Chapter 7 Electromagnetic Wave

7.1 Displacement Current

7.2 The Generation \& Travel of EMW
7.3 The Fundamental Properties of EMW
7.4 Electromagnetic Spectrum

7.1 Displacement Current

Maxauell, English physicist

J ames Clerk Maxwell: Scottish physicist best known for his formulation of electromagnetic theory. He is regarded by most modern physicists as the scientist of the 19th century who had the greatest influence on 20th-century physics, ...

Maxwell

7.1 Displacement Current

- Maxwell's Equations

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{F}}=q(\overrightarrow{\boldsymbol{E}}+\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}}) \\
& \overrightarrow{\boldsymbol{B}}=\mu_{r} \mu_{0} \overrightarrow{\boldsymbol{H}} \\
& \oint_{(s)} \overrightarrow{\boldsymbol{J}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}=-\frac{\mathrm{d} q}{\mathrm{~d} t}
\end{aligned}
$$

7.1 Displacement Current

Δ Displacement Current

Are these Equations Complete?

㭗 Argument from integral form of circuital law for \boldsymbol{H}
A Switch on
A Charging
$\oint_{(L)} \overrightarrow{\boldsymbol{H}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{I}}=\sum_{(L \text { 内 })} I_{0}$
? Is it ok for any surface bounded by L?

7.1 Displacement Current

\Leftrightarrow Displacement Current
A For surface S_{1} : $\quad \oint_{(L)} \overrightarrow{\boldsymbol{H}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{l}}=\sum_{(L \mathrm{k})} I_{0}$
A For surface S_{2} :

$$
\oint_{(L)} \overrightarrow{\boldsymbol{H}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{I}}=0
$$

A No doubt, A is correct
How do we deal with B ?
Looking for general circuital Law No charge flows across S_{2}, D in C changes with time when charging, because Q is changing.

7.1 Displacement Current

\Leftrightarrow Displacement Current
A Time-varying E(D)
Maxwell proposed time-varying E(D) can create B-field.
According to the definition of current $I_{0}=\frac{d q}{d t}$
d q is the charge passing through a cross-section of the wire, it is also the change on the plate.
From Gauss's law

$$
\begin{aligned}
& \oiint_{(S)} \overrightarrow{\boldsymbol{D}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}=\sum_{(S 内)} Q_{0} \quad D S=q \\
& I_{0}=\frac{d q}{d t}=\frac{d D}{d t} S
\end{aligned}
$$

7.1 Displacement Current

A Displacement current:

$$
I_{d}=\frac{d D}{d t} S
$$

A Displacement current density:

\Leftrightarrow The general form of circuital law

$$
\oint_{(L)} \overrightarrow{\boldsymbol{H}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{I}}=I_{0}+I_{d}
$$

7.1 Displacement Current

\Leftrightarrow Displacement Current

* Difference between $I_{C} \& I_{D}$

A Displacement current is induced by time-varying electric field

A Conduction current is induced by the motion of charge
A Conduction current can produce thermal energy dissipation

A Displacement current doesn't produce thermal energy dissipation

7.1 Displacement Current

人 Displacement Current

Example 7.1 A parallel-plate capacitor with circular plates whose radius is R is being charged as the figure shown Suppose the time-varying rate of electric field is $\mathrm{dE} / \mathrm{dt}$. Derive an expression for the induced magnetic field at various radii r. Consider both $r<R$ and $r>R$

Solution: According to Ampere's

 circuital law, we have$$
\oint \overrightarrow{\boldsymbol{H}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{l}}=I_{0}+I_{d}=I_{d}
$$

(L)
$I_{d}=\frac{d D}{d t} S \quad J_{d}=\frac{d D}{d t}=\varepsilon_{0} \frac{d E}{d t}$

7.1 Displacement Current

- Displacement Current

$$
\begin{aligned}
& r<R \\
& \oint \overrightarrow{\boldsymbol{H}} \cdot \mathrm{~d} \boldsymbol{l}=2 \pi r \mathrm{H} \\
& \text { (L) } \\
& H=\frac{1}{2} \varepsilon_{0} r \frac{d E}{d t} \\
& B=\mu_{0} H=\frac{1}{2} \varepsilon_{0} \mu_{0} r \frac{d E}{d t} \\
& r>R \\
& I_{d}=\frac{d D}{d t} S=\varepsilon_{0} \frac{d E}{d t} \pi R^{2} \\
& H=\frac{1}{2} \varepsilon_{0} \frac{R^{2}}{r} \frac{d E}{d t} \\
& B=\frac{1}{2} \varepsilon_{0} \mu_{0} \frac{R^{2}}{r} \frac{d E}{d t} \\
& I_{d}=\frac{d D}{d t} S=\varepsilon_{0} \frac{d E}{d t} \pi r^{2} \\
& r>R
\end{aligned}
$$

7.1 Displacement Current

** Fundamental part of displacement current
A Pay attention to displacement current $/ d$
A Electric field is the fundamental part of displacement current

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{D}}=\varepsilon_{0} \overrightarrow{\boldsymbol{E}}+\overrightarrow{\boldsymbol{P}} \\
& J_{d}=\frac{\partial D}{\partial t}=\varepsilon_{0} \frac{\partial E}{\partial t}+\frac{\partial P}{\partial t}
\end{aligned}
$$

A In vacuum, $\mathrm{P}=0$, if there is timevarying electric field $\mathrm{E}, \mathrm{J}_{\mathrm{d}} \neq 0$

A Completion of Maxwell's Equations

7.1 Displacement Current

Finally

Maxwell's Equations

$\oiint_{(S)} \overrightarrow{\boldsymbol{D}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}=\sum_{(S \mathrm{~B})} Q_{0}$
$\oint_{(L)} \overrightarrow{\boldsymbol{E}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{I}}=-\iint_{(S)} \frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial \mathrm{t}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}$
$\oiint_{(S)} \overrightarrow{\boldsymbol{B}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}=0$
$\oint_{(L)} \overrightarrow{\boldsymbol{H}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{I}}=\boldsymbol{I}_{0}+\varepsilon_{0} \iint_{(S)} \frac{\partial \overrightarrow{\boldsymbol{E}}}{\partial \boldsymbol{t}} \cdot \boldsymbol{d} \overrightarrow{\boldsymbol{S}}$

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{F}}=q(\overrightarrow{\boldsymbol{E}}+\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}}) \\
& \oint_{(S)} \overrightarrow{\boldsymbol{J}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}=-\frac{\mathrm{d} q}{\mathrm{~d} t}
\end{aligned}
$$

Boundary condition

$\overrightarrow{\boldsymbol{n}} \cdot\left(\overrightarrow{\boldsymbol{D}}_{2}-\overrightarrow{\boldsymbol{D}}_{1}\right)=0$
$\overrightarrow{\boldsymbol{B}}=\mu_{r} \mu_{0} \overrightarrow{\boldsymbol{H}}$
$\overrightarrow{\boldsymbol{J}}=\sigma\left(\overrightarrow{\boldsymbol{E}}+\overrightarrow{\boldsymbol{E}_{\boldsymbol{n}}}\right)$

$$
\overrightarrow{\boldsymbol{n}} \cdot\left(\overrightarrow{\boldsymbol{B}}_{2}-\overrightarrow{\boldsymbol{B}}_{1}\right)=0
$$

$$
\overrightarrow{\boldsymbol{n}} \times\left(\overrightarrow{\boldsymbol{H}}_{2}-\overrightarrow{\boldsymbol{H}}_{1}\right)=0_{E}
$$

7.1 Displacement Current

Left curl

right curl

