方 法进行分选,再在双目镜下进行人工挑选。分离出的锆石颗 粒用环氧树脂固定并抛光直至颗粒露出核部。样品在测定 之前用体积百分比为3%的HNO,清洗样品表面,以除去样 品表面的污染。锆石 LA-ICM-PS U-Pb 测年分别在西北大学 大陆动力学国家重点实验室和东北亚矿产资源评价国土资 源部重点实验室完成。两实验室的仪器设备相同,其中 ICP-MS 为 Agilient 公司最新一代带有 Shield Torch 的 Agilient 7500a。其中激光剥蚀系统为德国 MicroLas 公司生产的 GeoLas200M, 该系统由德国 Lambda Physik 公司的 ComPex102 Excimer 激光器(工作物质 ArF, 波长 193nm) 与 MicroLas 公司的光学系统组成,激光剥蚀方式采用一次性剥 蚀完成,激光剥蚀以氦气作为剥蚀物质的载气,斑束直径为 32µm,频率为10Hz,激光能量为90mJ,每个分析点的气体背 景采集时间为20s,信号采集时间为40s。具体的测试流程及 铅校正方法参见文献(Andersen, 2002; Yuan et al., 2008)。 为避免古老锆石(>1.0Ga)普遍存在铅丢失的现象,采用 ²⁰⁷ Pb/²⁰⁶ Pb 年龄来代表岩石成岩的可靠年龄,对于年龄 <1.0Ga,则选用²⁰⁶ Pb/²³⁸ U 年龄(Blank *et al.*,2003)。同位 素比值和年龄的误差(标准误差)在1σ水平,后期年龄值处 理及部分图件生成采用 Isoplot (ver3.23)程序(Ludwig, 2003)。碎屑锆石 LA-ICP-MS U-Pb 年龄分析数据见电子版 附表1。

4.2 测试结果

样品 553GD 中碎屑锆石为无色至浅褐色,多为短柱状, 长短轴比 <3:1。CL 图像中大部分锆石发育韵律环带,Th/ U 比值为 0.21~2.17,绝大多数值 >0.4,显示了岩浆成因锆 石特点(Rubatto and Hermann,2003;吴元保和郑永飞,2004) (图 4a、电子版附表 1)。测得的 90 个年龄数据中 90% 为谐 和年龄(90% <谐和度 <110%), <1.0Ga 的锆石²⁰⁶ Pb/²³⁸ U 年龄分布在 253~915Ma,其中 253~384Ma(n = 58),2 个主 要峰值分别为 270Ma 和 310Ma;425~490Ma(n = 13),峰值 为 467Ma(图 4b)。>1.0Ga 的锆石²⁰⁶ Pb/²⁰⁷ Pb 年龄分布在 1380~1909Ma。较老年龄的锆石"核-边"结构清晰(图 4a), 为捕获锆石特征。

图 5 早三叠世砂岩碎屑锆石 CL 图(a、c、e)及 LA-ICP-MS U-Pb 年龄(b、d、f) (a、b)阿鲁科尔沁地区样品 ZL009;(c、d)蘑菇气地区样品 15MG06;(e、f)蘑菇气地区样品 15MG09 Fig. 5 CL images (a, c, e) and age probability diagrams (b, d, f) of zircons from Early Triassic sandstones

样品 248SL 中碎屑锆石为短柱状,长短轴比 < 3.5:1, 多数锆石发育岩浆锆石的韵律环带,Th/U 比值为 0.03 ~ 1.22(图 4c)。87 个年龄数据中 95% 为谐和年龄,<1.0Ga 的锆石²⁰⁶ Pb/²³⁸U 年龄分布在 261 ~ 878Ma,主要的峰值年龄 约为 260 ~ 313Ma(图 4d)。>1.0Ga 的锆石 1 颗,其²⁰⁶ Pb/ ²⁰⁷ Pb 年龄为 1798 ± 12Ma。

样品 ZL009 中锆石为短柱状,长短轴比 < 3:1,多数锆 石具有典型岩浆锆石的震荡环带,少数锆石显示面状分带的 变质锆石特点(图 5a)。Th/U 比值为 0.03 ~ 2.33。70 个年 龄数据中只有 1 个不谐和年龄。 < 1.0Ga 的锆石²⁰⁶ Pb/²³⁸ U 年龄分布在 247 ~ 984Ma,其中 247 ~ 310Ma(*n* = 44)峰值年 龄为 260 ~ 280Ma(图 5b)。 > 1.0Ga 的锆石²⁰⁶ Pb/²⁰⁷ Pb 年龄 为 1086 ~ 2600Ma,同样具有捕获锆石特征。

样品 15MG06 中锆石为短柱状,长短轴比 < 3:1,具有 典型岩浆锆石的震荡环带(图 5c),Th/U 比值为 0.01 ~ 1.41。59 个谐和年龄介于 222Ma 与 1865Ma 之间。 < 1.0Ga 的锆石²⁰⁶ Pb/²³⁸U 年龄分为 2 组:222 ~ 402Ma(峰值为 247 ~ 258Ma),469 ~ 513Ma(峰值为 494Ma)。少量 > 1.0Ga 的锆 石²⁰⁶ Pb/²⁰⁷ Pb 年龄为 1370 ± 14Ma (n = 1),1865 ± 12Ma (n = 1)(图 5d)。

样品 15MG09 中锆石为粒状-短柱状,长短轴比 <2:1, 大部分锆石具有典型的岩浆锆石的震荡环带(图 5e),Th/U 比值为 0.18 ~2.04。48 个谐和年龄介于 242Ma 与 2610Ma 之间。 <1.0Ga 的锆石²⁰⁶ Pb/²³⁸U 年龄分布在 242 ~990Ma, 主峰值为 283 ~356Ma,次峰值约为 245Ma 和 420Ma(图 5f)。 >1.0Ga 的锆石²⁰⁶ Pb/²⁰⁷ Pb 年龄为 1623 ~ 2610Ma (n = 3), 代表古老物源区锆石的信息。

5 讨论

5.1 下三叠统分布及地质意义

内蒙东部二叠系分布广泛,而三叠系地层却鲜有出露 (内蒙古自治区地质矿产局,1991;朱儒峰和郑广瑞,1992;和 政军等,1998),区域上是否曾经短暂存在三叠纪沉积?对于 这一问题目前学者还没有统一的认识。近些年来随着详细 地质调查工作的开展,下三叠统陆续被报道:丁秋红等 (2005)通过内蒙古开鲁县钻井岩芯中下三叠统孢粉化石的 发现,识别了下三叠统哈达陶勒盖组;张武等(2006)在内蒙 古德发屯附近发现了早三叠世木化石,并将该地层归入下三 叠统老龙头组;杨兵等(2014)在林西县官地镇剖面顶部发现 了早三叠世孢粉化石组合;郑月娟等(2014)获得了巴林右旗 幸福之路组三段砂岩碎屑锆石最小 U-Pb 年龄约为 250Ma, 限定了该套地层的沉积下限为早三叠世。此外,我们项目组 也通过砂岩碎屑锆石年龄的测定,先后识别了龙江地区下三 叠统老龙头组(刘兵等,2014);扎鲁特旗巨日河地区的中、下 三叠统(周建平等,2015),但具体的组名未定。

本研究针对位于阿鲁科尔沁及蘑菇气地区砂岩碎屑锆 石 U-Pb 测年结果分析,表明上述两个研究区砂岩中均记录 了早三叠世的年龄信息。其中砂岩 15MG06 和 15MG09 中具 有明显的245~247Ma的峰值年龄(图5),ZL009样品中也存 在早三叠世年龄(247~250Ma, n = 5),限定了地层的沉积下 限为早三叠世。综上分析,区域内下三叠统呈面状零星地分 布在林西-巴林右旗-扎鲁特-科尔沁右翼前旗-龙江-扎兰屯一 带(图2)。该套地层与下伏的上二叠统林西组呈整合的接 触关系(和政军等,1998;刘兵等,2014;杨兵等,2014),而在 一些露头区(如科尔沁右翼前旗哈拉黑地区、丰林镇地区), 却直接与上覆的侏罗系满克头鄂博组、白音高老组均呈角度 不整合接触(申亮等,2016)。因此,结合野外工作及区域资 料,笔者认为内蒙东部地区应大面积发育下三叠统,并在此 后区域上曾经历过整体构造抬升,遭受风化剥蚀,局部地区 地层发生缺失,直至侏罗纪再次下降接受沉积,导致后沉积 的侏罗系不整合覆盖于下三叠统之上。

5.2 碎屑物物源区示踪

碎屑锆石是沉积岩中常见的副矿物,由于锆石的 U-Pb

图 6 内蒙东部中、晚二叠-早三叠世砂岩碎屑锆石 U-Pb 年龄、Th/U 及其主要物源区年龄频谱图 中、晚二叠-早三叠世砂岩碎屑锆石 U-Pb 年龄数据源自韩杰等,

2011;刘兵等,2014;李雨柯,2014;周建平等,2015;Eizenhöfer et al.,2014;郑月娟等,2014;李晓海等,2015;朱俊宾,2015;;李红 英等,2016;张海华等,2015;申亮等,2016;本次研究.额尔古纳-兴安地块年龄源自 Wu et al.,2011;Liu et al.,2016.华北克拉通 基底年龄引自 Rojas-Agramonte et al.,2011. 图 7 数据来源同 此图

Fig. 6 Zircon U-Pb age populations of Mid-late Permian-Early Triassic sedimentary successions with those of major regional provenance terranes in the region

同位素体系封闭温度较高,能够在低级变质作用和风化搬运 过程中保持稳定。因此,沉积物中碎屑锆石 U-Pb 年龄谱记 录了丰富的母岩年代学信息,为示踪物源区,探讨构造演化 提供可靠的证据(Wan et al.,2005)。总结分析本次研究及 区域内已报道的中、晚二叠-早三叠世砂岩中的碎屑锆石 U-Pb 年龄数据,共获得 2533 粒碎屑锆石年龄,主要分为3组: 230~570Ma (n = 2066,峰值年龄为 270~315Ma、430Ma 和 500Ma)、700~1100Ma (n = 154,峰值年龄 970Ma)以及 >1500Ma (n = 220,峰值年龄约为 1800Ma 和 2500Ma)。其 中,较古老的年龄峰值 1800Ma 和 2500Ma,是华北克拉通基 底年龄的典型代表(翟明国和卞爱国,2000;Rojas-Agramonte et al.,2011),表明研究区中、晚二叠-早三叠世沉积中存在来 自华北板块的物源。对内蒙东部林西组古水流方向的研究, 也证实在其沉积晚期多物源供给的特点,并有明显的南侧物 源供给(Qin et al.,2001;郑月娟等,2014)。

另外两组碎屑年龄则与发生在额尔古纳-兴安-锡林浩特 微地块上的岩浆事件时间极为吻合(图6)。测试分析结果 表明绝大多数锆石的 Th/U 值具有岩浆锆石特点,应揭示了

图 7 内蒙东部不同区域中、晚二叠-早三叠世砂岩碎屑锆石 U-Pb 年龄对比图

Fig. 7 Comparison of the zircon U-Pb age populations of Mid-late Permian-Early Triassic sandstones derived from different areas in eastern Inner Mongolia

区域内的岩浆事件。

(1)230~570Ma 这组年龄中早、中三叠世年龄(230~ 252Ma)组分约占该组总量的5%。研究表明,区域内存在大 量印支晚期(230~250Ma)高钾钙碱性 A 型花岗岩,如苏尼 特左旗哈拉图岩体(Chen et al., 2000)、双井子岩体(李锦轶 等,2007)、阿尔山附近的头道河岩体(刘希雯等,2015)、扎兰 屯-蘑茹气-索伦一带的雅尔根楚岩体(徐久磊等,2013),被 认为是古亚洲洋闭合后伸展环境的产物。260~360Ma的年 龄组分(峰值为 270~315Ma)约占该组年龄 58%,与兴安地 块内部广泛发育的大石寨组火山岩年龄(Zhang and Tang, 1989)、苏尼特左旗-锡林浩特-西乌旗一线岩浆弧年龄(洪大 卫等,1994; Chen et al., 2000, 2009; Shi et al., 2003, 2004; 石 玉若等,2007;鲍庆中等,2007;刘建峰等,2009)以及扎兰屯-嫩江-黑河缝合带以西俯冲-同碰撞期(330~360Ma)的岩浆 弧(崔芳华等,2013; Feng et al., 2015; Liu et al., 2016) 和造山 后期(290~310Ma)的A型花岗(赵芝等,2010;Wu et al., 2011)相互吻合。370~570Ma的年龄组分(峰值约为430~ 500Ma)约占该组年龄的36%,与锡林郭勒杂岩中片麻岩的 年龄(Shi et al., 2003)、苏尼特左旗-锡林浩特-西乌旗岩浆弧 中的早古生代岩浆事件(刘敦一等,2003;张炯飞等,2004;石 玉若等,2004; Miao et al., 2008)、多宝山-嫩江-扎兰屯-大石

寨一线的早古生代岩浆弧(葛文春等, 2007;Ge et al., 2015; Liu et al., 2016)、额尔古纳与兴安地块碰撞拼贴相关的同碰 撞岩浆事件(武广等, 2005;葛文春等, 2005;佘宏全等, 2012),以及东北地区大量分布的泛非期基底年龄(Zhou and Wilde, 2013)基本一致。

(2)碎屑锆石年龄中700~1100Ma的年龄组分则与锡林 郭勒杂岩的碎屑锆石年龄(Shi et al., 2003; Chen et al., 2009)、额尔古纳地块中额尔古纳河组原岩年龄及大量新元 古代的花岗岩年龄(Wu et al., 2011;佘宏全等,2012;孙立新 等,2013; Tang et al., 2013;张丽等,2013)、大兴安岭北部兴 华渡口群中花岗质岩石(Wu et al., 2011)和变质岩碎屑锆 石(Miao et al., 2007)、贺根山蛇绿岩捕获锆石年龄(Miao et al., 2008)、双井微地块北缘混合岩年龄(李益龙等,2008)、 松辽盆地北部早白垩世火山岩中捕获锆石年龄(章凤奇等, 2008)、松辽盆地南部基底中捕获锆石年龄(Wang et al., 2006; Pei et al., 2007)可以对比。

针对砂岩样品的分布情况(图2)及产出的层位,笔者将 区域内已有年龄数据分为3个地理区域(克旗-林西地区、阿 鲁科尔沁-扎鲁特地区和索伦-蘑菇气地区),通过不同沉积 期碎屑物的组成情况,进一步探讨物源区特点及相应的碎屑 供给程度(图7)。

