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ABSTRACT: 

 

We propose a new technique to detect multiple targets from full-waveform airborne laser scanner. We introduce probability 

hypothesis density (PHD) filter, a type of Bayesian filtering, by which we can estimate the number of targets and their positions 

simultaneously. PHD filter overcomes some limitations of conventional Gaussian decomposition method; PHD filter doesn’t require 

a priori knowledge on the number of targets, assumption of parametric form of the intensity distribution. In addition, it can take a 

similarity between successive irradiations into account by modelling relative positions of the same targets spatially. Firstly we 

explain PHD filter and particle filter implementation to it. Secondly we formulate the multi-target detection problem on PHD filter 

by modelling components and parameters within it. At last we conducted the experiment on real data of forest and vegetation, and 

confirmed its ability and accuracy. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Full-waveform airborne laser scanner becomes widely used in 

LiDAR. Reflection intensity data acquired by full-waveform 

airborne laser scanner is expected to be useful compared with 

traditional discrete-return laser system, especially in the case 

multiple target exist above ground. For example, to retrieve 3D 

canopy structure from LiDAR data is important with regard to 

carbon cycle modelling (Hurtt et al., 2004). Many researchers 

have used Gaussian decomposition to model and analyse full-

waveform data, and detect multiple targets including ground 

(e.g. Persson et al., 2005; Wanger et al., 2006; Pirotti, 2011). 

However it is difficult to detect multi-target precisely when 

reflection intensity from target is weak and not distinguishable 

from noise. Richter et al. (2014) has proposed the method to 

correct attenuation reflected by target which are further from 

scanner. Nevertheless, the two shortcomings with Gaussian 

decomposition are the following; we have to fix the number of 

targets in advance, and the reflection intensity might not fit 

Gaussian distribution. 

 

As discussed in Kleinherenbrink et al. (2014), the reflection 

intensity of successive signals can be helpful in specifying 

targets, for the signals are continuous spatially and temporally. 

Based on this concept of similarity in reflection intensity 

distribution of neighbourhood signals, we regard the multi-

target detection problem as the time-series analysis. We propose 

a new method of analysing the full-waveform data for multi-

target detection by employing probability hypothesis density 

(PHD) filter. PHD filter is a type of Bayesian filter; Bayesian 

update system of PHD introduced by Mahler (Mahler, 2000; 

Mahler, 2003). PHD filter is applied to multi-target tracking, for 

it can deal with unknown and variable number of objects. More 

specifically we can estimate the number of targets within the 

area and their positions simultaneously by PHD filter. In fact, 

many applications of PHD filter to multi-target tracking have 

shown that the filter is a robust solution to deal with uncertain 

factors such as number of targets and accuracy of observation 

(e.g. Tobias and Lanterman, 2004; Ikoma et al., 2008). 

 

Our idea is that the problem of variable-number multi-target 

tracking by still sensor is similar to the problem of variable-

number multi-target detection by moving sensor, e.g. aerial 

laser scanner. The structure of these problems are almost the 

same; what we can observe are generated stochastically by 

latent variables, or “state”, and state follows a certain dynamics 

and it sometimes appears and disappears. What generates time-

series changing is the only difference; in tracking, motion of 

target does, and in detection, irradiation angle of sensor. In the 

following section, we explain PHD filter, formulate multi-target 

detection problem by using it, and then apply a proposed 

method to the acquired data of forest and vegetation.  

 

 

2. PROBABILITY HYPOTHESIS DENSITY FILTER 

2.1 Sequential Bayesian Filtering 

Consider a general state space model (Figure 1): non-Gaussian 

and nonlinear state space model for time series zk,  

 

            1|k k kp x x x            (1) 

            |k k kpz z x             (2) 

 

where xk is an unknown state vector and the conditional 

probability functions of each equation are not necessarily 

Gaussian. Equation (1) is called the system model and equation 

(2) the observation model. After we obtain z1:k = {z1, z2,..., zk}, 
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a series of observations from time 1 to k, the posterior 

distribution of xk is calculated by Bayes’ theorem as follows: 
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          (3) 

 

Equation (3) shows the process of sequential Bayesian filtering. 

It includes the system model and the observation model, and the 

estimated result at time k-1: p(xk-1|z1:k-1). Therefore we can 

sequentially estimate the posterior of xk by this equation. If we 

need the estimated value for xt, an expected value of p(zt|xt) is 

usually used. 

