DOI:10.13671/j.hjkxxb.2015.0800

李小飞,李一菲,钱天伟.2016.淀粉稳定 Fe₃O₄纳米粒子对水中 As(V)的吸附特性研究[J].环境科学学报,36(9):3222-3229 Li X F,Li Y F, Qian T W. 2016. Arsenate adsorption by starch-stabilized Fe₃O₄ nanoparticles in water[J]. Acta Scientiae Circumstantiae, 36(9): 3222-3229

淀粉稳定 $Fe_3 O_4$ 纳米粒子对水中 As(V) 的吸附特性 研究

李小飞,李一菲,钱天伟*

太原科技大学环境与安全学院,太原 030024 收稿日期:2015-10-26 修回日期:2015-11-27 录用日期:2015-12-30

摘要:以可溶性淀粉作为稳定剂制备纳米 Fe_3O_4 粒子,探讨了反应时间、pH 值、初始砷浓度和腐殖酸对 Fe_3O_4 纳米粒子吸附水体中 As(V)的吸附效果影响.实验结果表明,淀粉稳定的 Fe_3O_4 纳米粒子对水体中 As(V)的吸附动力学过程符合准二级动力学,吸附等温线符合 Langmuir 吸附模型;吸附容量随着溶液 pH 的增加逐渐降低,在 pH 为 8.0 的弱碱性水体中对 As(V)的最大吸附容量可达 202.56 mg·g⁻¹;此外,腐殖酸(HA) 能降低纳米粒子对 As(V)的吸附能力.

关键词:可溶性淀粉;纳米四氧化三铁粒子;As(V);吸附

文章编号:0253-2468(2016)09-3222-08 中图分类号:X703 文献标识码:A

Arsenate adsorption by starch-stabilized Fe_3O_4 nanoparticles in water

LI Xiaofei, LI Yifei, QIAN Tianwei*

Institute of Environment Science, Taiyuan University of Science and Technology, Taiyuan 030024

Received 26 October 2015; received in revised form 27 November 2015; accepted 30 December 2015

Abstract: The Fe_3O_4 nanoparticles stabilized by starch were synthesized. The effects of reaction time, pH value, initial As(V) concentration and humic acid on the adsorption of As(V) on Fe_3O_4 nanoparticles were investigated. Results show that the adsorption process of As(V) on starch-stabilized Fe_3O_4 followed the pseudo-second-order kinetic equation. The equilibrium adsorption data fit to Langmuir adsorption model. Adsorption capacity of the Fe_3O_4 nanoparticles decreased with the increase of pH value, and the maximum adsorption capacity of 202.56 mg \cdot g⁻¹ was obtained at pH 8.0. Humic acids reduces the adsorption of As(V) on starch-stabilized Fe_3O_4 nanoparticles. **Keywords**: soluble starch; Fe_3O_4 nanoparticles; As(V); adsorption

1 引言(Introduction)

砷(As)是自然界中广泛分布的一种有毒致癌 类物质,普遍存在于大气、水体、岩石和土壤中(刘 英俊等,1984;Pontius et al.,1994).近年来,随着工 业的发展和深层地下水的大量开采,多地出现了区 域性砷中毒事件,由此砷污染逐渐受到人们的关 注,砷污染修复技术的研究也已成为环境科学研究 的热点之一(Hughes et al., 2002; Smedley et al.,

2002; 赵凯等, 2015).

吸附法是用于处理含砷污水的主要方法(韩彩 芸等,2011;高小娟等,2012),具有生产成本低、工 艺简单、吸附材料来源广泛等优点.近年来,随着环 境纳米技术的发展,利用纳米材料作为除砷吸附剂 用以解决环境砷污染问题逐渐成为研究的热点,其 中,以Fe₃O₄为代表的铁系纳米材料因表现出具有 独特的理化性质和较高的砷吸附容量而成为研究 的重点(Suvasis *et al.*,2003).纳米级Fe₃O₄粒子具有

基金项目:山西省科技重大专项计划(No.20131101028);山西省回国留学人员科研资助项目(No.2013-重点 2);太原科技大学博士启动基金 (No.20142042)

Supported by the Major Special Science and Technology Projects in Shanxi Province (No.20131101028), the Shanxi Province Foundation for Returners (No.2013-2) and the Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology (No.20142042)

作者简介: 李小飞(1990—),男,E-mail:xiaofei_tykd@163.com; * 通讯作者(责任作者),E-mail:twqian@sina.com

Biography: LI Xiaofei(1990-), male, E-mail; xiaofei_tykd@ 163.com; * Corresponding author, E-mail; twqian@ sina.com