中二叠统哲斯组沉积期,靠近西拉木伦河北侧的克旗-林西地区与贺根山-黑河缝合带南侧的索伦-蘑菇气地区在碎 屑物组成上差异不大,其中代表华北板块的物源贡献极少, 证实了中二叠世时古亚洲洋仍然开放,来自其南侧华北板块 的碎屑物很难到达研究区范围,仅大量的来自额尔古纳-兴 安-锡林浩特微地块内部的物源供给,这与砂岩岩相学推测 的成分成熟度低,近源快速沉积的结论相符。至上二叠统林 西组沉积时,克旗-林西地区开始出现大量古老物源的加入, 证实了与华北板块之间距离的缩短乃至完全拼合。而北东 侧的阿鲁科尔沁-扎鲁特和索伦-蘑菇气地区几乎没有古老物 源的供给(图7),说明此时在上述两个区域无华北板块物源 的贡献,古亚洲洋未闭合。到了早三叠世,阿鲁科尔沁-扎鲁 特地区和索伦-蘑菇气地区才开始出现华北板块物源,暗示 了此刻古亚洲洋完全闭合,这与前人通过古地磁(李朋武等, 2006;秦华峰等,2013)和闭合相关的岩浆岩(孙德有等, 2004;李锦轶等,2007)证据得到的二叠纪末-早三叠世闭合 时间一致。综上分析,碎屑锆石年龄组分表明,"南蒙古地 块"与华北板块拼贴时间呈现出西侧早,东侧稍晚,符合自西 向东"剪刀"式闭合特点。这一结论得到了东北地区二叠纪 沉积-古地理证据的支持(崔军平等,2013)。此外,前人报导 的与俯冲-碰撞相关的岩浆事件也证实了早二叠世时西拉木 伦缝合带自西部的满都拉地区首先发生陆-陆拼合,直至早 三叠世(甚至中三叠世)东部的延吉-珲春一线才完成最终闭 合(如 Chen et al., 2000; Zhang et al., 2004; 孙德有等, 2004; 张超,2014)。

索伦-蘑菇气地区中、晚二叠-早三叠世的碎屑组分差异 性并不大(图7),说明额尔古纳-兴安地块与松辽-锡林浩特 地块早已完成拼合,而沿贺根山-黑河缝合带已没有明显的 物源差别。此外在索伦-蘑菇气地区沉积物中大量的泛非期 (约500Ma)年龄组合证实了兴安地块可能具有寒武纪结晶 基底,其碎屑物可能主要来自于沉积区北侧多宝山地区的花 岗质岩石(佘宏全等,2012)及少量扎兰屯附近的兴华渡口群 变质年龄(周建波等,2014)。

综上分析,结合碎屑锆石 U-Pb 年龄信息、古水流特征 (Qin et al.,2001;郑月娟等,2014)以及沉积区与物源区分布 情况,笔者认为克旗-林西地区与阿鲁科尔沁-扎鲁特地区具 有相似的物源供给,即来自其西侧的大石寨组火山岩、苏尼 特左旗-锡林浩特-西乌旗早、晚古生代岩浆弧和少量华北板 块的物源。而索伦-蘑菇气地区的物源供给主要来自其北侧 的兴安地块内的岩浆岩源区和极少量的华北板块物源。

5.3 内蒙东部地区晚古生代构造格局

最新的古地理资料(Liu et al.,2016)表明内蒙东部早石 炭世时沿贺根山-黑河缝合带呈现北海南陆的构造格局;晚 石炭世时整个内蒙东部地区隆升为古陆,标志着额尔古纳-兴安地块与松辽-锡林浩特地块碰撞拼贴完成,海相沉积仅 沿"南蒙古地块"南缘分布;到了早、中二叠世海侵范围向北 扩大,呈现南海北陆的构造格局,其南侧大致以西拉木伦缝 合带为界,沉积了大面积的海相哲斯组地层;直至晚二叠世 沉积古地理格局再次发生重大变化,内蒙东部地区整体由海 相转变为陆相沉积,标志着古亚洲洋的关闭。

前人通过区域内二叠纪碎屑物物源示踪的手段,来探讨 其物源区的构造属性,从而试图揭示"南蒙古地块"与华北板 块碰撞的最终位置和时限。韩杰等(2011)获得了林西地区 上二叠统林西组砂岩碎屑锆石的两个峰值 U-Pb 年龄约为 279Ma和441Ma,解释为"佳蒙地块"上的年龄信息,但未指 明具体的物源区。董策和周建波(2012)对内蒙古东北索伦 和西乌旗地区中二叠统哲斯组砂岩进行地球化学研究,表明 其物源主要来自于上地壳长英质源区,可能为花岗岩,其物 源区的构造背景为大陆岛弧环境。郑月娟等(2013,2014)对 西乌珠穆沁旗地区下二叠统原寿山沟组和阿鲁科尔沁地区 林西组砂岩进行碎屑锆石 U-Pb 年龄测定,认为其碎屑物来 自苏尼特左旗-锡林浩特-西乌旗一带岩浆弧,并认为最年轻 的峰值年龄(253Ma)与华北板块和其北侧的陆块碰撞、拼贴 相关的岩浆事件吻合,最老的锆石(2671Ma)应来自华北板 块,由此推测西伯利亚和华北两大板块在晚二叠世已经闭 合,古亚洲洋消失。Eizenhöfer et al. (2014)通过对比西拉木 伦缝合带两侧的中、晚二叠世的黄岗梁组与林西组砂岩碎屑 锆石 U-Pb 年龄对比,认为古亚洲洋于晚二叠世闭合。本次 研究通过对比不同区域、不同时代砂岩的碎屑物组分变化, 推测古亚洲洋的消减-闭合,即华北板块与"南蒙古地块"的 碰撞拼合为自西向东的"剪刀"式模式,时间为晚二叠-早三 叠世。此外,索伦-蘑菇气地区中、晚二叠-早三叠世相对稳定 的物源供给,也证实了额尔古纳-兴安地块与松辽-锡林浩特 地块至少在中二叠世沉积以前就已经闭合,应为前人所认为 的早石炭世末(赵芝等,2010;崔芳华等,2013;Feng et al., 2015; Liu et al. ,2016)

6 结论

(1)碎屑锆石 U-Pb 定年结果表明,内蒙东部地区零星出 露下三叠统,结合区域地层对比及上下地层的接触关系,推 测区域内下三叠统应大面积分布,但由于后期的整体抬升而 导致风化剥蚀,才出现现今大面积缺失的格局。

(2)克旗-林西地区与阿鲁科尔沁-扎鲁特地区中、晚二 叠-早三叠世的碎屑物来源相似,主要为其北西侧的大石寨 组火山岩、苏尼特左旗-锡林浩特-西乌旗早、晚古生代岩浆弧 和少量华北板块的物源。而索伦-蘑菇气地区的物源供给主 要来自其北侧兴安地块内的岩浆岩源区和极少量的华北板 块物源。

(3)额尔古纳-兴安地块与松辽-锡林浩特地块于早石炭 末期拼贴完成后,为索伦-蘑菇气地区中、晚二叠-早三叠世沉 积提供稳定的碎屑物来源。

(4)古亚洲洋沿西拉木伦河缝合带在内蒙东部境内自西

向东呈"剪刀"式闭合,时间持续至早三叠世。

致谢 两位审稿人提出了宝贵修改意见和建议,在此表示 衷心的感谢。

References

- Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report ²⁰⁴ Pb. Chemical Geology, 192(1-2): 59-79
- Badarch G, Cunningham WD and Windley BF. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87 -110
- Bao QZ, Zhang CJ, Wu ZL, Wang H, Li W, Su YZ, Sang JH and Liu YS. 2005. The Carboniferous-Permian lithostratigraphic division of West Ujimqin, Inner Mongolia. Journal of Stratigraphy, 29 (Suppl.): 512-519 (in Chinese with English abstract)
- Bao QZ, Zhang CJ, Wu ZL, Wang H, Li W, Sang JH and Liu YS. 2007. Zircon SHRIMP U-Pb dating of granitoids in a Late Paleozoic rift area, southeastern Inner Mongolia, and its implications. Geology in China, 34(5): 790 – 798 (in Chinese with English abstract)
- Bao ZW, Chen SH and Zhang ZT. 1994. Study on REE and Sm-Nd isotopes of Hegenshan ophiolite, Inner Mongolia. Geochimica, 23 (4): 339-349 (in Chinese with English abstract)
- Blank LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ and Foudoulis C. 2003. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards. Chemical Geology, 200(1-2): 171-188
- Bureau of Geology and Mineral Resources of Inner Mongolia. 1991. Regional Geology of Inner Mongolia Autonomous. Beijing: Geological Publishing House, 189 – 219 (in Chinese)
- Chen B, Jahn BM, Wilde S and Xu B. 2000. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182
- Chen B, Jahn BM and Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collisionrelated magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245 – 257
- Cui FH, Zheng CQ, Xu XC, Yao WG, Shi L, Li J and Xu JL. 2013. Late carboniferous magmatic activities in the Quanshenglinchang area, Great Xing ' an range: Constrains on the timing of amalgamation between Xing an and Songnen massifs. Acta Geologica Sinica, 87(9): 1247 – 1263 (in Chinese with English abstract)
- Cui JP, Ren ZL, Shi Z, Li JX and Wang WQ. 2013. Analysis on Permian depositional characteristics and proto-type basin of Northeast China. Geoscience, 27 (2): 260 - 268 (in Chinese with English abstract)
- Ding QH, Zhang LJ and Xu K. 2005. The Lower Triassic system and its palynological assemblages in southwestern Songliao Basin, NE China. Acta Micropalaeontologica Sinica, 22 (1): 107 – 114 (in Chinese with English abstract)
- Dong C and Zhou JB. 2012. Geochemical characteristics analysis and provenance tracing of sandstone in Middle Permian Zhesi Formation, Northeast Inner Mongolia. Acta Petrologica et Mineralogica, 31(5): 663-673 (in Chinese with English abstract)
- Eizenhöfer PR, Zhao GC, Zhang J and Sun M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 33(4): 441-463
- Feng ZQ, Liu YJ, Wen QB, Han GQ, Li WM and Zhang L. 2014.

Petrogenesis of \sim 330Ma meta-gabbro-granite from the Tayuan area in the northern segment of the Da Xing' an Mts and its tectonic implication. Acta Petrologica Sinica, 30 (7): 1982 – 1994 (in Chinese with English abstract)

- Feng ZQ, Jia J, Liu YJ, Wen QB, Li WM, Liu BQ, Xing DQ and Zhang L. 2015. Geochronology and geochemistry of the Carboniferous magmatism in the northern Great Xing' an Range, NE China: Constraints on the timing of amalgamation of Xing' an and Songnen blocks. Journal of Asian Earth Sciences, 113: 411-426
- Ge WC, Wu FY, Zhou CY and Abdel Rahman AA. 2005. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Erguna block in the northern part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097 - 2105
- Ge WC, Wu FY, Zhou CY and Zhang JH. 2007. Porphyry Cu-Mo deposits in the eastern Xing 'an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52(24): 3416-3427
- Ge WC, Chen JS, Yang H, Zhao GC, Zhang YL and Tian DX. 2015. Tectonic implications of new zircon U-Pb ages for the Xinghuadukou Complex, Erguna Massif, northern Great Xing' an Range, NE China. Journal of Asian Earth Sciences, 106: 169-185
- Han GQ, Liu YJ, Neubauer F, Jin W, Genser J, Ren SM, Li W, Wen QB, Zhao YL and Liang CY. 2012. LA-ICP-MS U-Pb dating and Hf isotopic compositions of detrital zircons from the Permian sandstones in Da Xing'an Mountains, NE China: New evidence for the eastern extension of the Erenhot-Hegenshan suture zone. Journal of Asian Earth Sciences, 49: 249 – 271
- Han J, Zhou JB, Zhang XZ and Qiu HJ. 2011. Detrital zircon U-Pb dating from sandstone of the Upper Permian Linxi Formation, Linxi area, Inner Mongolia, China and its tectonic implications. Geological Bulletin of China, 30(2-3): 258 269 (in Chinese with English abstract)
- He ZJ, Li JY, Niu BG and Ren JS. 1998. A Late Jurassic intense thrusting-uplifting event in the Yanshan-Yinshan area, northern China, and its sedimentary response. Geological Review, 44(4): 407-418 (in Chinese with English abstract)
- Hong DW, Huang HZ, Xiao YJ, Xu HM and Jin MY. 1994. The Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geologica Sinica, 68(3): 219 – 230 (in Chinese with English abstract)
- Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH, Miao LC, Zhang W, Zhang Q, Zhang LQ and Ren JS. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos, 101(3-4): 233-259
- Li HY, Zhang D, Zhou ZG, Liu CF, Li PJ, Chen LZ and Gu CN. 2016. LA-ICP-MS U-Pb dating of detrital zircons from Linxi formation and its geological implications in Hexigten Qi, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 46(1): 146 – 162 (in Chinese with English abstract)
- Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224
- Li JY, Gao LM, Sun GH, Li YP and Wang YB. 2007. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23 (3): 565 - 582 (in Chinese with English abstract)
- Li PW, Gao R, Guan Y and Li QS. 2006. Palaeomagnetic constraints on the final closure time of Solonker-Linxi suture. Journal of Jilin University (Earth Science Edition), 36(5): 744 – 758 (in Chinese with English abstract)
- Li RS. 1991. Xinlin Ophiolite. Heilongjiang Geology, 2(1): 19 32

(in Chinese with English abstract)