 

 

Figure 1.  General state space model 

 

2.2 PHD Filter 

Equation (3) can be directly applied to the single- or constant-

number-target detection. However, considering a variable- 

number multi-target detection, the dimension of xk should 

increase or decrease appropriately according to the increase or 

the decrease of targets. Thus equation (3) cannot be directly 

used for problems in such situations, which are indeed true with 

real application. 

 

Consider a random and non-negative integer n(k), the number of 

targets at time k, and a state vector Xk ={x1, x2,…,xn(k)} at time 

k. As n(k) is stochastic, Xk is also a random variable (vector). 

Usually state space of Xk is not computable because its 

dimension increases exponentially according to the number of 

objects. Instead, probability hypothesis density (PHD), the first 

order moment of this state space is proposed. And PHD is 

shown to be identical to the factorial moment density in point 

process theory, so PHD can be any density function that when 

integrated over the interested area, the integration of it is the 

expected number of the targets within that area. Therefore 

taking multi-target detection as an example, under a set of time-

series observations Z1:k = {Z1, Z2,…, Zk} from sensors, we can 

estimate the number of targets n(k) and their positon xk at time 

k: Xk ={x1, x2,…,xn(k)} by PHD filter. 

 

We indicate PHD of a state vector x as D(x). Then the 

predictive PHD at time k given observation from time 1 to k-1 is 

described as 

 

       1: 1 1 1 1: 1 1| | |k k s k k k k k birth kD p p D d D     x Z x x x Z x x  (4) 

 

where ps is the survival probability that the target x at time k-1 

will appear at k, Dbirth(xk) is the PHD of the likelihood function 

that makes a new targets x at time k, and p(xk|xk-1) is the single-

target motion model: system model of equation (1). Then the 

posterior of PHD after observation at time k is that 

 

 

 
 

     
 

1:

1: 1

1: 1

|

|
1 |

| , |
k

k k

d d k k

c c d k

D

p
p p D

p p p z D


 

  
   

    

z Z

x Z

z x
x Z

z Z

(5) 

 

where pd is (positive, both true and false) detection rate of x, μc 

is the expected value of false detection, pc(z) is false detection 

distribution, < f(･), g(･)> denotes convolution of functions f 

and g with respect to ･ , and p(z|x) is the single-target 

observation model of equation (2): the conditional probability 

density of observation z given x. 

 

The integration of posterior of PHD (equation (5)) is the 

expectation of the number of targets at time k, n(k). That is, 

 

     1:|k k kE n k D d    x Z x    (6)     (3) 

 

and usually we use the nearest integer of E[n(k)] as the 

estimated value of number of targets at time k. 

 

2.3 Particle Filter Implementation of PHD Filter 

In this subsection, we explain how to calculate equation (4) and 

(5) using particle approximation (Figure 3). This 

implementation has been proposed by some researchers (Vo et 

al., 2003; Zajic and Mahler, 2003; Vo et al., 2005). 

 

2.3.1 Preparation: Consider a set of particles 
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that approximates the PHD at time instance k-1, where xk-1,i is a 

realisation of D(xk-1), wi is the weight of particle i, and Lk-1 is 

the number of particles and at time k-1. Set the number of 

particles ρ par one object. Then Lk-1 = ρ×E[n(k-1)] and wi = 1/ρ. 

 

2.3.2 System Model: Firstly calculate the first term of right-

hand member of equation (4) by set wi = ps/ρ: 
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This calculation corresponds to the survival of the target. Then 

calculate the second term of right-hand member of equation (4) 

by generate ρ particles drawn from Dbirth(xk) with their weight 

μbirth/ρ, where μbirth is the expected number of newly generated 

object defined by Dbirth(xk). 

 

2.3.3 Observation Model: At this point the number of 

particles is Lk-1 + μbirth/ρ. For each particle i=1, 2,…, Lk-1 + 

μbirth/ρ, calculate and update 
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Then we obtain the particle approximation of posterior PHD at 

time instance k as  
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2.3.4 Estimation and Resampling: Calculate equation (6) as 

 

    i

i

E n k w       (11) 

 

and the number of particles to be resampled as 

 

  
k i

i

L w     (12) 

 

Then resample particles by drawing Lk times from the posterior 

PHD: the probability of each particle proportional to its weight. 

Now we obtain equation (7) at time k, and then repeat from 

2.3.2. 

 

 

Figure 2. Particle filter implementation of PHD filter 

 

 

3. PHD FILTERING FORMULATION FOR MULTI-

TARGET DETECTION 

In this section we formulate the multi-target detection problem 

using PHD filter. 