极大的砷吸附容量,其吸附性能与粒子的分散程度 有关.然而,细小的纳米粒子因较高的表面能,容易 发生团聚形成大粒径的粒子沉淀,使得除砷效果下 降.林本兰等(2006)利用油酸对纳米 Fe₃O₄进行表 面改性,结果发现,表面改性能明显减小制备的纳 米材料的粒径.He 等(2007)发现,多糖稳定剂-淀粉 可以通过静电稳定效应和空间位阻作用有效地阻 止 Fe₂O₄粒子发生团聚,形成具有高比表面积和良 好稳定性的纳米粒子悬浮液.张峰等(2009)则采用 聚乙二醇(PEG)作为活性剂制得了粒径小、分散性 好的 Fe₃O₄纳米粒子.由于淀粉的生产成本低,绿色 环保,使用过程无二次污染,作为纳米材料稳定剂 具有广阔的应用前景.因此,本研究拟采用淀粉稳定 Fe₃O₄纳米粒子作为吸附材料进行砷的吸附动力学 实验研究,并进一步对其在天然高砷地下水修复应 用方面进行研究.张丽萍等(2014)的调查结果显示, 大同盆地地下水中的砷主要以砷酸盐形式存在,因 此,本文以淀粉稳定的 Fe₃O₄纳米粒子悬浮液作为 吸附剂,研究反应时间、pH值、初始浓度和腐殖酸对 As(V)吸附的影响,并初步探讨稳定纳米 Fe₃O₄粒 子应用于天然富砷地下水修复中的效果.以期为运 用淀粉稳定的 Fe₂O₄纳米悬浮液原位修复地下水中 的砷污染提供必要的理论基础和实践依据.

2 材料与方法(Materials and methods)

2.1 实验材料

六水氯化铁($FeCl_3 \cdot 6H_2O$)、七水硫酸亚铁 ($FeSO_4 \cdot 7H_2O$)、可溶性淀粉(($C_6H_{10}O_5$)_n)、腐殖酸、 氢氧化钠(NaOH)、盐酸(HCl)均为分析纯; As(V)标准溶液购自济南众标科技有限公司.

天然富砷地下水采自山西省朔州市山阴县大 营村地下深度为 25~28 m 的含水层, As 浓度为 382 μg·L⁻¹, pH 为 8.0.

2.2 实验仪器

PHB-1 精密 pH 计(上海三信仪表厂)、D8 ADVANCE X 射线衍射仪(XRD,德国 Bruker 公司)、 JSM-7001F 热场发射扫描电镜(SEM,日本电子株 式会社)、JEM-2010 高分辨透射电子显微镜(TEM, 日本电子株式会社)、novAA 400P 原子吸收光谱仪 (德国 Analytik Jena 公司)、HS55 型氢化物发生器 (德国 Analytik Jena 公司)、CF16RXII 型高速离心机 (日本日立公司);CPA225D 型电子分析天平(德国 Sartorius 公司),感量为 10⁻⁶ g.

2.3 四氧化三铁纳米粒子的制备

淀粉稳定 Fe_3O_4 纳米粒子采用在 An 等(2011) 方法基础上改良的方法制备.首先,将 100 mL 按 $FeCl_3 \cdot 6H_2O$ 与 $FeSO_4 \cdot 7H_2O$ 摩尔比 2:1 比例配成的 铁溶液转移到 700 mL 0.172% 的淀粉溶液中,搅拌 10 min,使溶液充分混匀.然后,将浓度为 2 mol·L⁻¹ 的 NaOH 溶液逐滴滴入混合溶液中,pH 计监测溶液 pH 变化,pH 稳定达到 11 时停止滴入,继续搅拌 5 min,整个过程一直在氮气保护下进行.最后,密封瓶 口置于暗处晶化 48 h,使用前用盐酸调节纳米悬浮 液.最终悬浮液的 Fe_3O_4 纳米粒子悬浮 液.最终悬浮液的 Fe_3O_4 纳米粒子质量浓度为 776 mg·L⁻¹,淀粉含量为 0.15%.同时不加淀粉,其他步 骤和制备方法同上,制备未加稳定剂的 Fe_3O_4 纳米 粒子.

2.4 纳米粒子的表征

用 X 射线衍射仪(XRD)对制备好的纳米粒子 进行分析测定.未稳定的纳米粒子由于团聚作用产 生沉淀,因此,可以直接用磁体进行沉淀收集,再冷 冻干燥得到固体颗粒.淀粉稳定的纳米粒子由于粒 径小、分散性好,所以对其进行直接冷冻干燥处理 得到固体颗粒.

用扫描电镜(SEM)和透射电镜(TEM)对制备 好的纳米粒子进行分析测定.对未稳定的纳米粒子 进行搅拌,使其均匀分散于悬浮液中,再快速移取 一定体积的悬浮液用定量的乙醇稀释均匀.稳定的 纳米粒子则直接移取相同体积悬浮液用同样的操 作步骤稀释在乙醇中.最后,吸取适量的稳定和未稳 定纳米粒子稀释液滴加在铜片上,电热真空干燥处 理后进行电镜测定.