- Li WG, Li QF and Jiang WD. 1996. Rock-stratigraphic Unit in Inner Mongolia. Wuhan: Press of China University of Geosciences, 1 – 344 (in Chinese)
- Li XH, Zong WM, Su F and Li WB. 2015. Zircon LA-ICP-MS U-Pb dating and its implication of Upper Permian Linxi Formation in Jarud Qi, Inner Mongolia. Geology and Resources, 24(5): 461 – 472 (in Chinese with English abstract)
- Li YK. 2014. Detrital zircon U-Pb dating from the Permian Zhesi Formation, Suolun area, eastern Inner Mongolia, China and its tectonic implications. Science Technology and Engineering, 12 (25): 6269-6277 (in Chinese with English abstract)
- Li YL, Zhou HW, Ge MC, Liao QA, Zhang XH and Zhong ZQ. 2008. LA-ICP-MS Zircon U-Pb dating of migmatite from North Shuangjing schist in Linxi, Inner Mongolia. Journal of Mineralogy and Petrology, 28(2): 10-16 (in Chinese with English abstract)
- Li YL, Zhou HW, Xiao WJ, Zhong ZQ, Yin SP and Li FL 2012. Superposition of Paleo-Asian and west-Pacific tectonic domains in the eastern section of the Solonker suture zone: Insights from petrology, geochemistry and geochronology of deformed diorite in Xar moron fault zone, Inner Mongolia. Earth Science, 37(3): 433 – 450 (in Chinese with English abstract)
- Liu B, Wen QB, Liu YJ, Li WM, Feng ZQ, Zhou JP and Shen L. 2014. Contact relationship between the Upper Permian and Lower Triassic strata in the central Great Xing' an ranges and its tectonic implication: Constraints from the detrital zircon U-Pb ages. Geotectonica et Metallogenia, 38(2): 408 – 420 (in Chinese with English abstract)
- Liu DY, Jian P, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ and Tao H. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: Evidence for the Early Paleozoic subduction. Acta Geologica Sinica, 77 (3): 317 – 330 (in Chinese with English abstract)
- Liu JF, Chi XG, Zhang XZ, Ma ZH, Zhao Z, Wang TF, Hu ZC and Zhao XY. 2009. Geochemical characteristic of carboniferous quartzdiorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance. Acta Geologica Sinica, 83(3): 365 – 376 (in Chinese with English abstract)
- Liu XW, Yang H, Dong Y, Wang QH, Ge WC, Zhang YL and Tian DX. 2015. Zircon U-Pb ages and geochemical characteristics of the Triassic granites from the Mingshui area in the Da Hinggan Mountains and their tectonic implications. Acta Petrologica et Mineralogica, 34 (2): 143 – 158 (in Chinese with English abstract)
- Liu YJ, Zhang XZ, Jin W, Chi XG, Wang CW, Ma ZH, Han GQ, Wen QB, Zhao YL, Wang WD and Zhan XF. 2010. Late Paleozoic tectonic evolution in Northeast China. Geology in China, 37(4): 943-951 (in Chinese with English abstract)
- Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2016. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, doi: 10.1016/j.gr. 2016. 03. 013
- Ludwig KR. 2003. User's manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4. Berkeley: Berkeley Geochronology Center, 1 -71
- Miao LC, Zhang FQ, Fan WM and Liu DY. 2007. Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China: Constraints from geochronology of ophiolites and associated formations. In: Zhai MG, Windley BF, Kusky TM and Meng QR (eds.). Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Special Publications, London, Geological Society, 206: 223 - 237
- Miao LC, Fan WM, Liu DY, Zhang FQ, Shi YR and Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic

complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370

- Nozaka T and Liu Y. 2002. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China. Earth and Planetary Science Letters, 202(1): 89 104
- Pei FP, Xu WL, Yang DB, Zhao QG, Liu XM and Hu ZC. 2007. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao basin. Chinese Science Bulletin, 52(7): 942-948
- Qin GJ, Kawachi Y, Zhao LQ, Wang YZ and Ou Q. 2001. The Upper Permian sedimentary facies and its role in the Dajing Cu-Sn deposit, Linxi County, Inner Mongolia, China. Resource Geology, 51(4): 293 - 305
- Qin HF, Li YF, Huang S, Cai SH and Ren SM. 2013. Palaeomagnetic investigation of Permain sandstone in Taohaiyingzi area of Inner Mongolia and its tectonic significance. Geological Bulletin of China, 32(2-3): 388-398 (in Chinese with English abstract)
- Ren JS, Chen TY, Niu BG, Liu ZG and Lu FR. 1990. Tectonic Evolution of the Continental Lithosphere and Metallogeny in Eastern China and Adjacent Areas. Beijing: Science Press, 1 – 205 (in Chinese)
- Rojas-Agramonte Y, Kröner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D and Sun M. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3): 751-763
- Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67(12): 2173 – 2187
- Shao JA. 1991. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Beijing: Peking University Press, 1 – 136 (in Chinese)
- Şengör AMC, Natal' in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299 - 307
- She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571 – 594 (in Chinese with English abstract)
- Shen L, Liu YJ, Wen QB, Li WM and Feng ZQ. 2016. Zircon U-Pb geochronology and its geological significance in Halahei area, Horqin Right Front Banner of Inner Mongolia. Chinese Journal of Geology, 51(1): 220-238 (in Chinese with English abstract)
- Shi GH, Liu DY, Zhang FQ, Jian P, Miao LC, Shi YR and Tao H. 2003. SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China. Chinese Science Bulletin, 48(24): 2742 – 2748
- Shi GH, Miao LC, Zhang FQ, Jian P, Fan WM and Liu DY. 2004. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China. Chinese Science Bulletin, 49 (7): 723-729
- Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC, Shi GH, Zhang LQ and Tao H. 2004. SHRIMP dating of diorites and granites in southern Suzuoqi, Inner Mongolia. Acta Geologica Sinica, 78 (6): 789 – 799 (in Chinese with English abstract)
- Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC and Zhang LQ. 2007. SHRIMP U-Pb zircon dating of Triassic A-type granites in Sonid Zuoqi, central Inner Mongolia, China and its tectonic implications. Geological Bulletin of China, 26(2): 183 – 189 (in Chinese with English abstract)
- Su YZ. 1981. On the Geological and geographical distribution of Tuvaella with reference to its habitat. Acta Palaeontologica Sinica, 20(6):

567-576 (in Chinese with English abstract)

- Sun DY, Wu FY, Zhang YB and Gao S. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone Evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174 – 181 (in Chinese with English abstract)
- Sun LX, Ren BF, Zhao FQ, Ji SP and Geng JZ. 2013. Late Paleoproterozoic magmatic records in the Eerguna massif: Evidences from the zircon U-Pb dating of granitic gneisses. Geological Bulletin of China, 32(2-3): 341-352 (in Chinese with English abstract)
- Tang J, Xu WL, Wang F, Wang W, Xu MJ and Zhang YH. 2013. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Research, 224: 597-611
- Tang KD. 1989. On tectonic development of the fold belts in the north margin of Sino-Korean platform. Geoscience, 3(2): 195 – 204 (in Chinese with English abstract)
- Tang KD. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean craton. Tectonics, 9(2): 249 – 260
- Van der Voo R, Spakman W and Bijwaard H. 1999. Mesozoic subducted slabs under Siberia. Nature, 397(6716): 246 – 249
- Wan YS, Li RW, Wilde SA, Liu DY, Chen ZY, Yan L, Song TR and Yin XY. 2005. UHP metamorphism and exhumation of the Dabie Orogen, China: Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochimica et Cosmochimica Acta, 69(17): 4333 – 4348
- Wang CW, Jin W, Zhang XZ, Ma ZH, Chi XG, Liu YJ and Li N. 2008. New understanding of the Late Paleozoic tectonics in northeastern China and adjacent areas. Journal of Stratigraphy, 32 (2): 119 – 136 (in Chinese with English abstract)
- Wang CW, Sun YW, Li N, Liu H and Zhao GW. 2009. On the distribution of Late Palaeozoic strata in northeast China. Journal of Stratigraphy, 33(1): 56-61 (in Chinese with English abstract)
- Wang HZ. 1982. The main stages of crustal development of China. Earth Science, (3): 155 – 178 (in Chinese with English abstract)
- Wang Y, Zhang FQ, Zhang DW, Miao LC, Li TS, Xie HQ, Meng QR and Liu DY. 2006. Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao Basin and its geological significance. Chinese Science Bulletin, 51(15): 1877 – 1883
- Wang YJ and Fan ZY. 1997. Discovery of Permian radiolarians in ophiolite belt on northern side of Xar Moron River, Nei Monggol and its geological significance. Acta Palaeontologica Sinica, 36(1): 58 -69 (in Chinese with English abstract)
- Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30
- Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB and Li GY. 2005. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chinese Science Bulletin, 50(23):2733 – 2743
- Wu YB and Zheng YF. 2004. Genesis of zircon and its constrains on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554 - 1569
- Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6), doi: 10.1029/2002TC001484
- Xiao WJ, Shu LS, Gao J, Xiong XL, Wang JB, Guo ZJ, Li JY and Sun M. 2008. Continental dynamics of the central Asian Orogenic belt and its Metallogeny. Xinjiang Geology, 26(1): 4 – 8 (in Chinese with English abstract)
- Xu B and Chen B. 1997. Framework and evolution of the Middle Paleozoic oroginic belt between Siberian and North China plates in

northern Inner Mongolia. Science in China (Series D), 40(5): 463 – 469

- Xu B, Zhao P, Wang YY, Liao W, Luo ZW, Bao QZ and Zhou YH. 2015. The pre-Devonian tectonic framework of Xing' an-Mongolia orogenic belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183 – 196
- Xu JL, Zheng CQ, Shi L, Li J, Cui FH, Gao Y, Zhang XX and Gao F. 2013. Geochronology and geochemistry of the Yaergenchu I-type granites in northern Da Hinggan range and its geodynamic implications. Acta Geologica Sinica, 87 (9): 1311 – 1323 (in Chinese with English abstract)
- Xu YJ, Du YS and Yang JH. 2007. Prospects of sediment provenance analysis. Geological Science and Technology Information, 26(3): 26-32 (in Chinese with English abstract)
- Yang B, Zhang XH, Ge MC, Zhao SM, Wei Y, Huang X, Luan TF, Wei XX and Yang ZY. 2014. Late Permian-Early Triassic palynological assemblages in Linxi, Inner Mongolia and discovery of Triassic strata. Earth Science, 39(7): 784 - 794 (in Chinese with English abstract)
- Yang YJ, Zhang LD, Zhang LJ, Zhou GM and Pang XJ. 2012. Division and correlation of the Triassic strata in Daxinganling region. Geology and Resources, 21(1): 67 – 73 (in Chinese with English abstract)
- Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laserablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118
- Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China craton at the end of the Neoarchean and its break up during Late Proterozoic and Mesoproterozoic. Science in China (D), 43 (Suppl.); 219 – 232
- Zhang C. 2014. The Mesozoic tectonic evolution of Yanbian area in the eastern segment of northern margin of the north China block. Ph. D. Dissertation. Changchun: Jilin University, 1 – 135 (in Chinese with English summary)
- Zhang FQ, Chen HL, Dong CW, Pang YM, Shu P, Wang YL and Yang SF. 2008. Shrimp zircon U-Pb Geochronology of volcanic rocks and discussion on the geological time of the Yingcheng Formation of the northern Songliao Basin. Journal of Stratigraphy, 32(1): 15 – 20 (in Chinese with English abstract)
- Zhang HH, Zheng YJ, Chen SW, Zhang J, Su F, Gong FH, Huang X and Zhen Z. 2015. LA-ICP-MS U-Pb geochronology of the Permian detrital zircons in Baarin Left Banner of Inner Mongolia and ITS tectonic significance. Acta Geologica Sinica, 89(10): 1703 – 1717 (in Chinese with English abstract)
- Zhang JF, Pang QB, Zhu Q, Jin CZ and Liu GJ. 2004. Zircon U-Pb dating of the Bayan Bold granite-porphyry in Inner Mongolia: The age of the host rock of the Bayan Bold gold deposit. Geological Bulletin of China, 23(2): 189 – 192 (in Chinese with English abstract)
- Zhang L, Liu YJ, Li WM, Han GQ, Zhang JD, Guo QY and Li CH. 2013. Discussion on the basement properties and east boundary of the Ergun massif. Chinese Journal of Geology, 48(1): 227 – 244 (in Chinese with English abstract)
- Zhang W, Li N, Yang XJ, Wang YD, Fu XP, Li Y and Zheng SL. 2006. Early Triassic Scalaroxylon in Nei Mongol and its evolutionary significance. Acta Palaeontologica Sinica, 45(3): 332 – 344 (in Chinese with English abstract)
- Zhang XZ, Yang BJ, Wu FY and Liu GX. 2006. The Lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) region, northeastern China. Geology in China, 33 (4): 816-823 (in Chinese with English abstract)
- Zhang YB, Wu FY, Wilde SA, Zhai MG, Lu XP and Sun DY. 2004. Zircon U-Pb ages and tectonic implications of ''Early Paleozoic''

granitoids at Yanbian, Jilin Province, Northeast China. The Island Arc, 13(4): 484-505

- Zhang YP and Tang KD. 1989. Pre-Jurassic tectonic evolution of intercontinental region and the suture zone between the North China and Siberian platforms. Journal of Southeast Asian Earth Sciences, 3 (1-4): 47-55
- Zhao HG and Liu CY. 2003. Approaches and prospects of provenance analysis. Acta Sedimentologica Sinica, 21 (3): 409 - 415 (in Chinese with English abstract)
- Zhao Y, Yang ZY and Ma XH. 1994. Geotectonic transition from Paleoasian system and Paleotethyan system to Paleopacific active continental margin in Eastern Asia. Scientia Geologica Sinica, 29 (2): 105 – 119 (in Chinese with English abstract)
- Zhao YL. 2010. Late Paleozoic tectonic evolution of the central and southern Great Xing' an Ranges: Constrains from provenance characteristics of Permian sandstones. Ph. D. Dissertation. Changchun: Jilin University, 1 – 133 (in Chinese with English summary)
- Zhao YL, Liu YJ, Han GQ, Wu LN, Li WM, Wen QB and Liang CY. 2012. Geochemical characteristics of major elements in the Permian sandstones from the central and southern Great Xing'an Ranges and discriminations on their tectonic environment of the provenance. Journal of Jilin University (Earth Science Edition), 42 (Suppl. 2): 285 – 297 (in Chinese with English abstract)
- Zhao Z, Chi XG, Pan SY, Liu JF, Sun W and Hu ZC. 2010. Zircon U-Pb LA-ICP-MS dating of Carboniferous volcanics and its geological significance in the northwestern Lesser Xing ´an Range. Acta Petrologica Sinica, 26(8): 2452 – 2464 (in Chinese with English abstract)
- Zheng YJ, Gong FH, Chen SW, Huang X, Zhang LJ and Zhang J. 2013. U-Pb age of detrital zircons from Early Permian "Shoushangou Formation" in Xi Ujimqin Banner, Inner Mogolia. Geological Bulletin of China, 32(8): 1260 – 1268 (in Chinese with English abstract)
- Zheng YJ, Zhang HH, Chen SW, Zhang J, Huang X, Gong FH, Su F and Zhen Z. 2014. LA-ICP-MS U-Pb age of detrital zircons from Late Permian Linxi Formation in Ar Horqin Banner, Inner Mongolia. Geological Bulletin of China, 33(9): 1293 – 1307 (in Chinese with English abstract)
- Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365 – 1377
- Zhou JB, Wang B, Zeng WS and Cao JL. 2014. Detrital zircon U-Pb dating of the Zhalantun metamorphic complex and its tectonic implications, Great Xing' an, NE China. Acta Petrologica Sinica, 30(7): 1879 – 1888 (in Chinese with English abstract)
- Zhou JB, Wang B, Wilde SA, Zhao GC, Cao JL, Zheng CQ and Zeng WS. 2015. Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists in the Great Xing' an Range, Northeast China, and tectonic implications. Journal of Asian Earth Sciences, 97: 197 -210
- Zhou JP, Liu YJ, Wen QB, Li WM, Zhang L and Ma GX. 2015. Detrital zircons from Early-Middle Triassic sandstones in Jurihe area of northeastern Inner Mongolia and its tectonic implications. Global Geology, 34(4): 914 – 926 (in Chinese with English abstract)
- Zhu JB. 2015. The Upper Carboniferous-Lower Triassic sedimentary environment and tectonic setting of Southeast Inner Mongolia. Ph. D. Dissertation. Beijing: China University of Geosciences, 1 – 133 (in Chinese with English summary)
- Zhu RF and Zheng GR. 1992. The establishment of the Lower Triassic Xingfuzhilu Formation in the southern sector of the Greater Khingan Mountains and its geological implications. Regional Geology of China, (3): 219 – 225 (in Chinese with English abstract)

