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ABSTRACT: In order to describe and measure the evolution of vascular elements in time, we examined two groups 
of samples of the green oak (Quercus ilex Linnaeus) wood. These groups are on the same radial plane and come from 
two trees growing under identical conditions and with different ages. The first group is located in the internal zone 
between the 15th and 19th growth ring and the second group is situated in the external area before the sapwood. The 
analysis of results shows the outside zone with isolated, numerous and large vessels compared to the internal zone. 
The results also explain how the vascular elements develop in advanced age.
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The wood mass of oak has four types of cells: con-
ducting vessels, fibres for support, ray parenchyma 
and axial parenchyma (Campredon 1980; Prat 
2004; Benoit 2011).

The vessels are the conduction system of sap, they 
have a disposition and varied dimensions (Zimmer-
mann 1983; Huber 1993; Gartner 1995). The ves-
sels communicate with each other by perforations.

The vessels are grouped in rows at the beginning 
of the ring in the initial wood (Sachsse 1984; Col-
lardet, Besset 1992; Benoit 2011). Their tangen-
tial diameter is up to 400 µm (Grosser 1977; Fen-
gel, Wegener 1989) or even 500 µm (Jacquiot 
et al. 1973; Cloutier 2002). Small vessels have a 
specific provision due to their location and orga-
nization (Bakour 2003). Granier et al. (1996) 
showed that small latewood vessels could operate 
many years; the loss of conductivity is generally 
accompanied by the gradual blockage of vessels by 
tyloses (Bowes, Mauseth 2008).

The vessel diameter, length and the density of ves-
sels are linked to the species (Polge, Keller 1973; 
Kanowski et al. 1991; Benoit 2011). Nevertheless, 
soil heterogeneity, light, temperature and humidity 

of the air around the shaft, the internal structure of 
the trunk, the asymmetry of the crown, root archi-
tecture and age can strongly influence the conduc-
tive elements (Carlquist 1988; Lafont et al. 1988; 
Trouy 2015). 

The objective of this study is to describe and quan-
tify the development of these elements with age in 
the radial direction from the pith of Quercus ilex 
Linnaeus in the far west of Algeria (Terni forest).

We chose to measure simple morphological cri-
teria of the vessels: average diameter, number per 
unit of area and length. Fletcher (1975), Gasson 
(1987), and Guilley and Nepveu (2003) estimated 
that these parameters have an important role in the 
ecophysiological functioning of trees.

Before focusing on the evolution of vascular ele-
ments in oak wood, a number of additional factors 
could explain the change in the size of these elements:
 (i) The environment: Prat (2004) and Barij (2006) 

showed that the xylem structure is strongly de-
pendent on the local environment of a tree. The 
results of Kramer (1964), Aussenac (1993), 
Corcuera et al. (2004), and Eckstein (2004) 
showed that the availability of water, tempera-
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ture and light affect the dimensions, the number 
of cells and the changes in the average diameter 
of vessels. Flechter (1975) showed that wet 
years produce small-sized vessels. Huber (1993) 
noted no relationship between vessel area and 
annual growth layer in the adult wood of Quer-
cus robur Linnaeus and Quercus petraea (Mat-
tuschka) Lieblein. In addition, the same author 
showed a small but significant correlation that 
exists between the individual surface of the pore 
and one of the studied climate data (maximum 
temperatures of autumn months outstripping 
the vessel formation). The authors cited by Hroš 
and Vavrčík (2014) argue that the vessel size 
is mainly controlled by water availability at the 
time of vessel formation and by temperature 
in the Mediterranean. The vessel size should 
decrease when water availability is low;

 (ii) The leaf area index: Huber (1993) showed that in 
Q. robur and Q. petraea in the year following the 
removal of leaves on young trees, vessels have 
small areas. Granier et al. (1999) and Infante 
et al. (2001) stated that a high leaf area index 
affects the flow of the sap;

 (iii) Age of the tree: Gasson (1987) and Barij (2006) 
demonstrated that the vessel size increases 
with age. Lafont et al. (1988) mentioned that 
evolution is marked by an increase in vessel 
diameter. In the case of Q. petraea, Helinska- 
Raczkowska (1994) noted wider and fewer 
vessels for springwood in the external zone, and 
numerous and larger vessels in the external area 
of late wood. Detienne (1988) and Normand 
(1998) noted for the vessels of hardwood in 
general a growth in number and an increase 
in pore diameter. Kolář et al. (2012) reported 
that the surface area of the largest early wood 

vessel increased with age in the direction from 
pith outwards, in the case of Q. robur and  
Q. petraea like in subfossil oaks found in the 
area of Moravia (Czech Republic).