2.5 吸附动力学测定

配置 100 mg·L⁻¹的砷溶液,使用时逐级稀释至 所需浓度.将合成好稳定的 Fe₃O₄悬浮液和一定浓度 的砷溶液分别加入到一系列 60 mL 的棕色试剂瓶中 混匀,用 0.1 mol·L⁻¹ HCl 或 0.1 mol·L⁻¹ NaOH 调节 溶液 pH 值,混合溶液总体积为 30 mL,pH 为 8.0,砷 浓度为 375 μ g·L⁻¹,Fe₃O₄质量为 2.33 mg.28 °C条件 下,将棕色试剂瓶置于恒温振荡器中以 180 r·min⁻¹ 的转速振荡,每隔一定时间取样后 15000 r·min⁻¹离 心 30 min,取上清液,用氢化物发生原子吸收光谱法 测定溶液中砷的浓度.

2.6 吸附等温曲线测定

60 mL的棕色试剂瓶分为4组,将合成好稳定的

Fe₃O₄悬浮液和一系列浓度的砷溶液分别加入到各组 试剂瓶中混匀,用 0.1 mol·L⁻¹ HCl 或 0.1 mol·L⁻¹ NaOH 调节溶液 pH 值,混合溶液总体积为 30 mL, Fe₃O₄质量为 2.33 mg,各组 pH 分别为 3.0、6.0、8.0、 11.0,每组选取砷的浓度为 2.5、5、10、20、30、40、50、 75 mg·L⁻¹.28 ℃条件下,将棕色试剂瓶置于恒温振 荡器中以 180 r·min⁻¹的转速振荡 60 h 后 15000 r·min⁻¹离心 30 min,取上清液,用氢化物发生原子 吸收光谱法测定溶液中砷的浓度.砷的吸附量计算 公式为:

$$q_{\rm e} = \frac{\left(c_0 - c_{\rm e}\right) V}{m} \tag{1}$$

式中, q_e 为吸附量($mg \cdot g^{-1}$), c_0 为砷的初始浓度 ($mg \cdot L^{-1}$), c_e 为砷的平衡浓度($mg \cdot L^{-1}$),V为混合溶 液的总体积量(mL),m为 Fe₃O₄的加入量(g). 2.7 初始浓度和腐殖酸(HA)对吸附的影响

在温度为 28 ℃的条件下,将合成好的稳定纳米 Fe₃O₄悬浮液和一定浓度的砷溶液分别加入到 3 组 棕色试剂瓶中混匀,溶液总体积为 30 mL,pH 为8.0, 砷浓度分别为 375、500 和 1000 μ g·L⁻¹,Fe₃O₄质量 为 2.33 mg,其余步骤同 2.5 节.在同样 28 ℃的条件 下,取一定量的腐殖酸溶液与一定浓度的砷溶液于 60 mL 的棕色试剂瓶中混匀,溶液总体积为 30 mL, pH 为 8.0,砷浓度为 1000 μ g·L⁻¹,腐殖酸浓度为 25 mg·L⁻¹,其余步骤同 2.6 节.

2.8 纳米粒子对天然富砷地下水砷的吸附

在温度为 28 ℃ 的条件下,将合成好的稳定 Fe₃O₄纳米粒子悬浮液和一定体积的天然高砷地下 水分别加入到 3 组棕色试剂瓶中混匀,溶液总体积 为 30 mL,具体混合比例如表 1 所示,其余步骤同 2.6节.

表 1	稳定 Fe_3O_4 纳米粒子与天然地下水的混合比例	

Table	1 The mixin	g proportion o	f starch-coate	ed Fe_3O_4 and	groundwater
编号	纳米粒子 悬浮液/mL	地下水/mL	去离子 水/mL	Fe ₃ O ₄ 质量/mg	As 浓度/ (µg•L ⁻¹)
1	1	27	2	0.776	
2	2	27	1	1.550	344
3	3	27	0	2.330	

3 结果与讨论(Results and discussion)

3.1 Fe₃O₄纳米粒子的表征

图 1 为 Fe_3O_4 纳米粒子的 XRD 图谱.由图可知, 未稳定和淀粉稳定的 Fe_3O_4 纳米粒子 XRD 图谱都 出现了 $Fe_3 O_4$ 的特征峰,但由于悬浮溶液中存在 NaCl,因此,淀粉稳定 $Fe_3 O_4$ 纳米粒子图谱出现了 NaCl 的特征峰.除此之外,图谱并无其他明显的杂 质峰出现,且与 $Fe_3 O_4$ 标准图谱相一致,说明无论是 稳定还是未稳定的条件下制备得到的都是纯度较 高的 $Fe_3 O_4$ 纳米粒子(Zhou *et al.*,2001).稳定 $Fe_3 O_4$ 纳米粒子的衍射峰明显变宽,表明淀粉作为稳定剂 使得 $Fe_3 O_4$ 纳米粒子的粒径减小(Si *et al.*,2004).