附中文参考文献

- 鲍庆中,张长捷,吴之理,王宏,李伟,苏养正,桑家和,刘永生. 2005. 内蒙古西乌珠穆沁旗地区石炭二叠纪岩石地层.地层学 杂志,29(增):512-519
- 鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生. 2007.内 蒙古东南部晚古生代裂谷区花岗质岩石锆石 SHRIMP U-Pb 定 年及其地质意义.中国地质,34(5):790-798
- 包志伟,陈森煌,张桢堂. 1994. 内蒙古贺根山地区蛇绿岩稀土元 素和 Sm-Nd 同位素研究. 地球化学,23(4):339-349
- 崔芳华,郑常青,徐学纯,姚文贵,施璐,李娟,徐久磊. 2013. 大 兴安岭全胜林场地区晚石炭世岩浆活动研究:对兴安地块与松 嫩地块拼合时间的限定.地质学报,87(9):1247-1263
- 崔军平,任战利,史政,李金翔,王文青.2013.东北地区二叠纪沉 积特征及原型盆地分析.现代地质,27(2):260-268
- 丁秋红,张立君,许坤.2005. 松辽盆地西南部下三叠统及其孢粉 组合. 微体古生物学报,22(1):107-114
- 董策,周建波.2012.内蒙古东北部中二叠统哲斯组砂岩地球化学 特征分析及物源区示踪.岩石矿物学杂志,31(5):663-673
- 冯志强,刘永江,温泉波,韩国卿,李伟民,张丽. 2014. 大兴安岭 北段塔源地区~330Ma变辉长岩-花岗岩的岩石成因及构造意 义.岩石学报,30(7):1982-1994
- 葛文春,吴福元,周长勇,Abdel Rahman AA. 2005. 大兴安岭北部塔 河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通 报,50(12):1239-1247
- 葛文春,吴福元,周长勇,张吉衡.2007.兴蒙造山带东段斑岩型 Cu,Mo矿床成矿时代及其地球动力学意义.科学通报,52 (20):2407-2417
- 韩杰,周建波,张兴洲,邱海峻.2011.内蒙古林西地区上二叠统林 西组砂岩碎屑锆石的年龄及其大地构造意义.地质通报,30(2 -3):258-269
- 和政军,李锦轶,牛宝贵,任纪舜.1998. 燕山-阴山地区晚侏罗世 强烈推覆-隆升事件及沉积响应.地质论评,44(4):407-418
- 洪大卫,黄怀曾,肖宜君,徐海明,靳满元.1994.内蒙古中部二叠 纪碱性花岗岩及其地球动力学意义.地质学报,68(3):219 -230
- 李红英,张达,周志广,柳长峰,李鹏举,陈利贞,谷丛楠. 2016. 内蒙古克什克腾旗林西组碎屑锆石 LA-ICP-MS 年代学及其地质 意义.吉林大学学报(地球科学版),46(1):146-162
- 李锦轶,高立明,孙桂华,李亚萍,王彦斌. 2007. 内蒙古东部双井 子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古 板块碰撞时限的约束. 岩石学报,23(3):565-582
- 李朋武,高锐,管烨,李秋生.2006.内蒙古中部索伦-林西缝合带 封闭时代的古地磁分析.吉林大学学报(地球科学版),36(5): 744-758
- 李瑞山. 1991. 新林蛇绿岩. 黑龙江地质, 2(1): 19-32
- 李文国,李庆富,姜万德.1996.内蒙古自治区岩石地层.武汉:中 国地质大学出版社,1-344
- 李晓海, 宗文明, 苏飞, 李文博. 2015. 内蒙古扎鲁特旗上二叠统林 西组碎屑锆石 LA-ICP-MS U-Pb 测年及意义. 地质与资源, 24 (5):461-472

- 李雨柯.2014. 内蒙古东部索伦二叠纪哲斯组碎屑锆石 U-Pb 年龄及 其大地构造意义.科学技术与工程,12(25):6269-6277
- 李益龙,周汉文,葛梦春,廖群安,张雄华,钟增球. 2008. 内蒙古 林西县双井片岩北缘混合岩 LA-ICPMS 锆石 U-Pb 年龄. 矿物岩 石,28(2):10-16
- 李益龙,周汉文,肖文交,钟增球,尹淑苹,李福林.2012.古亚洲 构造域和西太平洋构造域在索伦缝合带东段的叠加:来自内蒙 吉林西县西拉木伦断裂带内变形闪长岩的岩石学、地球化学和 年代学证据.地球科学,37(3):433-450
- 刘兵,温泉波,刘永江,李伟民,冯志强,周建平,申亮. 2014. 大 兴安岭中段上二叠统-下三叠统接触关系研究-来自碎屑锆石年 代学的证据. 大地构造与成矿学,38(2):408-420
- 刘敦一,简平,张旗,张福勤,石玉若,施光海,张履桥,陶华. 2003. 内蒙古图林凯蛇绿岩中埃达克岩 SHRIMP 测年:早古生 代洋壳消减的证据.地质学报,77(3):317-330
- 刘建峰,迟效国,张兴洲,马志红,赵芝,王铁夫,胡兆初,赵秀羽. 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其 构造意义. 地质学报,83(3):365-376
- 刘希雯,杨浩,董玉,王清海,葛文春,张彦龙,田德欣. 2015. 大 兴安岭明水地区三叠纪花岗岩的锆石 U-Pb 年龄、地球化学特征 及构造意义. 岩石矿物学杂志,34(2):143-158
- 刘永江,张兴洲,金巍,迟效国,王成文,马志红,韩国卿,温泉波, 赵英利,王文弟,赵喜峰.2010.东北地区晚古生代区域构造 演化.中国地质,37(4):943-951
- 内蒙古自治区地质矿产局.1991.内蒙古自治区区域地质志.北京: 地质出版社,189-219
- 秦华峰,李永飞,黄晟,蔡书慧,任收麦.2013.内蒙古阿鲁科尔沁 旗二叠纪地层古地磁研究结果及其构造意义.地质通报,32(2 -3):388-398
- 任纪舜,陈廷愚,牛宝贵,刘志刚,刘凤仁.1990.中国东部及邻区 大陆岩石圈的构造演化与成矿.北京:科学出版社,1-205
- 邵济安.1991. 中朝板块北缘中段地壳演化.北京:北京大学出版 社,1-136
- 佘宏全,李进文,向安平,关继东,杨郧城,张德全,谭刚,张斌. 2012.大兴安岭中北段原岩锆石 U-Pb 测年及其与区域构造演 化关系.岩石学报,28(1):571-594
- 申亮, 刘永江, 温泉波, 李伟民, 冯志强. 2016. 内蒙古科尔沁右翼 前旗哈拉黑地区地层锆石 U-Pb 年代学研究及其地质意义. 地 质科学, 51(1): 220-238
- 石玉若,刘敦一,张旗,简平,张福勤,苗来成,施光海,张履桥,陶 华. 2004. 内蒙古苏左旗地区闪长-花岗岩类 SHRIMP 年代学. 地质学报,78(6):789-799
- 石玉若,刘敦一,张旗,简平,张福勤,苗来成,张履桥. 2007.内 蒙古中部苏尼特左旗地区三叠纪 A 型花岗岩锆石 SHRIMP U-Pb 年龄及其区域构造意义.地质通报,26(2):183-189
- 苏养正. 1981. 论图瓦贝 Tuvaella 的时空分布和生态环境. 古生物 学报, 20(6): 567-576
- 孙德有,吴福元,张艳斌,高山. 2004. 西拉木伦河-长春-延吉板块 缝合带的最后闭合时间-来自吉林大玉山花岗岩体的证据. 吉 林大学学报(地球科学版),34(2):174-181
- 孙立新,任邦方,赵凤清,冀世平,耿建珍. 2013. 内蒙古额尔古纳

地块古元古代末期的浆记录-来自花岗片麻岩的锆石 U-Pb 年龄 证据.地质通报,32(2-3):341-352

- 唐克东.1989. 中朝陆台北侧褶皱带构造发展的几个问题.现代地 质,3(2):195-204
- 王成文,金巍,张兴洲,马志红,迟效国,刘永江,李宁.2008.东 北及邻区晚古生代大地构造属性新认识.地层学杂志,32(2): 119-136
- 王成文, 孙跃武, 李宁, 刘欢, 赵国伟. 2009. 东北地区晚古生代地 层分布规律. 地层学杂志, 2009, 33(1): 56-61
- 王鸿祯. 1982. 中国地壳构造发展的主要阶段. 地球科学, (3): 155-178
- 王玉净,樊志勇.1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪 放射虫的发现及其地质意义.古生物学报,36(1):58-69
- 武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远. 2005. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意 义.科学通报,50(20):2278-2288
- 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释 的制约. 科学通报, 49(16): 1589-1604
- 肖文交,舒良树,高俊,熊小林,王京彬,郭召杰,李锦轶,孙敏. 2008. 中亚造山带大陆动力学过程与成矿作用.新疆地质,26 (1):4-8
- 徐备,陈斌.1997.内蒙古北部华北板块与西伯利亚板块之间中古 生代造山带的结构及演化.中国科学(D辑),27(3):227 -232
- 徐久磊,郑常青,施璐,李娟,崔芳华,高源,张行行,高峰.2013. 大兴安岭北段雅尔根楚 I 型花岗岩年代学、岩石地球化学及其 地球动力学意义.地质学报,87(9):1311-1323
- 徐亚军, 杜远生, 杨江海. 2007. 沉积物物源分析研究进展. 地质科 技情报, 26(3): 26-32
- 杨兵,张雄华,葛梦春,赵省民,韦一,黄兴,栾腾飞,魏信祥,杨志 勇. 2014. 内蒙古林西地区晚二叠世-早三叠世孢粉组合及三叠 系的发现. 地球科学,39(7):784-794
- 杨雅军,张立东,张立君,周国民,庞雪娇. 2012. 大兴安岭地区三 叠系划分与对比. 地质与资源,21(1):67-73
- 翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元 古代末-中元古代裂解. 中国科学(D辑), 30(增): 129-137
- 张超.2014.华北板块北缘东段延边地区中生代构造演化.博士学 位论文.长春:吉林大学,1-135
- 章凤奇,陈汉林,董传万,庞彦明,舒萍,王岩楼,杨树锋.2008. 松辽盆地北部火山岩锆石 SHRIMP 测年与营城组时代探讨.地 层学杂志,32(1):15-20
- 张海华,郑月娟,陈树旺,张健,苏飞,公繁浩,黄欣,甄甄. 2015. 内蒙古巴林左旗二叠系碎屑锆石 LA-ICP-MS U-Pb 年龄及构造 意义.地质学报,89(10):1703-1717
- 张炯飞, 庞庆邦, 朱群, 金成洙, 刘国军. 2004. 内蒙古白音宝力道 花岗斑岩锆石 U-Pb 定年-白音宝力道金矿成矿主岩的形成时 代. 地质通报, 23(2): 189-192
- 张丽,刘永江,李伟民,韩国卿,张金带,郭庆银,李长华.2013.
 关于额尔古纳地块基底性质和东界的讨论.地质科学,48(1):
 227-244
- 张武,李楠,杨小菊,王永栋,傅小平,李勇,郑少林. 2006. 内蒙

古早三叠世的 Scalaroxylon 及其演化意义. 古生物学报, 45(3): 332-344

- 张兴洲,杨宝俊,吴福元,刘国兴. 2006. 中国兴蒙-吉黑地区岩石 圈结构基本特征. 中国地质, 33(4):816-823
- 赵红格,刘池洋.2003.物源分析方法及研究进展.沉积学报,21 (3):409-415
- 赵越,杨振宇,马醒华.1994.东亚大地构造发展的重要转折.地质 科学,29(2):105-119
- 赵英利.2010.大兴安岭中南部二叠纪砂岩物源分析对晚古生代区 域构造演化的制约.博士学位论文.长春:吉林大学,1-133
- 赵英利,刘永江,韩国卿,吴琳娜,李伟民,温泉波,梁琛岳.2012. 大兴安岭中南段二叠纪砂岩主量元素地球化学特征及物源区构 造环境的判别.吉林大学学报(地球科学版),42(S2):285 -297
- 赵芝,迟效国,潘世语,刘建峰,孙巍,胡兆初.2010. 小兴安岭西 北部石炭纪地层火山岩的锆石 LA-ICP-MS U-Pb 年代学及其地 质意义. 岩石学报,26(8):2452-2464