In this study, we attempt to describe, quantify 
and verify hypotheses collected in this retrospec-
tive bibliography and try to apply them to the wood 
of Q. ilex located within the limits of the steppe and 
forest areas.

METHODS

Presentation of the study area. The Q. ilex, ob-
ject of this study, was taken from the forest of Terni 
– Tlemcen, in the extreme west of Algeria (Fig. 1).

The main characteristics of the study area are as 
follows: (i) average altitude: 1,200 m, (ii) average 
annual precipitation (1960–2014): 565 mm, (iii) 
average maximum temperature (July): 29.08°C, (iv) 
average minimum temperature (January): 2.11°C, 
(v) bioclimatic floor: sub-humid to cool winters, 
(vi) the seasonal rainfall regime (1960–2014): 
spring – winter – autumn – summer.

In the Mediterranean context this Q. ilex is one 
of the most dominant species in forests (Barbero 
et al. 1992; Dahmani 1997; Berrichi et al. 2010). 
In Algeria, the green oak extends throughout the 
north and covers 700,000 ha (21% of Algeria’s forest 
area) from the coastline to the Saharan Atlas and 
from the Moroccan border to the Tunisian border 
(Letreuch 1995). The area that it occupies in the 
Mountains of Tlemcen would be 82,000 ha, i.e. 
41.1% of the total forest area (Berrichi 1993).

Wood sampling. Microscopic cuts were made 
in accordance with a protocol of sampling small 
blocks for analysis, in relation with the agreed tar-

Fig. 1. Study area
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get. After verification of the central position of the 
pith in the radial direction and east exposure, we 
identified the internal zone and the external zone, 
which corresponds to the wood transition between 
sapwood and heartwood (Fig. 2). The selection 
of the external zone is explained by the arrival at 
the final structure of some characters proposed by 
Normand (1998) for some hardwood species. The 
characteristics of the two trees of Q. ilex are pre-
sented in Table 1. 

Model of the vessel wood analysis. The model 
of the wood analysis (Table 2) is a vessel model de-
signed and inspired by Venet (1974), Detienne 
(1988), and Normand (1998). In this model, we 
were interested only in vessels with regard to de-
scription and quantification. From each zone of the 
two trees, we realized 60 measurements of vessel 
diameter in early wood, 60 measurements of vessel 
diameter in latewood and 50 measurements of the 
number of vessels per mm2.

RESULTS

Descriptive characterization

A transversal plane (Fig. 3) shows the descriptive 
characters of Q. ilex.

The image of the pores given by the transversal 
plane of the two samples differs from one area to 
another. The pores are grouped into a radial line in 
the internal zone and are completely isolated in the 
external zone (Fig. 4). The pores of the two areas 
are relatively stretched in radial direction.

Quantitative characterization

The histograms (Fig. 5) show the characteristics 
of the Q. ilex vessel elements.

The histograms (Fig. 5) of measured character-
istics and Table 2 of the vessel wood analysis show 
the different classes of each character and give an 
idea of differences between the internal zone and 
external zone of vessels in Q. ilex.

The principal changes related to vascular ele-
ments as they pass from the internal area to the ex-
ternal area are as follows:
 (i) In vessel diameter of early wood (Fig. 5a): the dia-

meter of the early wood vessels is “average” (65% 
in internal zone and 50.8% in external zone) and 

Fig. 2. Scheme of the experimental blocks Fig. 3. Transversal plane of Quercus ilex Linnaeus

Table 1. Characteristics of trees and wood samples

Tree 1 Tree 2
Age of the tree 86 51
Height (m) 7.35 6.20
Circumference at 1.30 m (cm) 82.3 65.5
Internal zone 15th–19th ring 15th–19th ring
External zone 56th–60th ring 28th–32th ring

Table 2. Model of the vessel wood analysis (Venet 1974; Detienne 1988; Normand 1998)

Vessel diameter Vessel length N per mm2

Class (µm) qualification class (µm) qualification class qualification
< 50 very thin < 350 short < 2 very rare

50–100 thin 350–800 average 2–6 rare
100–200 average > 800 long 6–20 average
200–300 wide > 20 many

> 300 very wide

N – number of vessels

wide radial parenchyma 
slender radial parenchyma 
vessels diameter  
of early wood 
vessels diameter  
of late wood 

slender radial parenchyma 

annual growth layer 

axial parenchyma 

15th–19th ring
56th–60th ring

28th–32th ring

tree 1

tree 2
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“thin” (23.3% in internal zone and 22.5% in exter-
nal zone). A higher proportion of large vessels is 
present in the external zone (20.8% against 8.3%);

 (ii) In vessel diameter of latewood (Fig. 5b): the 
diameter of latewood vessels is “thin” in the 
two zones (67.5% in internal zone and 49.2% in 
external zone). A higher proportion of average 
vessels is present in the external zone (35.8% 
against 17.5%);

 (iii) In vessel density per mm2 (Fig. 5c): the number 
of vessels per mm2 is sometimes average (54% 
in internal zone and 77% in external zone) and 
sometimes high (46% in internal zone and 36% 
in external zone);

 (iv) In vessel length (Fig. 5d): the vessel length is 
mainly average (56% in internal zone and 68% in 

external zone) and short (38% in internal zone 
and 18% in external zone). The external zone 
contains more long vessels (14% against 6%).