图2 Fe₃O₄纳米粒子的 SEM 图(a. 未稳定 Fe₃O₄, b. 稳定 Fe₃O₄)

Fig.2 SEM images of Fe3O4 nanoparticles

知,经过48h后,未稳定的Fe₃O₄纳米粒子绝大部分 都团聚沉淀,淀粉稳定的 Fe₃O₄纳米粒子则分散性 良好,未出现沉淀现象.原因可能是作为稳定剂的淀 粉包覆在 Fe₃O₄纳米粒子表面,由于空间位阻和电 荷排斥作用克服了能使粒子间发生团聚作用的范 德华力和磁性吸力,从而使得纳米粒子能均匀地分 散在水中.通过图 2a 能清晰地看到未稳定 Fe₃O₄纳 米粒子的外貌特征,可知粒子间的团聚现象严重, 大量粒径小于 50 nm 的纳米粒子发生团聚形成一个 具大的粒子团.而稳定的 Fe₃O₄纳米粒子由于表面有 一层淀粉包覆,图 2b 并不能很好地反映出稳定纳米 粒子的外貌特征.因此,进一步运用透射电镜(TEM) 对其进行表征,结果见图3.由图3可知,淀粉稳定的 Fe₃O₄纳米粒子分散性良好,呈单一类球状,粒子粒 径都小于 30 nm,与 An 等(2011)制备的分散性良好 的淀粉稳定 Fe₃O₄纳米粒子粒径为 10~30 nm 的结 论一致.

图 3 稳定 Fe₃O₄纳米粒子的 TEM 图 Fig.3 TEM images of starch-coated Fe₃O₄ nanoparticles

3.2 As(V)吸附动力学

图 4 是 Fe_3O_4 纳米粒子对 As(V)的吸附曲线.由 图可知,无论是未稳定还是稳定的 Fe_3O_4 纳米粒子, 对 As(V)的去除率都随着吸附时间的延长而不断 增加,吸附过程都包含 3 个阶段.初始阶段为 As(V)的快速吸附过程,在吸附 1 h 后的去除率就分别达

到了70%和80%以上,主要原因是该阶段纳米粒子 的比表面积大,吸附活性点位多,吸附反应容易进 行;随着吸附时间的增加,纳米粒子表面的吸附位 点逐渐被占据,进入缓慢吸附阶段,此时的吸附作 用主要依靠内扩散来进行:60 h 后吸附就已经达到 平衡,未稳定和稳定的 Fe₃O₄粒子此时对 As(V)的 去除率分别为92%和99%,两者都表现出高效的除 砷能力,与未稳定的 Fe₃O₄纳米粒子相比,分散性较 好的淀粉稳定的 Fe_3O_4 纳米粒子除 As(V)效率更 高.根据 He 等(2007)的研究,淀粉稳定的纳米铁粒 子注入到地下水中进行原位修复,稳定的纳米铁颗 粒因为良好的分散性能在注入到地下后具有较强 的穿透性,能够实现与较大面积受污染地下水和土 壤的接触,最终固定到土壤中达到去除污染物的效 果.由此可见,采用淀粉作为稳定剂制备 Fe₃O₄纳米 粒子在进行地下水原位修复方面同样具有很大的 应用潜力,在有效修复的同时,不会破坏土壤原本 的结构和功能,符合原位修复的要求和理念(井柳 新等,2010).

图 4 稳定和未稳定的 Fe₃O₄对 As(V)的吸附曲线

为了进一步研究 Fe_3O_4 纳米粒子对 As(V)的吸 附动力学特征,采用吸附动力学模型方程对吸附过 程进行模拟,包括 Lagergren 准一级动力学方程(式 (2))和 Ho 准二级动力学方程(式(3))(Azizian *et al.*,2004; Ho *et al.*,2006).

$$\lg(q_{e1} - q_t) = \lg q_{e1} - \frac{k_1 t}{2.303}$$
(2)

$$\frac{t}{q_t} = \frac{1}{k_2 q_{e2}^2} + \frac{t}{q_{e2}}$$
(3)

式中,q_{e1}、q_{e2}分别为准一级、准二级动力学方程中的

平衡吸附量($mg \cdot g^{-1}$); $k_1(h^{-1}), k_2(g \cdot mg^{-1} \cdot h^{-1})$ 分别 为准一级和准二级吸附速率常数; q_t 是 t 时刻的吸附 量($mg \cdot g^{-1}$).以 lg($q_{e1} - q_t$)对 t 及 t/ q_t 对 t 作图,对数 据进行线性拟合,拟合曲线见图 5,拟合具体参数见表 2.