- 郑月娟,公繁浩,陈树旺,黄欣,张立君,张健. 2013. 内蒙古西乌 珠穆沁旗地区下二叠统原寿山沟组碎屑锆石 LA-ICP-MS U-Pb 年龄及地质意义. 地质通报,32(8):1260-1268
- 郑月娟,张海华,陈树旺,张健,黄欣,公繁浩,苏飞,甄甄. 2014. 内蒙古阿鲁科尔沁旗林西组砂岩 LA-ICP-MS 锆石 U-Pb 年龄及 意义.地质通报,33(9):1293-1307
- 周建波, 王斌, 曾维顺, 曹嘉麟. 2014. 大兴安岭地区扎兰屯变质杂 岩的碎屑锆石 U-Pb 年龄及其大地构造意义. 岩石学报, 30 (7):1879-1888
- 周建平,刘永江,温泉波,李伟民,张丽,马国祥.2015. 内蒙古东 北部巨日河地区早-中三叠世碎屑锆石年龄及其地质意义.世 界地质,34(4):914-926
- 朱俊宾.2015.内蒙古东南部上石炭统-下三叠统的沉积环境和构造 背景.博士学位论文.北京:中国地质大学,1-133
- 朱儒峰,郑广瑞.1992.大兴安岭南部下三叠统幸福之路组的建立 及其地质意义.中国区域地质,(3):219-225

附表1 内蒙东部晚二叠-早三叠世砂岩碎屑锆石 LA-ICP-MS U-Pb 年龄

Appendix Table 1 Detrital zircon LA-ICP-MS U-Pb ages from the Late Permian to Early Triassic sandstones in eastern Inner Mongolia

	(×1	0 ⁻⁶)	_			元素	比值					年龄(Ma)			抽和审
测点号	Th	I	Th/U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	(%)
				Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	(/- /
553GD (林西组)																
553GD-1	183	271	0.67	0.05656	0.00157	0.55757	0.01200	0.07149	0.00080	474	28	450	8	445	5	101
553GD-2	375	770	0.49	0.05326	0.00135	0.32818	0.00604	0.04468	0.00048	340	23	288	5	282	3	102
553GD-3	208	305	0.68	0.05657	0.00149	0.57857	0.01135	0.07416	0.00081	475	25	464	7	461	5	101
553GD-4	165	248	0.67	0.05752	0.00339	0.37268	0.02135	0.04699	0.00065	512	133	322	16	296	4	109
553GD-5	295	373	0.79	0.05506	0.00151	0.37778	0.00796	0.04975	0.00055	415	28	325	6	313	3	104
553GD-6	152	335	0.45	0.10868	0.00289	4.74855	0.09555	0.31682	0.00398	1777	19	1776	17	1774	19	100
553GD-7	202	380	0.53	0.05355	0.00124	0.31029	0.00479	0.04202	0.00044	352	17	274	4	265	3	103
553GD-8	150	246	0.61	0.05377	0.00217	0.32373	0.01251	0.04367	0.00052	361	93	285	10	276	3	103
553GD-9	281	609	0.46	0.05715	0.00149	0.59508	0.01143	0.07550	0.00083	497	24	474	7	469	5	101
553GD-10	304	544	0.55	0.11689	0.00261	5.46811	0.07810	0.33923	0.00375	1909	12	1896	12	1883	18	101
553GD-11	306	352	0.87	0.05362	0.00228	0.34289	0.01304	0.04637	0.00062	355	62	299	10	292	4	102
553GD-12	189	409	0.46	0.05811	0.00130	0.62591	0.00879	0.07810	0.00081	534	15	494	5	485	5	102
553GD-13	172	406	0.42	0.05222	0.00129	0.29279	0.00510	0.04066	0.00043	295	21	261	4	257	3	102
553GD-14	138	309	0.45	0.05536	0.00308	0.41090	0.02129	0.05382	0.00087	427	87	350	15	338	5	104
553GD-15	229	383	0.60	0.05320	0.00174	0.36514	0.00995	0.04977	0.00059	337	40	316	7	313	4	101
553GD-16	618	468	1.32	0.05423	0.00183	0.36990	0.01052	0.04946	0.00059	381	42	320	8	311	4	103
553GD-17	982	1564	0.63	0.05490	0.00177	0.38582	0.01035	0.05096	0.00060	408	39	331	8	320	4	103
553GD-18	131	209	0.62	0.05482	0.00266	0.34172	0.01514	0.04520	0.00066	405	73	298	11	285	4	105
553GD-19	190	503	0.38	0.08381	0.00215	0.92755	0.01727	0.08025	0.00090	1288	20	666	9	498	5	259
553GD-20	119	236	0.51	0.05141	0.00156	0.29643	0.00842	0.04181	0.00045	259	72	264	7	264	3	100
553GD-21	227	353	0.64	0.05158	0.00189	0.29962	0.00950	0.04212	0.00052	267	50	266	7	266	3	100
553GD-22	225	316	0.71	0.05859	0.00139	0.34759	0.00557	0.04302	0.00045	552	18	303	4	272	3	111
553GD-23	82	103	0.79	0.05460	0.00168	0.43590	0.01096	0.05789	0.00067	396	36	367	8	363	4	101
553GD-24	329	430	0.76	0.05476	0.00171	0.46384	0.01184	0.06142	0.00071	402	37	387	8	384	4	101
553GD-25	73	130	0.56	0.05814	0.00125	0.63254	0.00805	0.07890	0.00081	535	13	498	5	490	5	102
553GD-26	89	131	0.68	0 12828	0.00272	0.71636	0.00875	0 04049	0.00042	2075	10	549	5	256	3	214
553GD-27	122	187	0.65	0.05568	0.00197	0 39603	0.01202	0.05157	0 00064	440	45	339	9	324	4	105
553CD-28	168	234	0.72	0.05252	0.00143	0.32261	0.00673	0.04455	0 00049	308	28	284	5	281	3	101
553CD-29	126	204	0.62	0.05350	0.00172	0.32705	0.00875	0.04433	0.00052	350	30	287	7	280	3	103
553CD-30	303	440	0.62	0.05284	0.00172	0.30636	0.00075	0.04205	0.00032	322	78	207	, 8	266	3	102
553CD-31	580	682	0.85	0.05269	0.00161	0.31832	0.00790	0.04203	0.00050	315	36	281	6	200	3	102
553CD-32	225	316	0.05	0.05170	0.00233	0.28632	0.01240	0.04010	0.00047	276	105	256	10	253	3	101
553CD 33	225	353	0.71	0.05706	0.00255	0.56777	0.01240	0.07215	0.00047	404	35	157	0	440	5	101
553CD 34	82	147	0.04	0.05/35	0.00101	0.42234	0.01267	0.05635	0.00069	386	45	358	0	353	4	102
553 CD 25	121	524	0.30	0.00433	0.00191	0.42234	0.01207	0.03033	0.00009	1220	40	1276	2 14	1272	4	101
553 CD 26	100	172	0.23	0.05100	0.00127	2.87055	0.00524	0. 23738	0.00203	285	42	260	14	269	2	101
553GD-50	71	124	0.21	0.00199	0.00127	0.30362	0.00524	0.04237	0.00043	1202	21 45	1200	4	1402	5	100
553GD-37	225	124	0.37	0.08851	0.00201	2.90075	0.03894	0. 24511	0.00200	204	43	1399	15	1405	14	101
553GD-38	100	310	0.71	0.05243	0.00326	0.31/1/	0.01923	0.04387	0.00059	304	144	280	15	211	4	101
553GD-39	122	18/	0.65	0.05224	0.00148	0.30637	0.00682	0.04253	0.00047	296	31	2/1	5 5	208	3	101
553GD-40	108	184	0.59	0.05241	0.00142	0.29114	0.00601	0.04028	0.00044	303	28	259	э с	255	3	102
553GD-41	105	115	0.91	0.05175	0.00187	0.34560	0.01075	0.04843	0.00059	2/4	49	301	8	305	4	99
553GD-42	30	69 700	0.44	0.06370	0.00262	0.46772	0.01709	0.05324	0.00073	732	54	390	12	334	4	117
553GD-43	261	500	0.52	0.05765	0.00131	0.62557	0.00929	0.07868	0.00082	516	16	493	6	488	5	101
553GD-44	180	205	0.88	0.06451	0.00284	0.40020	0.01696	0.04499	0.00054	758	95	342	12	284	3	120
553GD-45	234	415	0.56	0.05179	0.00146	0.30984	0.00678	0.04338	0.00048	276	30	274	5	274	3	100

	(×10) -6)	_			元素	比值					年龄(Ma)			払知産
测点号	Th	П	Th/U	²⁰⁷ Pb/	/ ²⁰⁶ Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	(%)
				Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	
553GD-46	303	440	0.69	0.09265	0.00190	3.25013	0.03648	0.25438	0.00261	1481	9	1469	9	1461	13	101
553GD-47	222	366	0.61	0.06969	0.00164	1.42464	0.02266	0.14823	0.00160	919	16	899	9	891	9	101
553GD-48	150	246	0.61	0.05829	0.00196	0.39804	0.01128	0.04952	0.00060	541	41	340	8	312	4	109
553GD-49	80	158	0.50	0.05533	0.00142	0.53770	0.01012	0.07047	0.00077	426	23	437	7	439	5	100
553GD-50	157	327	0.48	0.05237	0.00212	0.37044	0.01332	0.05130	0.00067	302	58	320	10	322	4	99
553GD-51	237	248	0.96	0.05611	0.00222	0.62442	0.02180	0.08070	0.00107	457	54	493	14	500	6	99
553GD-52	115	203	0.57	0.07171	0.00240	0.48037	0.01344	0.04857	0.00061	978	37	398	9	306	4	130
553GD-53	216	650	0.33	0.05189	0.00144	0.30480	0.00653	0.04259	0.00047	281	29	270	5	269	3	100
553GD-54	165	248	0.67	0.05274	0.00135	0.31398	0.00591	0.04317	0.00047	318	24	277	5	272	3	102
553GD-55	125	232	0.54	0.05113	0.00197	0.28220	0.01041	0.04003	0.00044	247	91	252	8	253	3	100
553GD-56	169	382	0.44	0.05172	0.00178	0.30596	0.00996	0.04290	0.00049	273	81	271	8	271	3	100
553GD-57	228	619	0.36	0.05578	0.00176	0.34209	0.00890	0.04447	0.00052	444	37	299	7	280	3	107
553GD-58	104	154	0.67	0.05153	0.00153	0.30624	0.00732	0.04309	0.00049	265	34	271	6	272	3	100
553GD-59	96	255	0.37	0.05346	0.00210	0.37678	0.01301	0.05111	0.00066	348	55	325	10	321	4	101
553GD-60	439	900	0.49	0.05206	0.00186	0.31099	0.01050	0.04333	0.00049	288	83	275	8	273	3	101
553GD-61	172	301	0.57	0.05366	0.00167	0.40434	0.01035	0.05464	0.00063	357	37	345	7	343	4	101
553GD-62	104	240	0.43	0.05857	0.00189	0.32149	0.00862	0.03980	0.00047	551	38	283	7	252	3	112
553GD-63	223	296	0.75	0.05443	0.00207	0.36782	0.01224	0.04900	0.00062	389	52	318	9	308	4	103
553GD-64	67	322	0.21	0.08930	0.00146	2.91060	0.03743	0.23639	0.00240	1411	32	1385	10	1368	13	103
553GD-65	150	246	0.61	0.05464	0.00144	0.44124	0.00870	0.05856	0.00064	398	25	371	6	367	4	101
553GD-66	80	158	0.50	0.05379	0.00147	0.44033	0.00926	0.05936	0.00066	362	28	370	7	372	4	99
553GD-67	157	327	0.48	0.05152	0.00134	0.29309	0.00564	0.04125	0.00045	264	25	261	4	261	3	100
553GD-68	227	353	0.64	0.05227	0.00171	0.30364	0.00829	0.04213	0.00049	297	41	269	6	266	3	101
553GD-69	177	325	0.55	0.05357	0.00179	0.31218	0.00878	0.04225	0.00050	353	42	276	7	267	3	103
553GD-70	153	164	0.93	0.05811	0.00347	0.60439	0.03505	0.07544	0.00105	534	134	480	22	469	6	102
553GD-71	304	544	0.55	0.05635	0.00131	0.58775	0.00920	0.07564	0.00080	466	17	469	6	470	5	100
553GD-72	137	217	0.63	0.05604	0.00143	0.57359	0.01075	0.07422	0.00081	454	23	460	7	462	5	100
553GD-73	78	123	0.63	0.08448	0.00190	0.49684	0.00714	0.04264	0.00045	1304	13	410	5	269	3	152
553GD-74	151	205	0.74	0.07385	0.00164	0.48935	0.00686	0.04805	0.00050	1037	13	404	5	303	3	133
553GD-75	119	236	0.51	0.05234	0.00164	0.30782	0.00790	0.04265	0.00049	300	38	272	6	269	3	101
553GD-76	177	227	0.78	0.07338	0.00180	1.54345	0.02683	0.15251	0.00168	1024	18	948	11	915	9	104
553GD-77	295	485	0.61	0.05378	0.00140	0.31549	0.00610	0.04254	0.00046	362	25	278	5	269	3	103
553GD-78	40	81	0.49	0.05786	0.00194	0.59480	0.01687	0.07454	0.00091	524	41	474	11	463	5	102
553GD-79	209	345	0.60	0.05229	0.00146	0.32073	0.00693	0.04447	0.00049	298	30	282	5	280	3	101
553GD-80	175	596	0.29	0.05368	0.00160	0.50499	0.01207	0.06822	0.00078	358	33	415	8	425	5	98
553GD-81	162	298	0.55	0.05130	0.00137	0.31015	0.00624	0.04384	0.00048	254	27	274	5	277	3	99
553GD-82	580	682	0.85	0.05820	0.00153	0.55729	0.01090	0.06943	0.00076	537	24	450	7	433	5	104
553GD-83	116	261	0.44	0.06372	0.00160	0.59292	0.01070	0.06748	0.00073	732	21	473	7	421	4	112
553GD-84	1032	472	2.18	0.05167	0.00179	0.42585	0.01262	0.05976	0.00072	271	46	360	9	374	4	96
553GD-85	100	134	0.74	0.05183	0.00150	0.30970	0.00710	0.04333	0.00048	278	32	274	6	273	3	100
553GD-86	64	96	0.67	0.05234	0.00139	0.34471	0.00689	0.04776	0.00052	300	26	301	5	301	3	100
553GD-87	258	194	1.33	0.05080	0.00147	0.31930	0.00731	0.04558	0.00051	232	32	281	6	287	3	98
553GD-88	380	333	1.14	0.05494	0.00205	0.42225	0.01373	0.05573	0.00070	410	50	358	10	350	4	102
553GD-89	163	149	1.09	0.05405	0.00162	0.35744	0.00867	0.04795	0.00055	373	34	310	6	302	3	103
553GD-90	74	140	0.53	0.05086	0.00134	0.30912	0.00609	0.04407	0.00048	234	26	273	5	278	3	98

