・处理技术・

文章编号:1000-7210(2016)05-0881-08

遗传算法和正交时频原子相结合的 地震记录快速匹配追踪

王 珺* 李永庆

(中国石油大学(华东)信息与控制工程学院,山东青岛 266580)

王珺,李永庆.遗传算法和正交时频原子相结合的地震记录快速匹配追踪.石油地球物理勘探,2016,51(5): 881-888,893.

摘要 针对匹配追踪庞大的计算量造成地震数据处理效率低下的问题,提出一种基于遗传算法和正交原子匹 配追踪的快速分解方法,通过遗传算法缩小原子库的搜索范围,减少贪婪迭代的次数,由原子的正交化处理消 除冗余分量,加速残差收敛进程。为增加分解的灵活性,采用相邻残差比阈值作为迭代终止条件。合成地震记 录和实际地震记录稀疏分解结果表明:本文方法不仅能降低分解的稀疏度,而且运行速度大幅提高,验证了方 法的有效性和适用性。

关键词 稀疏匹配追踪 遗传算法 相邻残差比 正交化度

中图分类号:P631 文献标识码:A doi: 10.13810/j. cnki. issn. 1000-7210. 2016. 05. 006

1 引言

近年来,稀疏分解在地震资料处理领域的应用 研究方兴未艾,并且广泛应用于地震记录时频属性 提取^[1,2]、地震资料去噪^[3]、薄层反演^[4,5]、储层预 测^[6]等方面。如何以最稀疏、高效的分解方式实现 地震记录的稀疏表示一直是业界关注的热点。

Mallat 等^[7]提出的匹配追踪(Matching Pursuit, MP)以其简洁灵活的特性获得广泛应用,通过 对过完备原子库的贪婪搜索,实现信号在最优原子 上投影。为了保证分解的稀疏度,原子库的规模一 般比较庞大,每次迭代所有原子均参与内积运算,导 致计算效率低下。为了避免迭代中对原子库进行全 局搜索,人们采用一系列智能算法缩小搜索范围,加 速搜索进程,如遗传算法(Genetic Algorithm, GA)^[8-10]、人工鱼群算法^[11]、模拟退火算法^[12]、重复 加权提升搜索算法^[13]等,这些方法有效地改善了原 子的寻优过程。

另外,由于原子库的超完备特性,每次迭代搜索

所得的原子不能保证与此前搜得的原子正交,导致 引入新的残差分量,降低收敛速度,容易引发过匹配 现象,破坏了分解结果的稀疏性。如何兼顾匹配精 度和计算速度亟需解决和改进。

随着正交匹配追踪(Orthogonal Matching Pursuit, OMP)^[14-16]、正则化正交匹配追踪(Regularized Orthogonal Matching Pursuit, ROMP)^[17]的 提出和应用,虽实现了每步的迭代残差与之前选出 的所有原子正交,避免了重复选择同一个原子,但分 解所得原子之间仍存在冗余。张繁昌等^[18]采用一 种基于正交时频原子的匹配追踪方法(Orthogonal Atom-Matching Pursuit, OAMP)实现地震记录快 速分解,消除了时频原子库中的冗余分量,相同稀疏 度情况下保持了分解的精度。

本文将遗传算法与正交原子匹配追踪相结合, 通过时频原子的正交化处理,在保证稀疏特性的同时,提高了分解的迭代搜索效率。为了增加分解的 灵活性,采用相邻残差比阈值作为迭代终止条件,避 免了因迭代次数或残差能量等硬门限阈值的选择不 当对分解精度的影响。实验数据表明,通过与 MP、

^{*} 山东省青岛市黄岛区长江西路 66 号中国石油大学(华东)信息与控制工程学院,266580。Email:slwangjun@upc.edu.cn 本文于 2015 年 11 月 19 日收到,最终修改稿于 2016 年 6 月 21 日收到。