图 5 稳定和未稳定的 Fe₃O₄吸附 As(V) 的吸附动力学拟合曲线

Fig.5 As(V) adsorption kinetics curve fitting of starch-coated Fe₃O₄ and bare Fe₃O₄

表 2 税	急定 Fe ₃ O ₄	₁和未稳定的 F	e ₃ O₄吸附	砷的动力学拟合参数
-------	-----------------------------------	----------	---------------------	-----------

吸附剂		准一级动力学方程		准	二级动力学方程	
	k_1/h^{-1}	$q_{\rm el}/({\rm mg}\!\cdot\!{\rm g}^{-1})$	R^2	$k_2/({\rm g}\!\cdot\!{\rm mg}^{-1}\!\cdot\!{\rm h}^{-1})$	$q_{\rm e2}/({\rm mg}\!\cdot\!{\rm g}^{-1})$	R^2
未稳定的 Fe ₃ O ₄	0.2043	1.0037	0.6949	0.8873	4.4583	0.9999
稳定的 Fe ₃ O ₄	0.1587	0.8972	0.5092	1.4073	4.6904	0.9999

由拟合结果可知,未稳定和稳定 Fe_3O_4 纳米粒 子对 As(V)的吸附过程符合准二级动力学方程, R^2 均达到了 0.9999.此外,拟合得到的平衡吸附量与实 际平衡吸附量相差不大,准二级动力学模型拟合得 到未稳定和稳定 Fe_3O_4 纳米粒子对 As(V)的平衡吸 附量分别为 4.46 和 4.69 mg·g⁻¹,而实测值分别为 4.45 和 4.75 mg·g⁻¹,两者比较接近.准二级吸附动力 学模型假设条件是吸附剂与吸附质之间存在电子 的共用或转移,即吸附速率受到化学吸附机理的控 制.因此, Fe_3O_4 纳米粒子对水体中 As(V)的吸附过 程不仅包含物理吸附过程,还存在化学吸附的共同 作用(Ho *et al.*,1999; Susmita *et al.*,2011).

3.3 不同 pH 条件下 As(V) 的吸附等温线

由图 6 可知,稳定的 Fe₃O₄纳米粒子对 As(V) 的吸附容量随着初始浓度的增加而增大,随着 pH 的增大而逐渐减小.酸碱度影响 Fe₃O₄纳米粒子吸附 溶液中的 As(V),可能是因为 As(V)在溶液中主要 是以砷酸根的形式存在,而随着 pH 的升高,溶液中 的 OH⁻逐渐增多,OH⁻与砷酸根离子竞争吸附点位, 从而使纳米粒子对砷的吸附量减少(Jia *et al.*, 2007).相反地,高 pH 有利于 As(V)的解吸,为地下 水中砷的富集创造条件,因此,高砷地下水一般呈 弱碱性(Smedley *et al.*,2002; 郭华明等,2003).

为了进一步确定吸附剂和吸附质之间的相互 作用和吸附机理,本研究采用了两种模型对吸附等 温线进行拟合分析,分别是 Langmuir 单层吸附模型 (式(4))和 Freundlich 经验模型(式(5))(张蕾等, 2009).

$$q_e = \frac{bc_e q_m}{1 + bc_e} \tag{4}$$

 $q = kc_e^{1/n} \tag{5}$

式中, q_e 为吸附平衡时的吸附量($mg \cdot g^{-1}$);b为等温 方程的平衡常数($L \cdot mg^{-1}$); c_e 为吸附达到平衡时砷 的质量浓度($mg \cdot L^{-1}$); q_m 为颗粒表面单层的饱和吸 附量(mg·g⁻¹); q 为吸附量(mg·g⁻¹); k 为等温方程 相关常数(L^{1/n}·mg^{1-1/n}·g⁻¹); n 为等温式中与吸附强 度相关的常数. k 越大, 表明吸附效果越好; n 越大, 表明材料越容易吸附. 以 c_e 为横坐标, q_e 为纵坐标进 行 Langmuir 和 Freundlich 模型拟合, 得到各 pH 的 非线性吸附等温线拟合曲线和具体拟合参数, 结果 如图 6 及表 3 所示.

表3 2	不同 pH	条件下	As(V)	的吸附	等温线	拟合	参数
------	-------	-----	-------	-----	-----	----	----

Table 3	Fitting parameters	of Langmuir	and Freundlich	isotherm models	for As adsorption	with different pH
	01				1	1

11	Langmuir 模型			Freundlich 模型		
рн	$q_{\rm m}/({\rm mg}\cdot{\rm g}^{-1})$	b	R^2	$k/(L^{1/n} \cdot mg^{1-1/n} \cdot g^{-1})$	n	R^2
3.0	447.41	0.0526	0.9894	50.72	2.004	0.9870
6.0	244.08	0.1266	0.9826	47.51	2.501	0.9741
8.0	202.56	0.0935	0.9868	35.23	2.450	0.9813
11.0	77.46	0.0594	0.9840	10.19	2.249	0.9922