The results lead to information on the concept of 
the evolution of vessels from the internal to the ex-
ternal zone (Table 3).

Based on the results of Table 3 and the histograms 
of Fig. 5, we conclude about the vessels of Q. ilex:
 (i) About vessel diameter of early wood: the dia-

meter is “average” and the largest vessels are 
present in the external zone;

 (ii) About vessel diameter of latewood: the latewood 
pores are “fine” and the largest vessels are also 
present in the external zone;

 (iii) About vessel density: the number of vessels per 
area is “average” and the largest vessels are also 
present in the external zone;

 (iv) About vessel length: the vessel length is 
“average” and in the external zone there are 
longer vessels.

The general qualification of vascular elements of 
Quercus ilex L. is “average”. Indeed, in the Medi-
terranean area, green oak rarely exceeds 7 meters 
in height. In this regard, Carlquist (1988) noted 
that dwarfing of a plant may result in a diminution 
of vessel element length and diameter.
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Fig. 5. Histograms of wood characteristics of the vessels: diameter in early wood (a), diameter in latewood (b),  
density (c), length (d)

Fig. 4. Variation in the disposition of the pores of Quercus 
ilex Linnaeus in internal (a) and external (b) area
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DISCUSSION

The study of the radial evolution of vascular ele-
ments of Q. ilex shows:

(1) As descriptive result: the pores are grouped 
into a radial line in the internal area and completely 
isolated in the external area. The change in the ar-
rangement of pores is the first descriptive result;

(2) As quantification result: the external zone 
compared to the internal zone shows these effects 
for each parameter: 
 (i) For the importance of the vessel lumen and 

vessel number in the external zone and in the 
internal zone according to Hacke et al. (2001), 
Meinzer (2003), Bucci et al. (2004), and Perré 
et al. (2012) suitable indicators are water storage 
capacity and conducting efficiency of water in 
the stem of Q. ilex. The surface of the lumen is 
0.12 mm2 in the internal zone, and 0.28 mm2 
in the external zone. Is this increase in the ve-
ssel surface a consequence of the effect of age 
or the effects of climate conditions? The only 
assumptions that we have are the aging of the 
cambium (age) and the annual rainfall, 664 mm 
of rain during the period of wood formation 
of the internal zone against 588 mm for the 
external zone. For the flow of sap, the vessel 
volume in the external zone is 0.13 mm3·mm–3, 
while in the internal zone this volume is only 
0.05 mm3·mm–3. The variation of density is de-
pendent on the vessel volume (Natterer et al. 
2004). In the heartwood, this volume is the first 
indication of wood density (Berrichi 2015);

 (ii) The diameter of early wood and latewood ve-
ssels is large in the external zone. This situation 
causes a decrease of the fibre proportion and 
consequently a decrease in the wood density 
of the external zone. Wood strength is highly 
dependent on the xylem structure, any increase 
in the diameter of the vessels would imply a low 
proportion of fibres, and consequently a lower 
density compared to wood containing small 

vessels (Gartner 1995; Mattheck, Kubler 
1995). Guilley (2000) mentioning research 
works on the wood of Q. petraea, Q. robur, and 
Quercus garryana Douglas ex Hooker showed 
that aging cambium leads to a reduction in the 
proportion of fibres.

CONCLUSIONS

With aging, the wood vessels of Q. ilex when we 
approach the outside of the trunk, acquire the fol-
lowing types of adjustments: the vessels are iso-
lated and become larger and numerous. This radial 
evolution of the vascular elements causes a reduc-
tion in the space occupied by the fibrous tissues, 
wood rays and axial parenchyma.

Taking into account the cell thickness of fibres 
that is in our case significantly thicker in the inter-
nal zone by 7.12 µm compared to 6.27 µm in the 
external zone (Berrichi 2015), we can conclude 
that wood density decreases with distance from the 
pith. Polge and Keller (1973), Klumpers (1994), 
Guilley (2000), Natterer et al. (2004), and Per-
ré et al. (2012) showed that density decreases when 
the cambium is aging.
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