 

3.1 Observation 

Firstly we explain the data and observations. Full-waveform 

laser scanner records the reflection intensity as a function of 

elapsed time, or time of flight, t from the laser irradiation at 

time k (Figure 3). A peak of high intensity implies that there is a 

target (Figure 4). And we can calculate the distance between the 

scanner and each reflection point using the speed of light c, the 

relative position using the irradiation angle θ. However there 

can be a target even if the intensity has only a weak peak. So the 

problem is how to identify the number of target from the 

waveform information by relating the peak of intensity to the 

target and distinguishing them from noise, at each irradiation. 

 

3.2 Formulation 

3.2.1 State Vector and Observation Vector: We consider a 

simple situation that we have known the height and attitude of 

airborne. Also since the scanning rate is high enough, we can 

assume that the airborne almost remains still and the targets are 

almost at the same positions in the successive irradiation. 

Therefore the change of the irradiation angle of the scanner is 

only considered in the following of this paper. Above these 

assumptions, we define variable x as position on ground: xy-

plane (x, y) and height from scanner h. We also define variable 

z as a series of reflection intensity r={r1, r2,…, rT}. 

 

3.2.2 System Model: If we consider that the dataset is small 

and thus define x axis parallel to the scanning line (Figure 5), 

the system model p(xk|xk-1) can be written as 
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where ωΔt = θk-θk-1 (<< 1; quite high scan rate) is the difference 

of the irradiation angle θ between time k and k-1, and u is 

random error term for each element of x. The equation that hk is 

approximately equal to hk-1 is based on the high scan rate 

assumption stated above. And under this assumption, the system 

model for x is derived as  
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Figure 3. Full-waveform data 

 

 

 

Figure 4. x-h coordinates, reflection intensity and target 

 

 

 

Figure 5. x-y coordinates for small dataset 
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3.2.3 Observation Model: We can employ any function that 

relate the observation r and the variable x as an observation 

model. Note that even in the full-waveform, intensity r is 

recorded as the convolution of energy in a short time window 

between t and t+Δt, and we denote it as the intensity rt at 

discrete time instance t. In this paper, we define the observation 

model as following model: 
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where 
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and c is the speed of light. The first equation of (16) means that 

twice of the distance from the scanner to the target equals the 

elapsed time t* times c, and the second means the interpolation 

of intensity at t* using neighbour discrete time t. This model 

represents that higher intensity implies higher likelihood of the 

existence of the target.  

 

3.2.4 Other Variables: For the other components of this 

PHD filter, we can put the target survival rate ps, target birth 

rate and the distribution for Dbirth(xk) according to the 

observation site. Also we can put detection rate pd and false 

detection μcpc according to the observation situation. If we 

don’t have a priori knowledge about them, we usually put 

constant p and uniformly distributed D. 

 

3.3 Object Identification 

3.3.1 Concept: PHD in equation (4) and (5) doesn’t have 

any information about the target identification. One possible 

solution to identify each target from PHD is to apply a 

clustering method at each time. On the other hand, in case of the 

PHD filter in this paper, we assume that we can track each 

target before detection at each time k, namely “track-before-

detect” approach in the field of visual tracking. In this 

subsection, we explain the manner to manage labels put on to 

each target, based on Ikoma et al. (2013). The purpose here is to 

determine each particle’s association with target to calculate the 

position of each target. 

 

3.3.2 Modification in Filtering: We put a set of positive 

integer labels on each target. Thus, we add a label variable l to 

state vector x of equation (7), 
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and we put l=0 for newly generated particles. Then the same as 

Ikoma et al. (2013), based on l at previous time instance k-1, we 

eliminate other targets from the original reflection signal at time 

k. We calculate state-dependent likelihoods for each target, 

instead of summation of all targets in equation (9). The 

estimation result for each target is calculated as the expected 

value for each label. 

 

3.3.3 Labelling Rule: After we calculate posterior PHD at 

time k, we update the set of labels according to labelling rule. It 

includes putting new label and removing existing label. We put 

new positive integer label for particles with l=0 if the 

summation of their weight within a sliding window along h is 

greater than threshold ladd. In the same way, we remove the 

existing label with positive integer if the summation of their 

weight are less than threshold lrem, and replace their labels with 

l=0. The threshold ladd and lrem are defined in advance. Note that 

this labelling is independent of PHD estimation itself. Thus the 

integration of particles’ weight with a certain label may be 

different from one. This fact might be strange because the 

number of one unique target is not necessarily estimated to be 

one. However, the labelling rule almost works well and the 

integration usually converges at around one if ladd and lrem are 

appropriately controlled. 