本项研究由国家自然科学基金项目(41104070)和山东省自然科学基金项目(ZR2011DQ014)资助。

OMP、OAMP 及基于 GA 的 MP(GMP)等算法在稀 疏度、均方差、信噪比和运行时间等指标的对比,发 现本文方法不仅能消除冗余分量、提高稀疏度,而且 计算效率大幅提高,保障了稀疏分解在速度和精度 上的双重要求。

2 正交时频原子匹配追踪

2.1 过完备原子库的构建

Mallat 等^[7]提出匹配追踪时,采用 Gabor 原子 作为母函数构建过完备原子库。然而在地震勘探领 域,Gabor 原子并不能很好地逼近地震信号的结构 特性,所以本文选取与地震子波性质相近的 Ricker 子波作为时频原子构建原子库。基于时移、频率、尺 度、相位四参数的 Ricker 子波的函数表达式为^[10]

$$g_{\gamma}(t) = \left[1 - 2(\pi \xi t)^{2}\right] \exp\left[-\left(\frac{\pi \xi(t-u)}{s} + \varphi\right)^{2}\right]$$
(1)

式中:参数组 $\gamma = (u, \xi, s, \phi), \gamma \in \Gamma, \Gamma$ 为参数组的集合,四个参数分别代表子波的时移、频率、尺度和相位; t代表时间。图1所示是时移为0.5s、频率为5Hz、尺度为1的零相位子波及其频谱。

图 1 Ricker 子波(a)及其频谱(b)

原子库的构建即根据地震记录的先验特性进行 子波参数离散化,通过设置不同的参数值形成一系 列形态各异的 Ricker 子波函数集合,记为 $D = \{g_{r}(t)\}_{r \in \Gamma}, g_{r}$ 代表库中子波,以超完备的形式尽 量满足稀疏分解的需求。

2.2 匹配追踪模型

假设单道地震记录为 f,过完备原子库为 D, $g_{\gamma} \in D$,设初次残差 $R_{f}^{0} = f$,匹配追踪算法的第 n 次 迭代即从 D 中选择一个与残差信号 R_{f}^{n} 最匹配的原 子 $g_{\gamma_{n}}$,使其满足

$$|\langle \boldsymbol{R}_{f}^{n}, \boldsymbol{g}_{\boldsymbol{\gamma}_{n}}\rangle| = \sup |\langle \boldsymbol{R}_{f}^{n}, \boldsymbol{g}_{\boldsymbol{\gamma}}\rangle|$$
(2)

式中 $\langle \bullet, \bullet \rangle$ 表示向量内积。则 \mathbf{R}_{f}^{n} 可以表示为

$$\boldsymbol{R}_{f}^{n} = \langle \boldsymbol{R}_{f}^{n}, \boldsymbol{g}_{\boldsymbol{\gamma}_{n}} \rangle \boldsymbol{g}_{\boldsymbol{\gamma}_{n}} + \boldsymbol{R}_{f}^{n+1}$$
(3)

式中: \mathbf{R}_{f}^{n+1} 代表第n+1 次迭代的残差, 且 $\mathbf{g}_{\gamma_{n}}$ 与 \mathbf{R}_{f}^{n+1} 正交, 如图 2 所示; sup 表示上确界, 文中表示 求内积的最大值。因此满足如下能量关系, 即满足

$$\|\boldsymbol{R}_{f}^{n}\|^{2} = \|\langle \boldsymbol{R}_{f}^{n}, \boldsymbol{g}_{\boldsymbol{\gamma}_{n}}\rangle\|^{2} + \|\boldsymbol{R}_{f}^{n+1}\|^{2} \qquad (4)$$

随着迭代的进行, R_f^{n+1} 的能量不断衰减,直至满足 设置的迭代终止条件。假设经过K次迭代终止,则 f可以表示为

$$f = \sum_{n=0}^{K-1} \langle \boldsymbol{R}_{f}^{n}, \boldsymbol{g}_{\boldsymbol{\gamma}_{n}} \rangle \cdot \boldsymbol{g}_{\boldsymbol{\gamma}_{n}} + \boldsymbol{R}_{f}^{K}$$
(5)