续附表1

	(×1	$0^{-6})$	_			元素	比值					年龄(Ma)			壮和産
测点号	ть	U	Th/U	²⁰⁷ Pb/	^{/206} Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	(%)
	111	U		Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	(10)
248SL (林西组)																
248SL-1	62	110	0.57	0.05221	0.00189	0.29723	0.00925	0.04124	0.00047	295	50	264	7	261	3	101
248SL-2	169	168	1.00	0.05931	0.00160	0.68383	0.01381	0.08351	0.00087	578	26	529	8	517	5	103
248SL-3	105	113	0.93	0.05928	0.00172	0.67918	0.01542	0.08299	0.00089	577	31	526	9	514	5	102
248SL-4	68	185	0.37	0.05972	0.00159	0.72159	0.01429	0.08754	0.00091	593	25	552	8	541	5	102
248SL-5	138	212	0.65	0 04984	0 00149	0 28897	0.00688	0.04201	0 00045	188	36	258	5	265	3	97
248SL-6	394	329	1 20	0.05084	0.00146	0.29936	0.00675	0.04266	0.00045	234	33	266	5	269	3	99
248SI -7	199	314	0.63	0.05371	0.00143	0 31297	0.00617	0.04222	0 00044	359	26	276	5	267	3	103
2485L-8	120	522	0.05	0.05687	0.00130	0.61617	0.01036	0.07851	0.00079	486	20	487	7	487	5	100
2485L-8	259	202	0.25	0.05253	0.00139	0.21995	0.01050	0.07851	0.00079	200	20	201	5	270	2	100
2465L-9	230	242	0.07	0.05233	0.00130	0.51005	0.00004	0.04399	0.00043	461	10	406	5	270 502	5	00
2465L-10	200	54Z	0.08	0.05021	0.00133	0.02918	0.01024	0.08115	0.00082	401	19	490	0	250	2	99
248SL-11	309	847	0.37	0.05291	0.00120	0.41823	0.00607	0.05729	0.00057	325	16	300	4	359	3	99
248SL-12	75	169	0.45	0.05786	0.00154	0.64051	0.01267	0.08024	0.00084	524	25	503	8	498	5	101
248SL-13	211	307	0.69	0.05222	0.00139	0.36380	0.00723	0.05051	0.00053	295	27	315	5	318	3	99
248SL-14	93	129	0.72	0.05775	0.00172	0.64573	0.01533	0.08107	0.00090	520	33	506	9	503	5	101
248SL-15	151	258	0.59	0.05782	0.00139	0.65246	0.01070	0.08182	0.00084	523	19	510	7	507	5	101
248SL-16	253	454	0.56	0.05786	0.00132	0.64483	0.00942	0.08082	0.00081	524	16	505	6	501	5	101
248SL-17	139	238	0.59	0.05316	0.00144	0.35094	0.00718	0.04787	0.00050	336	28	305	5	301	3	101
248SL-18	133	245	0.54	0.05436	0.00161	0.37002	0.00874	0.04936	0.00054	386	33	320	6	311	3	103
248SL-19	75	681	0.11	0.06885	0.00136	1.36466	0.02300	0.14375	0.00147	894	42	874	10	866	8	101
248SL-20	188	228	0.83	0.05271	0.00157	0.30596	0.00729	0.04210	0.00046	316	34	271	6	266	3	102
248SL-22	153	380	0.40	0.05271	0.00137	0.31200	0.00593	0.04294	0.00045	316	25	276	5	271	3	102
248SL-23	1114	1664	0.67	0.07163	0.00350	0.72594	0.03445	0.07351	0.00087	975	102	554	20	457	5	121
248SL-24	54	214	0.25	0.05704	0.00140	0.66686	0.01147	0.08482	0.00089	493	20	519	7	525	5	99
248SL-25	135	236	0.57	0.05180	0.00156	0.29819	0.00723	0.04177	0.00047	277	35	265	6	264	3	100
248SL-26	46	58	0.79	0.05508	0.00335	0.36599	0.02093	0.04822	0.00078	415	99	317	16	304	5	104
248SL-27	237	334	0.71	0.06618	0.00227	0.74033	0.02393	0.08114	0.00093	812	73	563	14	503	6	112
248SL-28	38	58	0.67	0.05765	0.00260	0.64666	0.02641	0.08140	0.00113	516	65	506	16	504	7	100
248SL-29	254	226	1.12	0.05304	0.00213	0.31941	0.01133	0.04370	0.00056	331	57	281	9	276	3	102
248SL-30	324	388	0.83	0.05481	0.00180	0.35301	0.00965	0.04674	0.00055	404	40	307	7	294	3	104
248SL-31	126	381	0.33	0.05806	0.00137	0.66027	0.01060	0.08254	0.00087	532	18	515	6	511	5	101
2485L-32	178	270	0.55	0.05343	0.00160	0.30860	0.00805	0.04104	0.00048	347	38	273	6	265	3	103
24851-32	178	215	0.04	0.05134	0.00182	0.3000	0.00070	0.04558	0.00048	256	18	275	8	205	3	00
24851-33	421	1077	0.72	0.05134	0.00132	0.32240	0.00979	0.04558	0.00035	403	16	204	4	207	2	104
2465L-34	421	151	0.39	0.03478	0.00124	0.33033	0.00317	0.04722	0.00049	1709	10	17(2	4	1724	5	104
2485L-35	147	151	0.97	0.10990	0.00243	4.67402	0.00480	0.30872	0.00335	1/98	12	1/03	12	1754	17	104
248SL-36	185	237	0.78	0.05612	0.00167	0.41267	0.00980	0.05338	0.00061	457	33	351	1	335	4	105
248SL-37	9	148	0.06	0.06582	0.00167	1.14380	0.02116	0.12617	0.00140	801	21	774	10	766	8	101
248SL-39	173	221	0.78	0.05587	0.00224	0.38495	0.01363	0.05002	0.00066	447	55	331	10	315	4	105
248SL-40	132	166	0.79	0.05393	0.00181	0.40421	0.01149	0.05442	0.00066	368	42	345	8	342	4	101
248SL-41	209	220	0.95	0.05734	0.00172	0.50273	0.01217	0.06366	0.00074	505	33	414	8	398	4	104
248SL-42	97	179	0.54	0.05296	0.00193	0.31550	0.00992	0.04325	0.00054	327	49	278	8	273	3	102
248SL-43	140	238	0.59	0.05437	0.00204	0.32207	0.01054	0.04293	0.00054	386	51	283	8	271	3	104
248SL-44	201	294	0.68	0.05224	0.00175	0.31990	0.00902	0.04438	0.00053	296	43	282	7	280	3	101
248SL-45	343	512	0.67	0.05579	0.00141	0.47791	0.00880	0.06208	0.00068	444	22	397	6	388	4	102
248SL-46	24	756	0.03	0.06878	0.00152	1.38455	0.01917	0.14589	0.00154	892	13	882	8	878	9	101
248SL-47	108	142	0.77	0.05658	0.00204	0.59575	0.01853	0.07632	0.00096	475	46	475	12	474	6	100

	(×10) ⁻⁶)				元素	比值					年龄(Ma)			
测点号		, T	Th/U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	协和度
	Th	U		Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	(%)
248SL-48	230	305	0.76	0.05555	0.00348	0.37275	0.02198	0.04864	0.00086	434	100	322	16	306	5	105
248SL-49	40	86	0.46	0.05559	0.00253	0.51364	0.02121	0.06697	0.00095	436	67	421	14	418	6	101
248SL-50	64	466	0.14	0.05665	0.00140	0.63456	0.01111	0.08119	0.00088	478	21	499	7	503	5	99
248SL-51	222	308	0.72	0.06012	0.00220	0.48932	0.01545	0.05900	0.00076	608	46	404	11	370	5	109
248SL-52	151	236	0.64	0.05557	0.00167	0.52311	0.01275	0.06824	0.00080	435	34	427	8	426	5	100
248SL-53	111	249	0.44	0.05255	0.00304	0.31312	0.01754	0.04322	0.00063	309	135	277	14	273	4	102
248SL-54	91	116	0.78	0.05870	0.00213	0.61857	0.01945	0.07639	0.00098	556	46	489	12	475	6	103
248SL-55	165	494	0.33	0.05367	0.00147	0.38981	0.00818	0.05266	0.00059	357	28	334	6	331	4	101
248SL-56	40	58	0.70	0.05932	0.00303	0.64925	0.03062	0.07935	0.00123	579	75	508	19	492	7	103
248SL-57	146	188	0.78	0.05505	0.00200	0.40476	0.01276	0.05331	0.00067	414	48	345	9	335	4	103
248SL-58	538	469	1.15	0.05966	0.00273	0.39758	0.01667	0.04832	0.00061	591	69	340	12	304	4	112
248SL-59	56	124	0.45	0.09806	0.00310	1.14493	0.02957	0.08466	0.00111	1588	29	775	14	524	7	148
248SL-60	199	486	0.41	0.05827	0.00181	0.38650	0.00983	0.04810	0.00057	540	35	332	7	303	4	110
248SL-61	398	483	0.82	0.05189	0.00191	0.32238	0.01033	0.04505	0.00057	281	50	284	8	284	4	100
248SL-62	102	155	0.66	0.05874	0.00476	0.40456	0.03137	0.04995	0.00107	557	132	345	23	314	7	110
248SL-63	102	268	0.38	0.07473	0.00198	0.84214	0.01678	0.08172	0.00094	1061	22	620	9	506	6	123
248SL-64	170	312	0.55	0.05310	0.00167	0.30741	0.00798	0.04199	0.00050	333	37	272	6	265	3	103
248SL-65	102	150	0.68	0.05913	0.00195	0.73368	0.02033	0.08999	0.00112	572	39	559	12	555	7	101
248SL-66	532	680	0.78	0.05688	0.00143	0.50952	0.00925	0.06496	0.00072	487	21	418	6	406	4	103
248SL-67	153	202	0.76	0.05835	0.00185	0.42255	0.01106	0.05252	0.00064	543	36	358	8	330	4	109
248SL-68	96	110	0.88	0.05112	0.00238	0.29495	0.01256	0.04185	0.00058	246	72	262	10	264	4	99
248SL-69	140	186	0.75	0.05349	0.00212	0.36301	0.01276	0.04922	0.00065	350	55	314	10	310	4	101
248SL-70	151	330	0.46	0.05186	0.00175	0.30979	0.00884	0.04332	0.00053	279	43	274	7	273	3	100
248SL-71	187	241	0.77	0.05596	0.00160	0.56681	0.01288	0.07347	0.00086	451	30	456	8	457	5	100
248SL-72	113	142	0.79	0.05523	0.00240	0.43876	0.01723	0.05763	0.00081	422	62	369	12	361	5	102
248SL-73	265	468	0.57	0.05358	0.00183	0.34252	0.00993	0.04637	0.00058	353	43	299	8	292	4	102
248SL-74	192	361	0.53	0.05208	0.00195	0.32602	0.01071	0.04541	0.00059	289	51	287	8	286	4	100
248SL-75	178	288	0.62	0.05269	0.00182	0.33531	0.00988	0.04616	0.00057	315	45	294	8	291	4	101
248SL-76	250	262	0.95	0.05752	0.00302	0.35443	0.01802	0.04469	0.00059	512	119	308	14	282	4	109
248SL-77	228	289	0.79	0.05276	0.00206	0.33785	0.01164	0.04646	0.00061	318	54	296	9	293	4	101
248SL-78	128	230	0.55	0.05441	0.00229	0.33767	0.01276	0.04503	0.00062	388	60	295	10	284	4	104
248SL-79	133	222	0.60	0.05692	0.00213	0.36097	0.01178	0.04601	0.00060	488	49	313	9	290	4	108
248SL-80	65	90	0.72	0.05686	0.00349	0.42646	0.02536	0.05440	0.00082	486	139	361	18	341	5	106
248SL-81	180	232	0.77	0.05337	0.00176	0.36825	0.01020	0.05006	0.00062	345	40	318	8	315	4	101
248SL-83	138	263	0.53	0.05499	0.00176	0.34110	0.00911	0.04500	0.00055	412	38	298	7	284	3	105
248SL-84	216	194	1.11	0.05603	0.00204	0.39452	0.01250	0.05109	0.00066	454	47	338	9	321	4	105
248SL-85	199	208	0.96	0.05759	0.00166	0.63797	0.01467	0.08038	0.00096	514	30	501	9	498	6	101
248SL-86	144	300	0.48	0.05593	0.00170	0.33967	0.00846	0.04407	0.00053	450	34	297	6	278	3	107
248SL-87	83	93	0.88	0.06104	0.00232	0.68079	0.02271	0.08093	0.00111	641	48	527	14	502	7	105
248SL-88	354	291	1.22	0.05410	0.00162	0.35263	0.00858	0.04730	0.00057	375	33	307	6	298	4	103
248SL-89	257	367	0.70	0.05607	0.00153	0.38262	0.00806	0.04952	0.00058	455	27	329	6	312	4	105
248SL-90	200	264	0.76	0.05430	0.00165	0.32949	0.00817	0.04404	0.00053	384	34	289	6	278	3	104
ZL009(陶海营子组)																
ZL009-01	196	212	0.92	0.05278	0.00181	0.35616	0.01053	0.04895	0.00062	319	44	309	8	308	4	100
ZL009-02	249	688	0.36	0.05454	0.00141	0.32329	0.00637	0.04299	0.00050	393	24	284	5	271	3	105
ZL009-03	83	145	0.58	0.05362	0.00253	0.29550	0.01284	0.03997	0.00057	355	72	263	10	253	4	104

