
Chapter 6 The 
Stability of 

Linear Feedback 
Systems

李曼珍



The stability of a feedback system 
is directly related to the location of 
the roots of the characteristic 
equation of the system transfer 
function. The Routh-Hurwitz method 
is introduced as a useful tool for 
assessing system stability. The 
technique allows us to compute the 
number of roots of the characteristic 
equation in the right half plane 
without actually computing the values 
of the roots. 



Thus, we can determine stability 
without the added computational 
burden of determining characteristic 
root locations. This gives us a design 
method for determining values of 
certain system parameters that will 
lead to closed-loop stability. For stable 
systems, we will introduce the notion 
of relative stability, which allows us to 
characterize the degree of stability. 



6.1The Concept of Stability



When considering the design 
and analysis of feedback control 
systems, stability is of the utmost 
importance. We can say that a 
closed-loop feedback system is 
either stable or it is not stable. 
This type of stable/not stable 
characterization is referred to as 
absolute stability.



A system possessing absolute stability 
is called a stable system. Given that a 
closed-loop system is stable, we can 
further characterize the degree of stability. 
This is referred to as relative stability. The 
pioneers of aircraft design were familiar 
with the notion of relative stability—the 
more stable an aircraft was, the more 
difficult it was to maneuver (that is ,to 
turn).One outcome of the relative 
instability of modern fighter aircraft is high 
maneuverability. 



A fighter aircraft is less stable than a 
commercial transport, hence it can 
maneuver more quickly. We can determine 
that a system is stable (in absolute sense) 
by determining that all the transfer function 
poles lie in the left-half s-plane, or 
equivalently, that all the roots of the 
characteristic equation lie in the left-half s-
plane. Given that all the poles (or roots) are 
in the left-half s-plane, we investigate 
relative-stability by examining the relative 
locations of the poses (or roots).



A stable system is defined 
as a system with a bounded 
(limited) system response. 
That is : A stable system is a 
dynamic system with a 
bounded response to a 
bounded input.



In terms of linear systems, we recognize that 
the stability requirement may be defined in 
terms of the location of the poles of the 
closed-loop transfer function. The closed-
loop system transfer function is written as
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Where q(s)=0 is the characteristic equation 
whose roots are the poles of the closed-loop 
system. The output response for an impulse 
input is then 
Where Ak and Bm are constants that depend on 
σk ,zi ,αm, K, and  ωm. 
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To obtain a bounded response, the poles of 
the closed-loop system must be in the left-
hand portion of the s-plane. Thus, a 
necessary and sufficient condition for a 
feedback system to be stable is that all the 
poles of the system transfer function have 
negative real parts.



1. A system is stable If all the poles of 
the transfer function are in the left-hand 
s-plane.
2. A system is not stable if not all the 
roots are in the left-hand s-plane.



For an unstable system, the 
characteristic equation has at least one root 
in the right half of the s-plane or repeated 
jw roots, the output will become unbounded 
for any input.



3. A system is called marginally 
stable



If the characteristic equation has simple 
roots on the imaginary axis (jw axis) with 
all other roots in the left-half s-plane, the 
steady-state output will be sustained 
oscillations for a bounded input.



6.2 THE ROUTH-HURWITZ 
STABILITY CRITERION



In the late 1800s, A.Hurwitz and 
E.J.Routh independently published a 
method of investigating the stability of a 
linear system. The Routh-Hurwitz stability 
method provides an answer to the 
question of stability by considering the 
characteristic equation of the system.



1.Routh-Hurwitz Array



The characteristic equation is written as
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Ordering the coefficients of the 
characteristic equation into an array 
or schedule as follows:
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Further rows of the schedule are then 
completed as 
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And so on.



2. The Routh-Hurwitz Criterion



The Routh-Hurwitz criterion states that the 
number of roots of q(s) with positive 
real parts is equal to the number of 
changes in sign of the first column of 
the Routh array.



The Routh-array is 
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For the system to be stable, it is necessary 
and sufficient that the coefficients be positive. 
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Example(p318) 
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Because tow changes in sign appear in the 
first column, the system is unstable. Answer is

0)3)(71)(71(242)( 23 =+−−+−=+++= sjsjsssssq



Case 2. There is a zero in the first column, 
but some other elements of the row 
containing the zero in the first column are 
nonzero.
If only one element in the array is zero, it 

may be replaced with a small positive 
number, ε, that is allowed to approach 
zero after completing the array.



Example(p319) 

01011422)( 2345 =+++++= ssssssq

The Routh-array is
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There are two sign changes due to the 
large negative number in the first column,

ε
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Therefore, the system is unstable, and 
two roots lie in the right half of the plane. 



