Chapter 6 The
Stability of

. Linear Feedback

Systems
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The stability of a feedback system
IS directly related to the location of
the roots of the characteristic
equation of the system transfer
function. The Routh-Hurwitz method
IS Introduced as a useful tool for
assessing system stability. The
technigue allows us to compute the
number of roots of the characteristic
equation In the right half plane
without actually computing the values
of the roots.



Thus, we can determine stabllity
without the added computational
burden of determining characteristic
root locations. This gives us a design
method for determining values of
certain system parameters that will
lead to closed-loop stability. For stable
systems, we will introduce the notion
of relative stability, which allows us to
characterize the degree of stability.



6.1The Concept of Stability
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» When considering the design
and analysis of feedback control
systems, stabllity Is of the utmost
Importance. We can say that a
closed-loop feedback system Is
either stable or it iIs not stable.
This type of stable/not stable
characterization Is referred to as
absolute stability.



A system possessing absolute stability
Is called a stable system. Given that a
closed-loop system Is stable, we can
further characterize the degree of stability.
This Is referred to as relative stablility. The
pioneers of aircraft design were familiar
with the notion of relative stability—the
more stable an aircraft was, the more
difficult it was to maneuver (that Is ,to
turn).One outcome of the relative
iInstability of modern fighter aircraft is high
maneuverabillity.



+» A fighter aircraft Is
commercial

transport,

less stable than a
hence It can

maneuver more quickly. We can determine

that a system Is stab
by determining that a

e (in absolute sense)
| the transfer function

poles lie In the

eft-half s-plane, or

equivalently, that al

the roots of the

characteristic equation lie in the left-half s-
plane. Given that all the poles (or roots) are

In the left-
relative-stabi
locations of t

ne poses

nalf s-plane, we
ity by examining the relative

Investigate

(or roots).



A stable system Is defined
as a system with a bounded
(imited) system response.
That I1s : A stable system Is a
dynamic system with a
bounded response to a
bounded Input.



In terms of linear systems, we recognize that
the stability requirement may be defined In
terms of the location of the poles of the
closed-loop transfer function. The closed-
loop system transfer function is written as

KlM[(s+ Z,)
= (6.1)

T(S) = p(S) = Q R
q(s) gN H(S+O'k)H[32 +2a,5+ (o + @)

m=1



« Where g(s)=0 Is the characteristic equation
whose roots are the poles of the closed-loop
system. The output response for an impulse
Input is then

+ Where A, and B, are constants that depend on
o,.,z,a  Kand o

y(t) = i Ae %+ ZR: B (i)e“’mt sin(w_t+80_) (6.2)
k=1 m=1 W,



+» To obtain a bounded response, the poles of
the closed-loop system must be In the left-
hand portion of the s-plane. Thus, a
necessary and sufficient condition for a
feedback system to be stable is that all the
poles of the system transfer function have
negative real parts.



+» 1. A system Is stable If all the poles of
the transfer function are in the left-hand
s-plane.

+» 2. A system Is not stable if not all the
roots are in the left-nand s-plane.



\/
0‘0

For an unstable  system, the
characteristic equation has at least one root
In the right half of the s-plane or repeated
Jw roots, the output will become unbounded

for any input.



e
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3. A system is called marginally
stable
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+ If the characteristic equation has simple
roots on the imaginary axis (Jw axis) with
all other roots in the left-half s-plane, the

steady-state output wil
oscillations for a bounded

be sustained
Input.
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6.2 THE ROUTH-HURWITZ
STABILITY CRITERION
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In the late 1800s, A.Hurwitz and
E.J.Routh Independently published a
method of investigating the stability of a
linear system. The Routh-Hurwitz stability
method provides an answer to the
guestion of stability by considering the
characteristic equation of the system.