续附表1

	(×1	0 - 6)	_			元素	比值					年龄(Ma)			抽和曲
测点号	Th	I	Th/U	²⁰⁷ Pb/	^{/206} Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	(%)
				Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	(// /
ZL009-04	161	462	0.35	0.07461	0.00175	1.56104	0.03174	0.15174	0.00176	1058	48	955	13	911	10	116
ZL009-05	199	384	0.52	0.05341	0.00167	0.31594	0.00824	0.04290	0.00053	346	37	279	6	271	3	103
ZL009-06	149	394	0.38	0.05187	0.00166	0.31525	0.00853	0.04408	0.00055	280	39	278	7	278	3	100
ZL009-07	220	388	0.57	0.05211	0.00168	0.31955	0.00872	0.04448	0.00055	290	40	282	7	281	3	100
ZL009-08	95	174	0.55	0.05257	0.00212	0.35750	0.01294	0.04932	0.00066	310	58	310	10	310	4	100
ZL009-09	148	132	1.11	0.05979	0.00224	0.60774	0.02013	0.07371	0.00101	596	48	482	13	458	6	105
ZL009-10	23	449	0.05	0.06617	0.00127	1.07592	0.01671	0.11792	0.00132	812	41	742	8	719	8	103
ZL009-11	330	672	0.49	0.05243	0.00170	0.30113	0.00823	0.04165	0.00052	304	40	267	6	263	3	102
ZL009-12	139	187	0.74	0.05179	0.00220	0.32677	0.01261	0.04575	0.00062	276	63	287	10	288	4	100
ZL009-13	170	536	0.32	0.05227	0.00142	0.31446	0.00669	0.04363	0.00052	297	27	278	5	275	3	101
ZL009-14	46	72	0.64	0.05785	0.00256	0.64565	0.02616	0.08094	0.00117	524	63	506	16	502	7	101
ZL009-15	305	433	0.71	0.05236	0.00157	0.32081	0.00792	0.04443	0.00054	301	34	283	6	280	3	101
ZL009-16	252	639	0.39	0.05250	0.00146	0.32238	0.00710	0.04453	0.00053	307	29	284	5	281	3	101
ZL009-17	340	354	0.96	0.05741	0.00180	0.38214	0.00994	0.04826	0.00061	507	35	329	7	304	4	108
ZL009-18	159	170	0.93	0.05649	0.00233	0.35239	0.01310	0.04523	0.00062	472	58	307	10	285	4	108
ZL009-19	326	356	0.91	0.06335	0.00146	1.01935	0.01612	0.11666	0.00135	720	16	714	8	711	8	100
ZL009-20	180	209	0.86	0.07070	0.00184	1.43381	0.02827	0.14705	0.00180	949	21	903	12	884	10	102
ZL009-21	368	313	1.18	0.05139	0.00164	0.28290	0.00758	0.03996	0.00047	258	40	253	6	253	3	100
ZL009-22	384	390	0.98	0.05133	0.00144	0.28717	0.00631	0.04060	0.00046	256	30	256	5	257	3	100
ZL009-23	89	38	2.33	0.05245	0.00996	0.32918	0.06146	0.04555	0.00165	305	323	289	47	287	10	101
ZL009-24	56	172	0.33	0.08822	0.00191	2.77668	0.03805	0.22838	0.00253	1387	12	1349	10	1326	13	105
ZL009-25	346	664	0.52	0.05177	0.00129	0.28835	0.00524	0.04041	0.00045	275	22	257	4	255	3	101
ZL009-26	64	95	0.67	0.05237	0.00415	0.32308	0.02466	0.04476	0.00086	302	139	284	19	282	5	101
ZL009-27	35	77	0.45	0.05662	0.00850	0.38128	0.05577	0.04886	0.00178	477	261	328	41	308	11	106
ZL009-28	88	234	0.37	0.05164	0.00259	0.29260	0.01358	0.04111	0.00061	270	79	261	11	260	4	100
ZL009-29	156	229	0.68	0.06075	0.00266	0.53726	0.02136	0.06416	0.00095	630	60	437	14	401	6	109
ZL009-30	156	1225	0.13	0.06870	0.00143	1.28044	0.01582	0.13519	0.00146	890	11	837	7	817	8	102
ZL009-31	60	164	0.37	0.05524	0.00219	0.32858	0.01167	0.04314	0.00056	422	56	288	9	272	3	106
ZL009-32	63	179	0.35	0.05234	0.00185	0.29819	0.00920	0.04132	0.00050	300	48	265	7	261	3	102
ZL009-33	199	194	1.03	0.12350	0.00250	5.58890	0.06646	0.32820	0.00363	2007	9	1914	10	1830	18	110
ZL009-34	136	286	0.48	0.05469	0.00222	0.33285	0.01211	0.04414	0.00060	400	57	292	9	278	4	105
ZL009-35	118	468	0.25	0.05210	0.00146	0.32164	0.00724	0.04477	0.00052	290	31	283	6	282	3	100
ZL009-36	331	433	0.76	0.05159	0.00134	0.27751	0.00554	0.03901	0.00045	267	25	249	4	247	3	101
ZL009-37	102	132	0.77	0.04971	0.00186	0.28439	0.00943	0.04148	0.00051	181	54	254	7	262	3	97
ZL009-38	57	2135	0.03	0.05777	0.00118	0.59206	0.00732	0.07431	0.00081	521	12	472	5	462	5	102
ZL009-39	43	201	0.22	0.07223	0.00163	1.64253	0.02538	0.16491	0.00188	992	15	987	10	984	10	100
ZL009-40	222	353	0.63	0.08393	0.00171	2.40874	0.02964	0.20810	0.00230	1291	11	1245	9	1219	12	106
ZL009-41	124	204	0.61	0.05206	0.00175	0.31789	0.00925	0.04427	0.00054	288	44	280	7	279	3	100
ZL009-42	155	229	0.67	0.04940	0.00170	0.29833	0.00894	0.04379	0.00052	167	48	265	7	276	3	96
ZL009-43	196	198	0.99	0.05418	0.00200	0.30564	0.00996	0.04091	0.00053	379	50	271	8	258	3	105
ZI.009-44	114	140	0.82	0.05173	0.00375	0.30514	0.02121	0.04277	0.00080	273	125	270	17	270	5	100
ZI 009-45	81	101	0.80	0.05524	0.00260	0.44719	0.01952	0.05870	0.00085	422	71	375	14	368	5	102
ZI.009-46	256	955	0.27	0.07564	0.00143	1.94454	0.02994	0. 18645	0.00206	1086	39	1097	10	1102	11	99
ZI 009-47	155	270	0.57	0.05280	0.00413	0.34631	0. 02596	0.04756	0.00100	320	132	302	20	300	6	101
ZI 009-48	136	160	0.85	0. 17441	0.00343	12.51268	0. 14417	0. 52024	0.00588	2600	9	2644	11	2700	25	96
ZI 009-49	123	405	0.30	0.05268	0.00221	0.32150	0.01283	0.04426	0.00058	315	98	283	10	279	4	101
		105	5.50	5. 55200	5. 50441	5.52150	5.51205	5.51720	5. 50050	215	/0	-05	10			101

续附	表 1
----	-----

	(×10) -6)	_			元素	比值					年龄(Ma)			协和宦
测点号	Th	U	Th/U	²⁰⁷ Pb/	^{/206} Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	(%)
		_		Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	
ZL009-50	120	412	0.29	0.05158	0.00151	0.31863	0.00769	0.04479	0.00054	267	34	281	6	282	3	100
ZL009-51	137	294	0.47	0.06240	0.00143	0.85798	0.01402	0.09971	0.00115	688	17	629	8	613	7	103
ZL009-52	457	464	0.99	0.04937	0.00183	0.26887	0.00885	0.03949	0.00052	165	52	242	7	250	3	97
ZL009-53	344	223	1.54	0.05188	0.00168	0.29985	0.00832	0.04191	0.00052	280	41	266	6	265	3	100
ZL009-54	395	1192	0.33	0.04928	0.00108	0.27941	0.00417	0.04112	0.00046	161	16	250	3	260	3	96
ZL009-55	79	129	0.61	0.06677	0.00229	1.18935	0.03572	0.12918	0.00180	831	40	796	17	783	10	102
ZL009-56	83	152	0.55	0.05138	0.00253	0.28020	0.01284	0.03955	0.00059	258	78	251	10	250	4	100
ZL009-57	64	115	0.56	0.05082	0.00260	0.27701	0.01324	0.03953	0.00059	233	83	248	11	250	4	99
ZL009-58	135	249	0.54	0.05222	0.00164	0.30882	0.00829	0.04289	0.00053	295	39	273	6	271	3	101
ZL009-59	71	474	0.15	0.06780	0.00141	1.40069	0.01912	0.14984	0.00171	862	13	889	8	900	10	99
ZL009-60	61	115	0.53	0.06061	0.00542	0.58017	0.05000	0.06943	0.00177	625	142	465	32	433	11	107
ZL009-61	276	349	0.79	0.05719	0.00212	0.33992	0.01119	0.04312	0.00059	499	48	297	8	272	4	109
ZL009-62	15	572	0.03	0.06000	0.00124	0.93361	0.01253	0.11288	0.00128	604	13	670	7	689	7	97
ZL009-63	309	662	0.47	0.08077	0.00156	2.48297	0.02838	0.22302	0.00250	1216	10	1267	8	1298	13	94
ZL009-64	220	818	0.27	0.05038	0.00112	0.27435	0.00430	0.03951	0.00045	213	17	246	3	250	3	98
ZL009-65	98	372	0.26	0.06993	0.00147	1.56701	0.02210	0.16258	0.00187	926	13	957	9	971	10	99
ZL009-66	128	336	0.38	0.06650	0.00139	1.34795	0.01877	0.14706	0.00168	822	13	867	8	884	9	98
ZL009-67	75	119	0.62	0.05994	0.00298	0.72605	0.03368	0.08790	0.00147	601	71	554	20	543	9	102
ZL009-68	41	335	0.12	0.06980	0.00143	1.54062	0.02046	0.16016	0.00183	922	12	947	8	958	10	99
ZL009-69	125	178	0.70	0.05564	0.00245	0.36631	0.01480	0.04777	0.00069	438	64	317	11	301	4	105
ZL009-70	142	257	0.55	0.04955	0.00165	0.29380	0.00852	0.04303	0.00054	174	44	262	7	272	3	96
15MG06(老龙头组)																
15MG06-01	420	526	0.80	0.05119	0.00099	0.27343	0.00564	0.03874	0.00052	249	24	245	4	245	3	100
15MG06-02	350	1313	0.27	0.05370	0.00093	0.29451	0.00553	0.03978	0.00053	358	21	262	4	251	3	104
15MG06-03	58	94	0.62	0.05026	0.00205	0.29045	0.01183	0.04191	0.00066	207	65	259	9	265	4	98
15MG06-04	255	333	0.76	0.05232	0.00118	0.29621	0.00696	0.04106	0.00056	299	30	263	5	259	3	102
15MG06-05	44	115	0.38	0.08741	0.00124	2.83764	0.04556	0.23546	0.00314	1370	14	1366	12	1363	16	101
15MG06-06	59	103	0.57	0.11403	0.00141	5.25326	0.07662	0.33414	0.00442	1865	12	1861	12	1858	21	100
15MG06-07	181	291	0.62	0.05507	0.00128	0.31852	0.00770	0.04195	0.00058	415	30	281	6	265	4	106
15MG06-08	253	436	0.58	0.05301	0.00098	0.36845	0.00730	0.05042	0.00068	329	22	319	5	317	4	101
15MG06-09	643	963	0.67	0.05425	0.00106	0.29085	0.00601	0.03888	0.00052	381	24	259	5	246	3	105
15MG06-10	145	204	0.71	0.05183	0.00173	0.29584	0.00995	0.04140	0.00061	278	50	263	8	262	4	100
15MG06-11	135	212	0.64	0.05235	0.00172	0.31988	0.01056	0.04431	0.00065	301	49	282	8	279	4	101
15MG06-12	78	111	0.70	0.05149	0.00181	0.29292	0.01032	0.04126	0.00062	263	53	261	8	261	4	100
15MG06-13	570	1114	0.51	0.05391	0.00106	0.26070	0.00546	0.03507	0.00047	367	25	235	4	222	3	106
15MG06-14	188	482	0.39	0.06414	0.00090	1.03822	0.01659	0.11740	0.00155	746	15	723	8	716	9	101
15MG06-15	58	92	0.63	0.05209	0.00203	0.31943	0.01244	0.04448	0.00069	289	61	281	10	281	4	100
15MG06-16	240	269	0.89	0.05272	0.00141	0.33384	0.00916	0.04593	0.00065	317	37	292	7	289	4	101
15MG06-17	107	141	0.76	0.05226	0.00216	0.31031	0.01275	0.04307	0.00068	297	65	274	10	272	4	101
15MG06-18	78	146	0.53	0.05210	0.00165	0.29098	0.00928	0.04051	0.00059	290	46	259	7	256	4	101
15MG06-19	352	288	1.22	0.05176	0.00138	0.28777	0.00785	0.04032	0.00057	275	37	257	6	255	4	101
15MG06-20	72	132	0.55	0.05336	0.00165	0.35276	0.01102	0.04794	0.00070	344	44	307	8	302	4	102
15MG06-21	86	128	0.67	0.05165	0.00187	0.29198	0.01056	0.04100	0.00062	270	55	260	8	259	4	100
15MG06-22	409	449	0.91	0.05203	0.00100	0 31187	0.00637	0 04347	0.00058	287	24	276	5	274	4	101
15MG06-23	109	300	0.36	0.05203	0.00130	0 29274	0.00751	0 04080	0.00057	287	34	261	6	258	4	101
15MG06-24	116	163	0.71	0.05220	0 00196	0 31765	0 01189	0 04410	0.00068	296	57	280	9	278	4	101
10.11000 21		100	5.71	5.00224	5.55170	5.51705	5.5110)	5.51110	5.00000			200		2.0		