通过 Langmuir 拟合参数 b 可以计算得到判断 吸附剂对吸附质亲和力的无量纲参数 r.r 的范围在 0~1,表明有利吸附(Hu et al., 2011),计算公式 如下:

$$r = \frac{1}{1 + C_0 b} \tag{6}$$

Langmuir 假设的是吸附剂的表面存在大量的吸附活性中心点,吸附只在中心点上进行,每个点位吸附一个物质分子,点位数量和吸附物质的量是有限的,当吸附点位全部被占满时,吸附量就达到了饱和(Hu et al., 2011).由拟合结果可以看出, Langmuir 单层吸附模型方程更准确地表达了稳定的Fe₃O₄纳米粒子吸附砷过程中吸附量与砷浓度的关 系,这与谢亚巍(2012)的铁氧化物对砷的吸附特性 研究的结论一致,也与前文得到的溶液中 OH⁻能与 砷酸根离子产生竞争吸附点位,随着 pH 的增大,吸 附容量逐渐降低的结论一致.根据公式计算得到各 pH 条件下的最大吸附量依次为 447.41、244.08、 202.56、77.46 mg·L⁻¹,说明稳定的 Fe₃O₄纳米粒子对 As(V)具有大的饱和吸附量,能有效地去除水体中 的 As(V).计算得到不同 pH 条件下各初始浓度的 r 都在 0~1 的范围内,说明纳米粒子对 As 的吸附为 有利吸附,吸附反应易于进行.此外,Freundlich 模型 方程也能对吸附行为进行较好的拟合,不同 pH 拟 合得到的 k 和 n 都比较大,也说明了纳米粒子对 As(V)具有很强的吸附能力(宋娇艳等,2014).

表 4	不同 pH 条件下各初始质量浓度的 r 值	
-----	-----------------------	--

	Table 4 <i>r</i> -values at different initial concentrations with different pH							
ъН				不同初始质量	量浓度下的 r 值			
pm	$2.5 \text{ mg} \cdot \text{L}^{-1}$	5.0 mg·L ⁻¹	$10 \text{ mg} \cdot \text{L}^{-1}$	$20 \text{ mg} \cdot \text{L}^{-1}$	$30 \text{ mg} \cdot \text{L}^{-1}$	$40 \text{ mg} \cdot \text{L}^{-1}$	$50 \text{ mg} \cdot \text{L}^{-1}$	$75 \text{ mg} \cdot \text{L}^{-1}$
3.0	0.8838	0.7918	0.6553	0.4873	0.3879	0.3221	0.2754	0.2022
6.0	0.7596	0.6124	0.4413	0.2831	0.2084	0.1649	0.1364	0.0852
8.0	0.8105	0.6814	0.5167	0.3484	0.2628	0.2109	0.1762	0.1248
11.0	0.8707	0.7710	0.6273	0.4590	0.3594	0.2962	0.2519	0.1833

3.4 其它因素对 As(V)吸附的影响

3.4.1 初始浓度对 As(V)吸附的影响 由图 7 可 知,随着溶液中 As(V)浓度的增加,去除率逐渐降 低.溶液初始 As(V)浓度由 375 $\mu g \cdot L^{-1}$ 增加到 500 $\mu g \cdot L^{-1}$ 时,反应 60 h 后的去除率由 99%下降到 97%,增加单位浓度去除率下降的幅度比较小,说明 淀粉稳定的Fe₃O₄纳米粒子表面的吸附点位还有大 量空余,吸附还未达到完全饱和.当浓度增加到 1000 μ g·L⁻¹时,去除率下降到了 87%,单位浓度的 去除率下降速率加快,说明此时溶液中 As(V)浓度 的继续增加会使得去除率下降速率加快.稳定的 Fe_3 O₄纳米粒子吸附溶液中的 As(V) 过程中,随着吸附 时间的延长, pH 会出现小幅度的下降.吸附 60 h 后 溶液 pH 从初始的 8.0 变为 7.8, 60 h 内的波动范围 在 7.5~8.0, 波动幅度较小.因此,用稳定的 Fe_3O_4 纳 米粒子吸附溶液中的 As(V)可视为不会引起 pH 的 改变.

Fig.7 Adsorption curve of As (V) under different different initial $\label{eq:ads} As(\,V) \mbox{ concentrations}$

3.4.2 腐殖酸(HA)对 As(V)吸附的影响 本实验 讨论的是溶于碱不溶于酸的腐殖酸对淀粉稳定的 Fe_3O_4 纳米粒子吸附水中 As(V)的影响,腐殖酸中 C 元素的质量分数为 56.95%.将 0.1 g的腐殖酸溶于 20 mL浓度为 0.1 mol·L⁻¹的 NaOH 溶液中,用蒸馏 水定容到 100 mL,得到质量浓度为 1.0 g·L⁻¹的备用 腐殖酸溶液.