在忽略第 K 次迭代残差 R_f^K 的情况下, 地震记录 f 可表示为 K 个原子的线性组合。

图 2 匹配追踪原理图

2.3 原子正交化

传统匹配追踪方法迭代中得到的时频原子 $\{g_{\gamma_n}\}_{0 \leq n < K}$ 不能保证两两正交,因此迭代过程中容易 引入新的冗余分量,延缓残差衰减过程,增加迭代次数。通过 Schmidt 正交化处理能够消除原子库中的 冗余成分^[18,19],加快地震记录的分解进程,具体步骤如下:

(1)数据初始化:令 $\mathbf{R}_{f}^{0} = f$, Schmidt 正交基的 第一个分量 $s_{0} = g_{r_{0}}, g_{r_{0}}$ 代表匹配追踪第一次迭代 搜出的原子;

(2)原子正交化:对迭代第 n(n≥2)次所得的最 佳原子 g_{7.-1} 做正交化处理,即

$$\mathbf{s}_{n-1} = \mathbf{g}_{\mathbf{y}_{n-1}} - \sum_{k=0}^{n-2} \frac{\langle \mathbf{g}_{\mathbf{y}_{n-1}}, \mathbf{s}_k \rangle}{\parallel \mathbf{s}_k \parallel^2} \mathbf{s}_k \tag{6}$$

第51卷 第5期

(3)将残差 \mathbf{R}_{f}^{n-1} 投影到正交基的第n-1个分量 \mathbf{s}_{n-1} 上,并得到新的残差 \mathbf{R}_{f}^{n} ,至此第 $n(n \ge 2)$ 次迭代结束

$$\boldsymbol{R}_{f}^{n-1} = \frac{\langle \boldsymbol{R}_{f}^{n-1}, \boldsymbol{s}_{n-1} \rangle}{\parallel \boldsymbol{s}_{n-1} \parallel^{2}} \boldsymbol{s}_{n-1} + \boldsymbol{R}_{f}^{n}$$
(7)

(4)不断迭代,直至满足迭代终止条件,若不满足,则令 n=n+1,返回步骤(2)。

通过对匹配时频原子的正交化处理,将地震记录投影到一系列正交时频原子构成的空间上。每次 迭代最终选出的时频原子分量均与之前选出的原子 正交,加速了时频原子通过线性叠加逼近地震记录 的过程。

2.4 迭代终止条件的选取

在匹配追踪系列算法中,迭代终止条件的选取 主要有两种方式:一是设置迭代次数的上限值 m,当 迭代过程达到上限次数 m 即自动终止,此方法操作 简单,但是 m 值的选取需要对信号稀疏度进行准确 估计, m 值过小影响重构精度,过大则容易引入不 必要的噪声分量;二是通过残差能量阈值控制迭代 的终止,当残差信号能量 $\| \mathbf{R}_{f}^{*} \|^{2}$ 小于设定值时迭 代终止。对于信噪比较高的信号此方法可行性较 强,但对于含噪声的信号,噪声能量的估计成为运用 该方法的瓶颈。这两种方法均属于硬门限阈值方 法,分解的灵活性较低。

基于上述两种终止条件的局限性,本文采用相 邻迭代的残差计算终止阈值,即

$$\sigma = \frac{\|\boldsymbol{R}_{f}^{n+1} - \tau \boldsymbol{R}_{f}^{n}\|^{2}}{\|\tau \boldsymbol{R}_{f}^{n}\|^{2}}$$
(8)

式中: σ 为相邻残差比阈值; $\tau = \sqrt{\frac{E(||\mathbf{R}_{f}^{n+1}||^{2})}{E(||\mathbf{R}_{f}^{n}||^{2})}}$, E 为取期望值; $\mathbf{R}_{f}^{n+1} = \mathbf{R}_{f}^{n}$ 为相邻两次迭代的残差。 采用相邻残差比阈值结束贪婪迭代,能有效抵制因 噪声产生的过匹配现象,提高稀疏分解的鲁棒性。