+» The characteristic equation Is written as
A(s)=q(s)=as"+a ,s" ' +---+as+a,=0 (6.3)

«» Ordering the coefficients of the
characteristic equation Into an array
or schedule as follows:

n

S

n-1
S d,;, d, 5 d, .

n n

a, a _, a_,

n n n




< Further rows of the schedule are then
completed as

N d,_, dp_4
s"tla,, a,5; a,;
s"?|b,, b, b,

n-3 cC., C. .




oo Where

n-1

-1
b =——
an—1

C ., = -1
n-1 bn_l

o And SO

an—l

an—1
bn—l

on.

a‘n—l

an—4
an—5

a. .
b .

, @)@, @;) -1

an—l

an—2

an—3




2. The Routh-Hurwitz Criterion
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+» The Routh-Hurwitz criterion states that the
number of roots of g(s) with positive
real parts is equal to the number of
changes in sign of the first column of
the Routh array.



Example 6.2 A(s)=q(s)=a,s’ +a,5° +a,s+a, =0

+» The Routh-array is .

« Where b, = - and ¢, =

+» For the system to be stable, it Is necessary
and sufficient that the coefficients be positive.

d,d, > d,d,



+ Example(p318)
A(S)=q(s)=s’+s°+25+24=0

sl 1 2
s’l 1 24
stl—22 0
s’ 24 0

+» Because tow changes in sign appear in the
first column, the system Is unstable. Answer Is

q(s) =5’ +s2+2s+24=(s-1+ jv/7)(s—1- jo/7)(s+3) =0



+» Case 2. There Is a zero In the first column,
but some other elements of the row
containing the zero In the first column are
nonzero.

+» |f only one element Iin the array Is zero, It
may be replaced with a small positive
number, ¢, that is allowed to approach
zero after completing the array.



+» Example(p319)
q(s) =s® +2s* +2s° +4s* +11s+10=0

+» The Routh-array Is

s®l1 2 11
s*l2 4 10
s®le 6 0
s?lc, 10 O
stld, 0 0
s?10 O 0
Where
o _deml2 120 g 66108

g & C,



There are two sign changes due to the
large negative number in the first column,

—12
&

Cy

herefore, the system is unstable, and
two roots lie in the right half of the plane.



Case 3. There Is a zero In the first column,
and the other elements of the row containing
the zero are also zero.

Case3 occurs when all the elements In one
row are zero or when the row consists of a
single element that i1s zero.The polynomial
contains singularities that are symmetrically
located about the origin of the s-plane:



Suchas (s+o)(s—o) or (s+ jo)(s— jow)

Solve: utilizing the auxiliary polynomial U(s).For example
g(s) =S’ +2s° +4s+ K =0 (p320)
Where K Is an adjustable loop gain. Array is then
1 4
2 K
8- K 0
0

S3
SZ
Sl
S0

2
K



(1) For the stable system, we require that
0<K<8.
(2) When K=8, two roots is on the jw—
axis and that is a marginal stable case.

U(s) is the equation of the row preceding
the row of zeros:

U(s)=2s"+Ks’ =25 +8=2(s*+4)=2(s+ j2)(s— j2)



(3)When K=8, all the roots of the characteristic
equation qg(s) :

We divide g(s) by U(s) to obtain

(1/2)s +1

257 +8>s3 +2s° +4s + 8
53 + 45

257 + 8

257 + 8

when K=8, the factors of the g(s) are

q(s)=(s+2)(s+)2)(s-]2)
The marginal case response is an unacceptable scillation.



+» Case 4. Repeated roots of the
characteristic equation on the jw-axis.



If the Jw-axis roots of the characteristic
equation are simple, the system Is neither stable
nor unstable; it Is instead called marginally stable,
since It has undamped sinusoidal mode.