由表5可知,溶液中只加入可溶性腐殖酸浓度 为25 mg·L⁻¹时不会对溶液的As(V)浓度产生影 响,但腐殖酸的存在会极大地降低 Fe₃O₄纳米粒子 对 As(V)的去除能力.浓度为 1000 µg·L⁻¹的 As(V) 溶液中加入的腐殖酸浓度为 25 mg·L⁻¹, Fe₃O₄纳米 粒子对 As(V) 的去除率从未加有机质前的 87%下 降到71%,下降了16%.由此可见,可溶性腐殖酸的 存在会抑制 Fe_3O_4 纳米粒子对溶液中 As(V)的吸附 作用.这可能一方面是因为加入腐殖酸之后,Fe₃O₄ 粒子表面的一部分吸附位点被腐殖酸占据,与砷酸 根产生竞争吸附,抑制了对砷的吸附作用(陈锴等, 2010):另一方面,腐殖酸能与溶液中的砷发生络合 作用,产生As(V)-HA 络合物,由于空间位阻和表 面电荷等因素的影响,该络合物不易被 Fe₃O₄纳米 粒子吸附,从而抑制了对砷的吸附作用(Wang et al., 2006; 刘广良等, 2011). 陈锴等(2010) 研究发

现,当腐殖酸浓度为25 mg·L⁻¹时,腐殖酸与砷酸根 的竞争吸附作用是导致纳米粒子吸附砷能力下降 的主要因素.但由表5可知,溶液As(V)浓度为375 μg·L⁻¹时,25 mg·L⁻¹腐殖酸的加入并未对Fe₃O₄纳 米粒子吸附作用产生明显的影响.可能是因为质量 一定的纳米粒子对As(V)的吸附能力足以消除腐 殖酸带来的阻碍作用,因此,去除率并没有引起大 的变化.

表 5 腐殖酸对 As(V) 吸附的影响

Table 5 The effect	of humic acid on the .	As(V) adsorption
As(V)浓度/(µg·L ⁻¹)	试剂	去除率
1000	HA	0
	稳定 Fe ₃ O ₄	87%
	HA-稳定 Fe ₃ O ₄	71%
375	稳定 Fe ₃ O ₄	99%
	HA-稳定 Fe ₃ O ₄	98%

3.5 纳米粒子对天然富砷地下水砷的吸附

由表 6 可知,淀粉稳定的 Fe₃O₄纳米粒子对天 然富砷地下水也具有较强的砷吸附能力,砷的去除 率随着淀粉稳定的 Fe₃O₄纳米粒子悬浮液投加量的 增加而逐渐增大,当投加量与地下水体积比为 1:9 时,去除率达到了 95%.但与纳米粒子对标准 As(V) 溶液的吸附能力相比,吸附性能有所下降.这主要是 由于天然富砷地下水成分复杂,不同离子之间产生 了竞争吸附所致.同时,天然地下水中部分砷以活泼 性更强的亚砷酸根形式存在,也降低了吸附材料对 总砷的去除效率(郭华明等,2007).

表 6 稳定 Fe₃O₄纳米粒子投加量对天然地下水砷吸附的影响

Table 6 The dosage effect of starch-coated $\operatorname{Fe}_3\operatorname{O}_4$ on the As adsorption in groundwater

投加量/mL	1	2	3	
去除率	65%	83%	95%	

4 结论(Conclutions)

1)利用共沉淀的方法以淀粉作为稳定剂制备 的稳定 Fe₃O₄纳米粒子与未加稳定剂制备的 Fe₃O₄ 粒子相比,具有稳定性高、分散性好、在悬浮液中不 易团聚沉降的特点.因此,从制备效果、环保和地下 水原位修复应用的角度出发,以淀粉作为合成纳米 粒子的稳定剂是较好的选择.

2)研究表明,淀粉稳定的 Fe₃O₄纳米粒子对溶 液中的 As(V)具有较强的吸附能力,吸附容量与溶 液 pH 有关,随着 pH 增大,纳米粒子对 As(V)的吸 附容量逐渐减小.因此,运用 Fe₃O₄粒子去除砷时还 要考虑溶液的酸碱度,当碱性过大时吸附剂不宜用 Fe₃O₄纳米粒子.Fe₃O₄对 As(V)的吸附过程属于准 二级动力学模型,吸附等温线更符合 Langmuir 单层 吸附模型方程.

3)在水溶液为弱碱性时,淀粉稳定的 Fe_3O_4 纳 米粒子吸附溶液中 As(V)的过程基本不会引起溶 液酸碱度的变化.可溶性腐殖酸对纳米粒子吸附水 体中 As(V)具有较大的影响,其存在会降低纳米 Fe_3O_4 粒子的除砷能力.当溶液中腐殖酸的含量为 25 mg·L⁻¹时,纳米粒子对 As(V)的去除率下降了 16%.

4) 淀粉稳定 Fe₃O₄纳米粒子对天然富砷地下水 也具有较强的吸附除砷能力,去除效率随着纳米粒 子投加量的增加而增大.当纳米粒子投加量与地下 水体积比为 1:9 时,水体中总砷的去除率达到 了 95%.

责任作者简介: 钱天伟(1968—), 男, 博士, 教授, 主要从事 核废物处置及水土资源领域的研究工作. 近年来主持和参加 多项省级和国家级基金项目, 在国内外重要学术刊物发表论 文数 10 篇, 出版专著两部. E-mail: twgian@ sina.com.