3 基于 GA 的 OAMP 算法

3.1 遗传算法简介

遗传算法是由 Holland^[8]、Ventura 等^[9]、候世 英等^[19]提出的一种基于自然界生物进化模式的群 体高速自适应搜索技术,从随机生成的初始种群开 始搜索,采用适者生存、优胜劣汰的法则选择适应度 较高的个体,按照遗传学的遗传算子进行杂交、变异 等操作,生成下一代的种群成员。在生存竞争中,个体的适应能力由适应度函数求得的适应度值衡量, 适应度最高的个体直接进入下一代。随着繁衍代数的增加,种群中后代比前代更加适应生存环境,逐步进化到包含最优解的状态。

实现遗传算法的具体步骤如下:

(1)编码,将种群中个体的特征映射到遗传空间 中的基因,选用一种编码方式对其编码,如二进制 码、格雷码、浮点数码等;

(2)生成初始种群,随机选取一定数目的个体组 成初始种群,作为遗传进化的原始数据;

(3)依据个体适应度选择,根据适应度函数计算 种群中个体对环境的适应能力,选出适应度高的个 体,获得繁殖下一代的机会,它们的基因更易获得最 终的最优子代;

(4)杂交和变异,杂交是将父代两个个体的染色 体在随机基因位置互换基因子串,得到两个基因重 组后的新个体。变异是个体的某一基因位置发生突 变,成为一个具有新特征的个体,变异运算能减缓群 体陷入局部最优和过早熟现象;

(5)重复步骤(3)、步骤(4),直至种群空间中包 含最优解或近似最优解。

遗传算法的具体流程如图 3 所示。

图 3 遗传算法流程示意图

3.2 GOAMP 算法模型

GOAMP 算法与 OAMP 算法在执行步骤上基

本一致,改进之处在于:将原子的参数组 $\gamma = (u, \xi, s, \phi)$ 采用浮点数编码(也称直接编码)后作为 GA 模型中的染色体,并取残差信号与原子内积的绝对值 $|\langle \mathbf{R}_{T}^{r}, \mathbf{g}_{\gamma} \rangle|_{\gamma \in \Gamma}$ 作为 GA 中的适应度函数,每次迭代运用 GA 在过完备原子库中寻找最佳原子。

通过将遗传算法引入基于正交原子的匹配追踪 算法,大大减少了遍历四参数空间搜索最佳原子的 时间,解决了贪婪算法在大规模计算量上的不足。 GOAMP 的算法流程如图 4 所示。

图 4 GOAMP 算法流程图

4 实验结果及分析

4.1 稀疏分解质量评价

为检验稀疏分解的效果,拟采用以下数值评价 标准对分解结果进行定量分析和比较,各评价标准 的定义如下。

(1)均方误差

MSE =
$$\frac{\sum_{i=1}^{n} [f(i) - \hat{f}(i)]^2}{n}$$
 (9)

式中:**f** 为输入信号;**f** 为重构信号;n 为信号长度; (2)信噪比

SNR = 10lg
$$\frac{\sum_{i=1}^{n} f_{s}^{2}(i)}{\sum_{i=1}^{n} [f_{s}(i) - \hat{f}_{d}(i)]^{2}}$$
 (10)

式中: f_s 为无噪信号; \hat{f}_d 为去噪后的信号; SNR 单位为 dB;

(3)稀疏度 K 为分解所得原子个数;

(4)运行时间取执行分解算法时所耗时间,不含 原子库构建、图形显示等过程的用时。

4.2 理想地震记录实验分析

如图 5 所示,本文随机选取六个不同形态的 Ricker 子波合成单道地震记录,作为实验的测试数 据,六个子波的参数组设置如表 1 所示。通过对合 成记录进行 FFT 变换,获得信号的频谱如图 6 所 示,从图中可以看出信号的能量分布在 0~50Hz 频 率范围内,为构建过完备原子库提供了频率参数的 先验信息。