续附表1

	(×1	0 - 6)	_			元素	比值					年龄(Ma)			
测点号	Th	П	Th/U	²⁰⁷ Pb/	^{/206} Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	炒相皮 (%)
	In	U		Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	(70)
15MG06-25	186	350	0.53	0.06543	0.00092	1.16147	0.01856	0.12874	0.00169	788	15	783	9	781	10	100
15MG06-26	167	180	0.93	0.05669	0.00195	0.43839	0.01510	0.05608	0.00085	479	49	369	11	352	5	105
15MG06-27	478	428	1.11	0.05250	0.00199	0.28354	0.01074	0.03916	0.00060	307	58	253	8	248	4	102
15MG06-28	199	395	0.51	0.05215	0.00117	0.30534	0.00711	0.04246	0.00058	292	29	271	6	268	4	101
15MG06-29	274	796	0.34	0.05120	0.00134	0.26876	0.00722	0.03807	0.00053	250	37	242	6	241	3	100
15MG06-30	81	68	1.19	0.05355	0.00271	0.29312	0.01465	0.03970	0.00068	352	82	261	12	251	4	104
15MG06-31	10	693	0.01	0.05760	0.00089	0.65754	0.01122	0.08279	0.00109	515	17	513	7	513	6	100
15MG06-32	1088	1523	0.71	0.06004	0.00262	0.30355	0.01248	0.03667	0.00053	605	97	269	10	232	3	116
15MG06-33	159	236	0.67	0.05606	0.00153	0.49755	0.01384	0.06436	0.00091	455	37	410	9	402	6	102
15MG06-34	184	311	0.59	0.05750	0.00113	0.63223	0.01310	0.07973	0.00107	511	23	497	8	495	6	100
15MG06-35	229	311	0.74	0.05215	0.00119	0.29066	0.00688	0.04041	0.00055	292	30	259	5	255	3	102
15MG06-36	275	759	0.36	0.05459	0.00089	0.29222	0.00520	0.03882	0.00051	395	19	260	4	246	3	106
15MG06-37	43	84	0.51	0.05451	0.00275	0.33386	0.01666	0.04441	0.00077	392	81	293	13	280	5	105
15MG06-38	113	108	1.04	0.05163	0.00209	0.29331	0.01180	0.04119	0.00064	269	64	261	9	260	4	100
15MG06-39	71	95	0.74	0.05336	0.00221	0.34154	0.01409	0.04641	0.00073	344	65	298	11	292	4	102
15MG06-40	343	583	0.59	0.06008	0.00097	0 65363	0.01151	0 07888	0.00104	606	18	511	7	489	6	104
15MG06-41	57	82	0.70	0.05222	0.00191	0.32617	0 01194	0.04529	0.00068	295	56	287	9	286	4	100
15MG06-42	124	124	1 00	0.05545	0.00216	0 43307	0.01683	0.05663	0.00088	430	59	365	12	355	5	103
15MG06-43	69	114	0.60	0.05276	0.00301	0.29180	0.01641	0.04010	0.00073	318	95	260	13	253	5	103
15MC06-44	86	218	0.39	0.05428	0.00285	0.229100	0.01451	0.03865	0.00060	383	121	258	11	233	4	105
15MC06 45	244	401	0.57	0.05300	0.00203	0.2000	0.00701	0.05101	0.00067	320	21	322	5	321		100
15MG00-45	672	401 808	0.01	0.05300	0.00092	0.37289	0.00700	0.05101	0.00067	523	21	242	5	217	4	100
15MG00-40	0/5	160	0.85	0.05781	0.00100	0.40222	0.00790	0.03044	0.00067	280	22	211	0	200	4	108
15 MG06-47	204	109	0.08	0.05444	0.00141	0.35818	0.00949	0.04770	0.00059	389	35 22	270		300	4	104
15 MG06-48	384	2/4	1.41	0.05190	0.00124	0.304/3	0.00/49	0.04257	0.00058	281	32 52	270	6	269	4	100
15MG06-49	81	112	0.72	0.05231	0.00183	0.29401	0.01032	0.04075	0.00061	299	53	262	8	257	4	102
15 MG06-50	136	140	0.97	0.05321	0.00156	0.37028	0.01101	0.05045	0.00072	338	42	320	8	317	4	101
15MG06-51	236	309	0.76	0.05661	0.00143	0.30817	0.00/94	0.03947	0.00055	476	33	273	6	250	3	109
15MG06-52	117	209	0.56	0.05394	0.00192	0.31414	0.01120	0.04223	0.00063	369	53	277	9	267	4	104
15 MG06-53	345	409	0.84	0.05219	0.00265	0.27106	0.01322	0.03/6/	0.00055	294	119	244	11	238	3	103
15MG06-54	91	201	0.45	0.05871	0.00116	0.61066	0.01273	0.07541	0.00101	556	24	484	8	469	6	103
15MG06-55	147	260	0.57	0.05252	0.00119	0.30154	0.00709	0.04163	0.00056	308	30	268	6	263	3	102
15MG06-56	201	682	0.29	0.05815	0.00087	0.64134	0.01067	0.07995	0.00104	535	17	503	7	496	6	101
15MG06-57	218	349	0.63	0.05701	0.00133	0.48246	0.01165	0.06136	0.00084	492	30	400	8	384	5	104
15MG06-58	444	620	0.71	0.05504	0.00084	0.45830	0.00770	0.06037	0.00078	414	17	383	5	378	5	101
15MG06-59	237	402	0.59	0.05278	0.00102	0.28138	0.00575	0.03865	0.00051	319	24	252	5	244	3	103
15MG06-60	38	132	0.29	0.06999	0.00117	1.52289	0.02761	0.15775	0.00209	928	18	940	11	944	12	100
15MG09(老龙头组)																
15MG09-01	376	718	0.52	0.05539	0.00112	0.43328	0.00926	0.05681	0.00080	428	24	366	7	356	5	103
15MG09-02	64	296	0.22	0.10678	0.00119	4.04508	0.05561	0.27510	0.00374	1745	11	1643	11	1567	19	111
15MG09-03	199	238	0.83	0.06001	0.00210	0.53174	0.01864	0.06434	0.00102	604	48	433	12	402	6	108
15MG09-04	114	317	0.36	0.05487	0.00184	0.43496	0.01470	0.05757	0.00089	407	48	367	10	361	5	102
15MG09-05	35	88	0.39	0.05272	0.00426	0.36176	0.02864	0.04983	0.00116	317	138	314	21	313	7	100
15MG09-06	82	149	0.55	0.05288	0.00151	0.36056	0.01050	0.04951	0.00074	324	39	313	8	312	5	100
15MG09-07	348	191	1.82	0.06638	0.00262	0.43136	0.01690	0.04719	0.00079	818	54	364	12	297	5	123
15MG09-08	684	334	2.04	0.05276	0.00139	0.33680	0.00912	0.04635	0.00068	318	36	295	7	292	4	101
15MG09-09	90	109	0.83	0.06969	0.00262	0.62423	0.02332	0.06504	0.00108	919	50	492	15	406	7	121
15MG09-10	346	347	1.00	0.05811	0.00159	0.35820	0.00998	0.04476	0.00066	534	36	311	7	282	4	110
15MG09-11	108	201	0.54	0.05347	0.00127	0.39517	0.00974	0.05366	0.00077	349	31	338	7	337	5	100
15MG09-12	152	256	0.59	0.05205	0.00174	0.32055	0.01080	0.04471	0.00069	288	49	282	8	282	4	100

续附表	1			
-----	---	--	--	--

Continued Appendix Table 1

	(×10 ⁻⁶)		_	元素比值						年龄(Ma)					抽和座	
测点号	Th	U	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb		207 Pb/ 235 U		206 Pb/ 238 U		$\frac{207}{200} \frac{\text{Pb}}{206} \frac{\text{Pb}}{200}$		$\frac{207}{10}$ Pb/ 235 U		$\frac{^{206}\mathrm{Pb}/^{238}\mathrm{U}}{}$		[5] 作[夏 (%)
	111	0		Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	(10)
15MG09-13	57	84	0.68	0.07678	0.00193	1.63815	0.04231	0.15490	0.00234	1115	28	985	16	928	13	106
15MG09-14	389	1098	0.35	0.05471	0.00073	0.46179	0.00722	0.06127	0.00084	400	16	386	5	383	5	101
15MG09-15	170	250	0.68	0.05308	0.00165	0.36158	0.01137	0.04945	0.00075	332	44	313	8	311	5	101
15MG09-16	209	454	0.46	0.05405	0.00256	0.33339	0.01494	0.04473	0.00070	373	110	292	11	282	4	104
15MG09-17	166	356	0.47	0.05474	0.00232	0.28809	0.01216	0.03821	0.00064	402	64	257	10	242	4	106
15MG09-18	224	343	0.65	0.05327	0.00100	0.39854	0.00807	0.05431	0.00076	340	23	341	6	341	5	100
15MG09-19	182	228	0.80	0.06598	0.00115	1.06362	0.02023	0.11700	0.00164	806	19	736	10	713	9	103
15MG09-20	132	280	0.47	0.05576	0.00152	0.46384	0.01295	0.06038	0.00090	443	36	387	9	378	5	102
15MG09-21	469	542	0.86	0.05501	0.00113	0.41868	0.00914	0.05524	0.00078	413	25	355	7	347	5	102
15MG09-22	172	257	0.67	0.05233	0.00287	0.34102	0.01847	0.04730	0.00088	300	89	298	14	298	5	100
15MG09-23	307	358	0.85	0.07032	0.00085	1.51662	0.02205	0.15653	0.00213	938	13	937	9	937	12	100
15MG09-24	58	128	0.45	0.06405	0.00230	0.96300	0.03163	0.10904	0.00160	743	78	685	16	667	9	103
15MG09-25	93	134	0.69	0.05620	0.00159	0.52303	0.01514	0.06755	0.00101	460	38	427	10	421	6	101
15MG09-26	366	370	0.99	0.05979	0.00144	0.37533	0.00934	0.04556	0.00066	596	30	324	7	287	4	113
15MG09-27	131	183	0.71	0.05863	0.00432	0.41021	0.02925	0.05075	0.00094	553	166	349	21	319	6	109
15MG09-28	55	67	0.81	0.06740	0.00659	0.51037	0.04853	0.05492	0.00124	850	211	419	33	345	8	121
15MG09-29	210	576	0.36	0.05174	0.00125	0.30528	0.00769	0.04282	0.00062	274	32	271	6	270	4	100
15MG09-30	194	334	0.58	0.05850	0.00145	0.71117	0.01825	0.08821	0.00130	549	31	545	11	545	8	100
15MG09-31	111	284	0.39	0.17538	0.00190	11.67307	0.15925	0.48296	0.00664	2610	10	2579	13	2540	29	103
15MG09-32	106	225	0.47	0.09993	0.00172	3.56162	0.06687	0.25861	0.00372	1623	16	1541	15	1483	19	109
15MG09-33	233	174	1.35	0.15883	0.00192	9.39697	0.13687	0.42929	0.00598	2443	11	2378	13	2303	27	106
15MC09-34	493	1245	0 40	0.05627	0.00128	0 30545	0.00724	0.03938	0.00057	463	28	271	6	249	4	109
15MC09-35	241	278	0.86	0.05433	0.00120	0 42017	0.01036	0.05611	0.00081	385	30	356	7	352	5	101
15MC09-36	65	72	0.89	0.08455	0.00677	0.63579	0.04920	0.05454	0.00112	1305	161	500	31	342	7	146
15MC09-37	258	290	0.89	0.07680	0.00168	0.60267	0.01380	0.05693	0.00083	1116	24	479	9	357	5	134
15MC09-37	162	180	0.02	0.05816	0.00103	0.40845	0.01364	0.05095	0.00080	536	46	3/18	10	320	5	109
15MC09-39	132	272	0.70	0.05720	0.00175	0.34353	0.01/31	0.03075	0.00073	100	40 62	300	11	275	5	109
15MC00.40	231	2/2	0.45	0.05720	0.00122	0.55254	0.01401	0.06780	0.00075	572	24	447	0 0	423	6	105
15MC09-40	728	588	1 23	0.05310	0.00122	0.33413	0.01210	0.00780	0.00097	372	24	203	7	423 287	4	100
15MC09-42	131	167	0.70	0.05305	0.0019/	0.33413	0.01/00	0.05877	0.00000	360	10	368	11	368	- -	102
15MC00 43	210	167	0.75	0.05507	0.00104	0.45277	0.01703	0.05867	0.00092	451	02	370	12	368	5	103
15MC09-45	210	514	0.45	0.05597	0.00220	0.45277	0.01703	0.03807	0.00087	4J1 624	92	375	12	205	1	105
15MC00 45	190	257	0.30	0.00050	0.00272	0.39031	0.01048	0.04077	0.00072	526	27 27	241	0	295	-+	100
15MC00.46	214	237	0.70	0.05502	0.00105	0.39904	0.01143	0.04984	0.00075	440	51	220	0	212	5	109
15MC00 47	702	707	0.90	0.05562	0.00245	0.30397	0.01071	0.04980	0.00083	449	21	274	0	250	5	103
15MG09-47	125	107	0.92	0.05002	0.00140	0.44524	0.01139	0.05704	0.00084	4// 015	51 164	200	0	220	5	104
15MG09-48	01	123	0.70	0.00028	0.00504	0.40339	0.03440	0.03095	0.00089	1020	104	202	24	320 202	5	121
15 MG09-49	246	411	1.0/	0.07534	0.00301	0.4/104	0.05100	0.04043	0.00082	280	142	392 250	21 5	295	2	102
15 MG09-50	340 02	140	0.18	0.05209	0.00148	0.27925	0.00088	0.05888	0.00055	289	100	250	5	240	3 5	102
15MG09-51	95	149	0.62	0.05416	0.00289	0.41557	0.02117	0.05565	0.00088	3/8	123	555	15	549	3	101
15 MG09-52	138	204	0.68	0.064/1	0.00246	0.63594	0.02415	0.0/126	0.00119	/65	52	500	15	444	/	113
15 MG09-53	205	749	0.27	0.09128	0.00094	2.68841	0.03587	0.21357	0.00291	1452	12	1325	10	1248	15	116
15 MG09-54	97	219	0.44	0.05708	0.00157	0.46579	0.01311	0.05917	0.00089	495	36	388	9	371	5	105
15 MG09-55	317	544	0.58	0.06450	0.00246	0.9/4/7	0.03431	0.10961	0.00163	758	83	691	18	670	9	103
15 MG09-56	130	140	0.93	0.05828	0.00435	0.38716	0.02827	0.04817	0.00110	540	120	332	21	303	7	110
15 MG09-57	197	618	0.32	0.07076	0.00091	1.29021	0.01972	0.13220	0.00182	950	14	841	9	800	10	105
15 MG09-58	398	353	1.12	0.05939	0.00206	0.43941	0.01528	0.05364	0.00085	581	48	370	11	337	5	110
15 MG09-59	237	322	0.74	0.05806	0.00126	0.41476	0.00953	0.05179	0.00075	532	26	352	7	326	5	108
15 MG09-60	110	140	0.79	0.07519	0.00348	1.72103	0.07473	0.16601	0.00267	1074	95	1016	28	990	15	109

注:普通铅校正采用 ²⁰⁴ Pb. 谐和度(%) = [(²⁰⁷ Pb/²³⁵ Uage)/(²⁰⁶ Pb/²³⁸ Uage)]×100%,谐和年龄为²⁰⁶ Pb/²³⁸ U 相对于²⁰⁷ Pb/²⁰⁶ Pb 偏差大于或 小于10% 的锆石年龄(90% <谐和度 <110%)