Case 3. There is a zero in the first column, 
and the other elements of the row containing 
the zero are also zero.

Case3 occurs when all the elements in one 
row are zero or when the row consists of a 
single element that is zero.The polynomial 
contains singularities that are symmetrically 
located about the origin of the s-plane:



Such as ))(())(( ωωσσ jsjsorss −+−+

Solve: utilizing the auxiliary polynomial U(s).For example

042)( 23 =+++= Kssssq (p320)

Where K is an adjustable loop gain. Array is then 
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(1) For the stable system, we require that 
0<K<8.

(2) When K=8, two roots is on the jw-
axis and that is a marginal stable case.

U(s) is the equation of the row preceding 
the row of zeros:
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(3)When K=8, all the roots of the characteristic 
equation q(s) :

We divide q(s) by U(s) to obtain
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when K=8, the factors of the q(s) are 
q(s)=(s+2)(s+j2)(s-j2)

The marginal case response is an unacceptable scillation.



Case 4. Repeated roots of the 
characteristic equation on the jw-axis.



If the jw-axis roots of the characteristic 
equation are simple, the system is neither stable 
nor unstable; it is instead called marginally stable, 
since it has undamped sinusoidal mode.

If the jw-axis roots are repeated, the system 
response will be unstable with a form
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For example (p321) 
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Example 6.4 Robot control
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The two changes in sign in the first column 
indicate the presence of two roots in the 
right-hand plane, and the system is unstable. 
The roots in the right-hand plane are  
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6.3 THE RELATIVE STABILITY OF 
FEEDBACK CONTROL SYSTEMS

The verification of stability using the 
Routh-Hurwitz criterion provides only a 
partial answer to the question of stability. 



1.The Routh-Hurwitz criterion ascertains the 
absolute stability of a system by determining 
whether any of the roots of the characteristic 
equation lie in the right half of the s-plane.



2.If the system satisfies the Routh-Hurwitz 
criterion and is absolutely stable, it is 
desirable to determine the relative stability; 
that is, it is necessary to investigate the 
relative damping of each root of the 
characteristic equation. The relative stability 
of a system can be defined as the property 
that is measured by the relative real part of 
each root or pair of roots. 



EXAMPLE 6.6 Axis shift 
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(1)There is not sign changes in the first column, the system is absolute stable.

(2)Let 
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The system is unstable and has not relative stability. 

(3)Let 
14)1(6)1(4)1()(，1 2323 +++=+−+−+−=⇒+= nnnnnnn sssssssqss

01
00
11
11

0

1

2

3

n

n

n

n

s
s
s
s



There are roots on the shifted imaginary axis that 
can be obtained from the auxiliary polynomial
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The shifting of the s-plane axis to ascertain the 
relative stability of a system is a very useful 
approach, particularly for higher-order systems 
with several pairs of closed-loop complex 
conjugate roots.



EXERCISES 
E6.1 A system has a characteristic equation 

.05)2(3 23 =++++ sKKss
Determine the range of K for a stable system.

E6.2 A system has a characteristic equation

.024269 23 =+++ sss
Using the Routh-Hurwitz criterion, show that the 
system is stable.

E6.3  
E6.4
E6.5
E6.7
E6.9

E6.19



CHAPTER 7
THE ROOT LOCUS METHOD



The locus of roots in the s-plane can be 
determined by a graphical method. A graph 
of the locus of roots as one system 
parameter varies is known as a root locus 
plot. 



The relative stability and the transient performance of a 
closed-loop control system are directly related to the 
location of the closed-loop roots of the characteristic 
equation in the s-plane. It is frequently necessary to adjust 
one or more system parameters in order to obtain suitable 
root locations. Therefore, it is worthwhile to determine how 
the roots of the characteristic equation of a given system 
migrate about the s-plane as the parameters are varied; 
that, it is useful to determine the locus of roots in the s-
plane as a parameter is varied. 



The root locus method was introduced by Evans in 
1948 and has been developed and utilized 
extensively in control engineering practice. The 
root locus technique is a graphical method for 
sketching the locus of roots in the s-plane as a 
parameter is varied. In fact, the root locus method 
provides the engineer with a measure of the 
sensitivity of the roots of the system to a variation 
in the parameter being considered. The root locus 
technique may be used to great advantage in 
conjunction with the Routh-Hurwitz criterion.



The root locus method provides graphical 
information, and therefore an approximate sketch 
can be used to obtain qualitative information 
concerning the stability and performance of the 
system. Furthermore, the locus of roots of the 
characteristic equation of a multi-loop system may 
be investigated as readily as for a single-loop 
system. If the root locations are not satisfactory, 
the necessary parameter adjustments often can 
be readily ascertained from the root locus.