过完备原子库构建中,时间参数 u 的搜索范围 为 $0\sim1s$,间隔 du 设为 0.05s,频率 ε 的搜索范围设 为 $0\sim50Hz$,频率间隔 $d\varepsilon$ 取为 1Hz,尺度 s 范围取 为 $1\sim2$,尺度间隔 ds 为 0.1,相位 φ 搜索范围为 $0\sim\pi/2$,相位间隔 $d\varphi$ 取为 $\pi/8$,由此构造的原子库 容量为 57750。原子采样点数为 100,与合成记录长 度相同。经初步测试后,设定该信号的相邻残差比 阈值 $\sigma=0.2$ 。遗传算法运用中,取种群大小 N 为 129,进化代数 G 设为 5。由 GOAMP 分解所得原 子分布如图 7 所示。

表 1 Ricker 子波参数选取列表					
子波序号	时间/s	频率/Hz	尺度	相位/弧度	
1	0.15	10	1.5	0	
2	0.30	12	1.0	$\pi/8$	
3	0.45	15	1.2	0	
4	0.65	16	1.0	$\pi/3$	
5	0.80	18	1.2	$\pi/2$	
6	0.90	20	1.0	$\pi/6$	

通过对图 5 中地震记录的稀疏分解分析 GO-AMP、OAMP、GMP、OMP 及 MP 等算法的分解性 能,取稀疏度、均方误差和运行时间三个指标进行评价,如表 2 所示。

由表 2 可知,取相同残差比阈值的情况下,GO-AMP 分解在稀疏度上明显占有优势,且运行速度 为 OAMP 的 10.2 倍,分解精度与 OAMP 和 OMP 接近,然而运行速度是 OMP 的 12.44 倍。由于 GOAMP 每步迭代中需进行原子正交化处理,所以 在计算速度上较 GMP 没有大幅提高,但分解精度 优于 GMP。与普通 MP 对比,在分解精度和速度上 均有明显改善。

表 2 五种方法的性能对比

方法类型	稀疏度	MSE	时间/s
GOAMP	8	4.8877×10^{-4}	0.2503
OAMP	8	4.8069×10^{-4}	2.5515
OMP	8	4.8018×10^{-4}	3.1102
GMP	10	1.4064×10^{-3}	0.2816
MP	10	1.3328×10^{-3}	2.8624

为了方便评估比较,各种方法均按照迭代次数 的增加进行残差能量和运行时间的对比。由图 8、 图 9 的残差能量变化曲线可以看出,GOAMP、 OAMP及OMP 三者由于都存在正交化处理过程, 所以收敛速率明显高于GMP和MP,并且三者的最 终残差能量也低于GMP和MP。GOAMP算法的衰

图 8 合成地震记录残差能量随迭代次数的变化

减速率为五种方法中最优,体现出基于正交时频原 子匹配追踪加速收敛的独特优势。

图 10 为运行时间随迭代次数的变化关系。可 以看出,基于遗传算法的两种方法在运行速度上较 其他方法明显加快。由于 GOAMP 的正交化处理, 每步所需的时间比 GMP 略长,然而收敛速度的加 快使得 GOAMP 的迭代次数减少,如表 2 中数据所 示,整体上比较运行速度又高于 GMP,弥补了单次 迭代速度略慢的不足。

4.3 含噪地震记录实验分析

如图 11 所示,对图 5 中合成地震记录分别加入 四种不同等级的高斯白噪声,使得信噪比分别为 20、15、10和5dB。采用与无噪数据分解相同的原

图 10 合成地震记录运行时间随迭代次数的变化

子库进行处理,基于 GOAMP 分解重构后,有效去除了信号中的噪声,提高了地震数据的信噪比,重构效果如图 12 所示。表 3 为分别采用 GOAMP、 OAMP、OMP、GMP、MP等方法对含噪记录分解重构后信噪比和运行时间的对比,可以看出,GOAMP 算法在去噪性能和运行时间上均具有优势。