If the jw-axis roots are repeated, the system
response will be unstable with a form

t[sin(awt + @)]



+» For example (p321)

g(s) = (s+D(s+ j)(s— s+ j)s—j)=5"+5"+28°+2s8° +5+1=0

s> |1 2 1

s sl 2 1 U/ (s)=s"+2s°+1=(s°+1)°
’le ¢ 4 4 0 dU, /ds = 4s° + 4s

s* ~ s?2l1 1 0 U,(8)=s"+1=0=>s==+]
s* stj2 0 0 du,/ds =2

s° 1 0 O




«» Example 6.4 Robot control

q(s) =s> +s* +4s° +24s* +35s+63=0

1 4 3
1 24 63
-20 -60 O
21 63 O
0 0O O

—

1
1
—20
21
42
63

4 3
24 63
-60 O
63 O
0O O
0O O

U(s)=21s®+63=0=5s=+j3
dU /ds = 42s



+» The two changes In sign In the first column
Indicate the presence of two roots in the

right-hand plane, and the system Is unstable.
The roots In the right-hand plane are

S=+1% j\@



0.3 THE RELA

IVE S

ABILITY OF

FEEDBACK CONTROL SYSTEMS

«» The verification of stability using the
Routh-Hurwitz criterion provides only a
partial answer to the question of stability.



+» 1. The Routh-Hurwitz criterion ascertains the
absolute stablility of a system by determining
whether any of the roots of the characteristic
equation lie in the right half of the s-plane.



+» 2.1f the system satisfies the Routh-Hurwitz
criterion and Is absolutely stable, 1t Is
desirable to determine the relative stability;
that Is, It IS necessary to investigate the
relative damping of each root of the
characteristic equation. The relative stability
of a system can be defined as the property
that Is measured by the relative real part of
each root or pair of roots.



+ EXAMPLE 6.6 Axis shift
g(s)=s’ +4s° +6s+4=0

(1)There is not sign changes in the first column, the system is absolute stable.
(2)Let
S, =5+2,=q(s)=(s, —2)° +4(s, —2)* +6(s, —2)+4=5>—2s° +25_
The system is unstable and has not relative stability.

(3)Let
s, =s+1 =0q(s)=(s, -1)° +4(s, -1)* +6(s, —1)+4=s>+s>+s_+1

w w wm w
[N
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There are roots on the shifted imaginary axis that
can be obtained from the auxiliary polynomial

U(s)=s, +1=(s, + i)(s, — i) = (s +1+ J)(s +1- j)

The shifting of the s-plane axis to ascertain the
relative stability of a system is a very useful
approach, particularly for higher-order systems

with several pairs of closed-loop complex
conjugate roots.



EXERCISES

» E6.1 A system has a characteristic equation

s° +3Ks* +(2+K)s+5=0.
Determine the range of K for a stable system.
E6.2 A system has a characteristic equation

s +95% + 265 + 24 = 0.

Using the Routh-Hurwitz criterion, show that the

system Is stable.

E6.3
E6.4
EG.5
EG.7
E6.9
E6.19



CHAPTER 7
THE ROOT LOCUS METHOD
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+» The locus of roots In the s-plane can be
determined by a graphical method. A graph
of the locus of roots as one system
parameter varies Is known as a root locus
plot.



« The relative stability and the transient performance of a

closed-loop control system are directly related to the
location of the closed-loop roots of the characteristic
equation in the s-plane. It is frequently necessary to adjust
one or more system parameters in order to obtain suitable
root locations. Therefore, it is worthwhile to determine how
the roots of the characteristic equation of a given system
migrate about the s-plane as the parameters are varied,
that, it is useful to determine the locus of roots in the s-
plane as a parameter is varied.



« The root locus method was introduced by Evans In

1948 and has been develo

ned

and utilized

extensively in control engineering practice. The

root locus technique Is a gra
sketching the locus of roots In
parameter Is varied. In fact, the

nhica
the

method for

root

s-plane as a
ocus method

provides the engineer with a measure of the
sensitivity of the roots of the system to a variation
In the parameter being considered. The root locus
techniqgue may be used to great advantage In
conjunction with the Routh-Hurwitz criterion.



<« The root locus method provides graphical
Information, and therefore an approximate sketch
can be used to obtain qualitative Information
concerning the stability and performance of the
system. Furthermore, the locus of roots of the
characteristic equation of a multi-loop system may
be Investigated as readily as for a single-loop
system. If the root locations are not satisfactory,
the necessary parameter adjustments often can
be readily ascertained from the root locus.