参考文献(References):

- An B ,Liang Q Q,Zhao D Y.2011.Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles[J].Water Research,45(5): 1961-1972
- Azizian S. 2004. Kinetic models of sorption: Atheoretical analysis [J]. Journal of Colloid Interface Science, 276: 47-52
- 陈锴,李义连,梁艳燕,等.2010.腐殖酸对 As(V)在覆铁砂介质中吸 附行为的影响[J].环境化学,29(2):231-236
- 高小娟,王璠,汪启年.2012.含砷废水处理研究进展[J].工业水处理, 32(2):10-15
- 郭华明,王焰新,李永敏.2003.山阴水砷中毒区地下水砷的富集因素 分析[J].环境科学,24(4):60-67
- 郭华明,杨素珍,沈照理.2007.富砷地下水研究进展[J].地球科学进 展,22(11):1109-1117
- 韩彩芸,张六一,罗永明,等.2011.吸附法处理含砷废水的研究进展 [J].环境化学,30(2):517-521
- He F, Zhao D Y. 2007. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers [J]. Environmental Science & Technology, 41: 6216-6221
- He F. 2007. Preparation, characterization, and applications of polysaccharide-stabilized metal nanoparticles for remediation of chlorinated solvents in soils and groundwater [D]. Auburn: University of Auburn
- Ho Y S.2006.Review of secongd-order models for adsorption systems[J]. Journal of Hazardous Materials, 136:681-689

- Ho Y S, McKay G.1999.Pseudo-second order model for sorption processes [J].Process Biochem, 34(5):451-465
- Hughes M F. 2002. Arsenic toxicity and potential mechanisms of action [J].Toxicology Letters, 133(1):1-16
- Hu X J, Wang J S, Liu Y G, et al.2011. Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Lsotherms, kinetics and thermodynamics [J]. Journal of Hazardous Mazardous Materials, 185(1): 306-314
- Jia Y F, Xu L Y, Wang X, et al. 2007. Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite[J].Geochim Cosmochim Acta, 71(7): 1643-1654
- 井柳新,程丽.2010.地下水污染原位修复技术研究进展[J].水处理技术,36(7):6-9
- 刘英俊,曹励明,李兆麟,等.1984.元素地球化学[M].北京:科学出版社
- 刘广良,蔡勇.2011.环境中砷与溶解有机质的络合作用[J].环境化 学,30(1): 50-55
- 林本兰, 沈晓冬, 崔升. 2006. 纳米四氧化三铁磁性微粒的表面有机改性[J]. 无机盐工业, 38(3): 19-21
- Pontius F W, Brown K G, Chen C J.1994. Health implications of arsenic in drinking water [J]. Journal of the American Water Works Association, 86(9):52-63
- Smedley P L, Kinniburgh D G.2002. A review of the source, behavior and distribution of arsenic in natural waters [J]. Applied Geochemistry, 17:517-568
- 宋娇艳,袁林,王强,等.2014.铁锰复合氧化物对铅离子的吸附特征 及影响因素研究[J].西南大学学报,36(7):135-142
- Susmita S G, Krishna G B. 2011. Kinetic of adsorption of metalions on inorgnic materials: Areview [J]. Advances in Colloid and Interface Science, 162(12):39-58
- Suvasis D, Janet G H.2003. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals; implications for arsenic mobility [J].Environmental Science & Technology, 37:4182-4189
- Si S, Kotal A, Mandal T K, et al. 2004. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes [J]. Journal of Materials Chemistry, 16(18): 3489-3496
- Smedley P L, Kinniburgh D G.2002. A review of the source behavior and distribution of arsenic in natural waters [J]. Appllied Geochemistry, 17: 517-568
- Wang S, Mulligan C N.2006. Effect of natural organic matter on arsenic release from soils and sedinents in to groundwater [J]. Environ Geochem Health, 28:197-214
- 谢亚巍.2012.铁氧化物及其腐殖酸复合物对砷的吸附特性研究[D]. 重庆:西南大学
- 赵凯,郭华明,高存荣.2015.北方典型内陆盆地高砷地下水的水化学 特征及处理技术[J].现代地质,29(2):351-359
- 张丽萍,谢先军,李俊霞,等.2014.大同盆地地下水中砷的形态、分布 及其富集过程研究[J].地质科技情报,33(1):178-184
- 张蕾,刘娜,康平利,等.2009.纳米 TiO2 对去除水溶液中硒的吸附性 能研究[J].化学通报,11:1013-1018
- 张峰,朱宏.2009.聚乙二醇包覆纳米 Fe3O4 颗粒的制备及特征[J]. 磁性材料及器件,40(4):27-30
- Zhou Z H, Wang J, Liu X, et al. 2001. Synthesis of Fe₃O₄ nanoparticles from emulsions [J]. Journal of Materials Chemistry, 11 (6): 1704-1709