4.4 实际地震记录实验分析

图 13a 为选取的一道实际地震记录,记录长度 为 251 个采样点,采样时间间隔为 4ms。图 14 为 图 13a 的频谱,可以看出,信号能量主要分布在10~ 80Hz 的频率范围内(图 14)。过完备原子库的构建 中,时间 u 设为 0~1s, du 取 4ms,频率 ε 的范围设 为 10~80Hz, $d\varepsilon$ 取1Hz,尺度 s 取 1~2,尺度间隔 ds 为 0.5,相位 φ 搜索范围为 0~ $\pi/2$,相位间隔 $d\varphi$ 取为 $\pi/6$,原子库容量为 213852。

由于原子库容量的变大,遗传算法中种群 N 取 200,进化代数 G 设为 10。设定相邻残差比阈值为 0.04,分别运用 GOAMP、OAMP、GMP、OMP 及 MP 等算法对实际地震记录进行稀疏分解处理,分 解结果的性能对比如表 4 所示。

经 GOAMP 分解后的重构效果如图 13b 所示, 可以看出,重构后的记录明显光滑,有效抑制了原数 据中携带的噪声干扰。由此也体现出基于正交原子 匹配追踪去噪的有效性,是匹配追踪去噪方法的延 伸与发展,在去除噪声的同时保证了不引入新的噪 声分量。

表 3 不同 dB 噪声的去噪性能比较

方法	200	dΒ	150	dΒ	100	łΒ	5d	В
类型	SNR/dB	时间/s	SNR/dB	时间/s	SNR/dB	时间/s	SNR/dB	时间/s
GOAMP	28.2657	0.2456	20.3657	0.2758	15.8964	0.2524	10.5953	0.1988
OAMP	28.0259	2.5142	20.0025	2.7314	15.8567	2.6487	10.2345	2.6617
OMP	28.0016	3.1459	19.9859	3.2581	15.8124	3.1897	10.2155	3.3259
GMP	24.3697	0.2547	17.8954	0.2859	13.2658	0.2616	9.9627	0.2318
MP	25.2658	2.7851	17.9021	2.9587	13.1127	2.7996	9.8562	2.8025

方法类型	稀疏度	MSE	时间/s
GOAMP	52	0.0354	9.5610
OAMP	50	0.0324	26.6879
OMP	50	0.0385	29.5755
GMP	70	0.0349	11.4664
MP	64	0.0318	29.5359

由表4数据可知,对于实际地震记录而言,在相 同残差比阈值的情况下,GOAMP的分解稀疏度与 OAMP和OMP相当,但运行时间明显缩短。GMP 和 MP 较其他三种方法的稀疏度低,GMP 算法虽然 在遗传算法的作用下计算速度得到提高,但由于受冗 余分量和种群小范围搜索的影响,稀疏度低于 MP。 GOAMP由于不受冗余分量的限制,所以稀疏度值较 OAMP 只有略微提高,但运行速度是 OAMP 的 2.79 倍,体现出遗传算法加速分解的特点。

图 15、图 16 为实际地震数据残差能量随迭代 次数变化的情况,GOAMP的衰减速度较其他方法 明显加快,迭代 52 次后的残差能量接近 GMP 和 MP 分别迭代 70 次和 64 次后(图 16),原子正交化 后消除冗余分量,从而加速收敛速度。

图 17 为五种算法的运行时间随迭代次数的变 化关系,可以看出,遗传算法的引入使得 GOAMP 的运行时间较 OAMP 大幅减少,正交化处理使得每 次迭代耗时高于 GMP,然而迭代次数的明显减少弥 补了这一不足,分解总用时比 GMP 减少了1.9054s, 体现了本文算法降低计算成本、提高效率的优势。

图 17 运行时间随迭代次数的变化

5 结论

(1)基于正交原子的匹配追踪在普通匹配追踪 算法基础上,避免了迭代中引入新的冗余分量,加快 了收敛速度;

(2)将遗传算法引入基于正交原子的匹配追踪, 可在保证分解稀疏度的同时,通过种群的杂交、变异 等过程缩小搜索范围,加快了贪婪迭代的进程,大幅 提高计算效率;

(3)采用相邻残差比阈值作为迭代终止条件,可 增加分解的灵活性。

参考文献

- [1] 黄捍东,郭飞,汪佳蓓等.高精度地震时频谱分解方 法及应用.石油地球物理勘探,2012,47(5):773-780.
 Huang Handong, Guo Fei, Wang Jiabei et al. High precision seismic time-frequency spectrum decomposition method and its application. OGP,2012,47(5): 773-780.
- [2] 陈林,宋海斌. 基于 Morlet 小波匹配追踪算法的地震 时频属性提取. 石油地球物理勘探,2008,43(6):673-679.