 

3.3.4 Initial PHD: At last, we manually set the initial PHD, 

setting variables (x, h, l) for each target. Although this process 

can be replaced with automatic target detection method, as we 

focus on basic performance of PHD filtering step in this paper, 

we give priority to avoiding any initial errors. 

 

 

4. EXPERIMENTS 

4.1 Data and Setting 

We use the full-waveform data of forest and vegetation at the 

Institute for Nature Study located in Tokyo. Data was acquired 

on October 20, 2012, from the altitude of 950m. Scan rate is 

100[kHz], scan rate is 42[Hz] and scan angle is 30[°] (see 

Nakano and Chikatsu (2015) for more detail). Thus we can 

calculate ωΔt = 4.4×10-4[rad/shot] in equation (13) and (14). 

 

Experiment to detect multi-targets in 20 irradiation points that 

are align is conducted. We define x axis on this alignment so 

that we can omit the variable y on xy-plane. Thus we directly 

use the system and observation model of equation (13) and (15), 

respectively. According to the data, we set the parameters 

shown in Table 6. 

 

Parameter Value 

# particles par target ρ 1000 

Survival rate ps 0.7 

(*)Target birth (rate) μbirth 0.3 

Detection rate pd 0.9 

(*)False detection (rate) μc 0.1 

Label putting ladd 0.4 

Label removal lrem 0.6 

(*)Target birth and false detection rate are assumed to follow a 

uniform distribution over the state-space in this experiment. 

Table 6. Parameter settings  

 

4.2 Result and Discussion 

Firstly we obtain ground truth data by manually detecting 

targets from original reflection signals. There are 56 targets 

during 20 time steps and the number of targets at each time 

varies from one to four (Figure 7). 

 

Experimental results show that the proposed technique can 

simultaneously estimate the number of targets and their 

positions. Figure 7 shows the estimated and true number of 

targets at each time. Precise estimation is achieved by the 
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proposed technique at many time instances. It may be a 

limitation so far that after emergence of new target and 

disappearance of existing target at around time k=10 and k=16, 

the estimated number of targets cannot follow such increase or 

decrease immediately. Nevertheless, after a few time steps, the 

estimation become precise again. 

 

Figure 8 shows the estimated posterior PHD and original 

reflection signal at some time instances. Colour lines show the 

PHD corresponding to each target. Red line shows the label 

variable l=1, yellow l=2, purple l=3, yellow green l=4, and blue 

l=0. Their densities are shown in left-hand side axis. Also the 

black line shows the intensity of right-hand side axis. Since the 

peak of reflection intensity corresponds to peak of PHD, we can 

conclude that the estimation of position of each target is also 

almost accurate. Especially the increase and decrease of the 

number of targets are estimated accurately at time k=6 and k=8. 

 

Figure 9 shows the expected and true value of the position of 

targets, (x, h). Residuals of estimated position are within 20[cm] 

for 29 targets of 56, and 50[cm] for 39 targets. Some false 

detections are shown in Figure 9. For example, one target is 

incorrectly detected as two targets at k=10, and two targets as 

only one target at k=16. They will be solved by more accurate 

observation model and labelling. Precise analysis on the shape 

of waveform corresponding to existence of targets will be the 

next step to find such models.  

 

 

5. CONCLUSION 

In this paper, we introduced the technique of PHD filter to 

multi-target detection by full-waveform airborne laser scanner. 

We assumed the detection problem as the time series analysis 

and formulated the filtering model. In the modelling of PHD 

filter, movement of scanner is modelled as the system model, 

reflection intensity as the observation model, and increase and 

decrease of the number of the targets as the birth and survive 

rate. We also set the rule of labelling to identify each target 

estimated by the filter.  

 

Experimental result showed the ability of the proposed method 

to estimate the number of objects and their positions. Besides, 

compared with existing method, this method allowed an 

analysis without a priori knowledge of the number of targets 

and an assumption of Gaussian distribution. 

 

In the future, other observation models need to be employed, 

which are more robust to noises. For instance, we will consider 

that the target corresponding to the ground surface has more 

survival rate than that to the vegetation. Also an application of 

this method to the problem of larger size such as whole forest is 

recommended. They will be presented in a future paper. 

 

 

 

 

 
 

Colour lines show the estimated PHD of each label (left axis) 

and black shows the signal intensity (right axis). 

Elapsed time t can be converted to x-h coordinates by 

equation (14). Smaller t means smaller h (also see Figure 9) 

Figure 7. Number of targets at each time k 

 

Figure 9. Estimated results on x-h coordinates Figure 8. Estimated PHD 
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