Chen Lin, Song Haibin. Extraction of seismic timefrequency attribute based on Morlet wavelet match tracing algorithm. OGP,2008,43(6): 673-679.

 [3] 宋炜,邹少峰.欧阳永林等.快速匹配追踪三参数时 频特征滤波.石油地球物理勘探,2013,48(4):519-525. Song Wei, Zou Shaofeng, Ouyang Yonglin et al. Three parameter time-frequency characteristics filter based on fast matching pursuit. OGP, 2013, 48(4): 519-525.

- 【4】 张显文,韩立国,王字等. 地震信号谱分解匹配追踪 快速算法及其应用. 石油物探,2010,49(1):1-6.
 Zhang Xianwen, Han Liguo, Wang Yu et al. Seismic spectral decomposition fast matching pursuit algorithm and its application. GPP,2010,49(1):1-6.
- 【5】张繁昌,李传辉,印兴耀. 三角洲砂岩尖灭线的地震匹配追踪瞬时谱识别方法. 石油地球物理勘探, 2012,47(1):82-88.
 Zhang Fanchang, Li Chuanhui, Yin Xingyao. Delta fringe line recognition based on seismic matching pursuit instantaneous spectral characteristics. OGP, 2012,47(1):82-88.
- [6] 武国宁,曹思远,孙娜.基于复数道地震记录的匹配追踪算法及其在储层预测中的应用.地球物理学报,2012,55(6):2027-2034.
 Wu Guoning, Cao Siyuan, Sun Na. Matching pursuit method based on complex seismic traces and its application of hydrocarbon exploration. Chinese Journal of Geophysics,2012,55(6):2027-2034.
- [7] Mallat S G, Zhang Z F. Matching pursuit with time frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
- [8] Holland J H. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Michigan, 1975.
- [9] Ventura RMF I, Vandergheynst P. Matching Pursuit through Genetic Algorithms. LTS-EPFL tech. report,2001.
- [10] Wang Jun, Wang Lijun, Wang Yanjiang. Seismic signal fast decomposition by multichannel matching pursuit with genetic algorithm. ICSP2012 Proceedings, 2012,2:1393-1396.
- [11] 胡祖志,何展翔,杨文采等.大地电磁的人工鱼群最优化约束反演.地球物理学报,2015,58(7):2578-2587.
 Hu Zuzhi, He Zhanxiang, Yang Wencai et al. Constrained inversion of magnetotelluric data with the artificial fish swarm optimization method. Chinese Journal of Geophysics,2015,58(7):2578-2587.
- [12] 朱卫星,张春晓,张文博等. 基于模拟退火算法的地震资料 谱反演技术. 石油地球物理勘探,2015,50(3):495-501.
 Zhu Weixing, Zhang Chunxiao, Zhang Wenbo et al. Seismic spectral inversion based on simulated annealing. OGP,2015,50(3):495-501.
- [13] 叶兰兰,付丽华,赵浩岚.地震信号稀疏分解的快速方法.地球物理学进展,2014,29(1):375-381.
 Ye Lanlan, Fu Lihua, Zhao Haolan. The rapid method of seismic signal sparse decomposition. Progress in Geophysics,2014,29(1):375-381.
- [14] Aleksandr A, Aurelie L, Ronny L et al. Orthogonal matching pursuit for sparse quantile regression. IEEE International Conference on Data Mining, 2014, 11-19.

(下转第 893 页)

faults and stratigraphic features: The coherence cube. The Leading Edge, 1995, 14(10):1053-1058.

- [2] Marfurt K J, Kirlin R L, Farmer S L et al. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 1998, 63(4):1150-1165.
- [3] Gersztenkorn A, Marfurt K J. Eigenstrueture-based coherence computations as an aid to 3-D structural and stratigaphic mapping. Geophysics, 1999, 64(5): 1468-1479.
- [4] Marfurt K J, Sudhaker V, Gersztenkorn A et al. Coherency calculations in the presence of structural DIP. Geophysics. 1999, 64(1):104-111.
- [5] Cohen I, Coifmain R R. Local discontinuity measures for 3-D seismic data. Geophysics, 2002, 67(6): 1933-1945.
- [6] 王西文,杨孔庆,周立宏等.基于小波变换的地震相 干体算法研究.地球物理学报,2002,45(6):847-852.

Wang Xiwen, Yang Kongqing, Zhou Lihong et el. Methods of calculating coherence cube on the basis of wavelet transform. Chinese Journal of Geophysics, 2002, 45(6):847-852.

- [7] 孙夕平,杜世通. 乘幂法在地震属性分析中的应用. 物探化探计算技术,2000,22(4):316-321.
 Sun Xiping, Du Shitong. An application of power algorithm in the seismic attribute analysis. Computing Techniques for Geophysical and Geochemical Exploration, 2000, 22(4):316-321.
- [8] 宋维琪,刘江华. 地震多矢量属性相干数据体计算及

应用. 物探与化探, 2003, 27(2):128-130.

Song Weiqi, Liu Jianghua. The calculation and application of coherence data body of seismic multi-vector attributes. Geophysical and Geochemical Exploration, 2003,27(2):128-130.

- [9] Gao J H, Dong X L, Wang W B et al. Instantaneous parameters extraction via wavelet transform. IEEE Transactions On Geoscience and Remote Sensing, 1999, 37(2):867-870.
- [10] 高静怀,汪文秉,朱光明.小波变换与信号瞬时特征 分析.地球物理学报,1997,40(6):821-832.
 Gao Jinghuai, Wang Wenbing, Zhu Guangming.
 Wavelet transform and instantaneous attributes analysis. Chinese Journal of Geophysics,1997,40(6):821-832.

(本文编辑:刘英)

作者简介

王清振 工程师,1983 年生;2005 年毕业于中国石油大学(华东)勘查技 术与工程专业,获学士学位;2008 年获 中国石油大学(华东)地球探测与信息 技术专业硕士学位;现在中海油研究总 院从事地震资料解释、属性分析、反演 等方面技术研究及相关软件研发工作。

解算法的电能质量扰动匹配特性分析. 电网技术, 2013,37(3):647-652.

Hou Shiying, Zhang Wenyu, Sun Tao et al. Analysis on matching features of power quality disturbances based on orthogonal optimization of time-frequency atom decomposition. Power System Technology, 2013,37(3):647-652.

(本文编辑:金文昱)

作者简介

王珺 副教授,1973年生;1995年 毕业于中国石油大学(华东)应用地球 物理专业,获学士学位;2005年毕业于 中国科学院地质与地球物理研究所固 体地球物理专业,获博士学位。目前在 中国石油大学(华东)从事教学工作和 地震信号处理方面的研究。

(上接第 888 页)

- [15] Michael B, Tonellot T. Sparse seismic deconvolution by method of orthogonal matching pursuit. 72nd EA-GE Conference and Exhibition Incorporating SPE EUROPEC, 2010, 395-399.
- [16] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transaction on Information Theory, 2007, 53(12):4655-4666.
- [17] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):310-316.
- [18] 张繁昌,李传辉.基于正交时频原子的地震信号快速 匹配追踪.地球物理学报,2012,55(1):277-283.
 Zhang Fanchang, Li Chuanhui. Orthogonal time-frequency atom based fast matching pursuit for seismic signal. Chinese Journal of Geophysics, 2012,55(1): 277-283.
- [19] 候世英,张文玉,孙韬等. 基于正交优化时频原子分