Tutorial for chapter 6

$\Leftrightarrow \mathrm{M} \&$ magnetization current I_{c}

$$
\begin{aligned}
& M=\frac{\sum m}{V} \quad \overrightarrow{\boldsymbol{i}}_{S}=\overrightarrow{\boldsymbol{M}} \times \overrightarrow{\boldsymbol{n}} \\
& \oint \overrightarrow{\boldsymbol{M}} \cdot d \overrightarrow{\boldsymbol{I}}=I_{S}
\end{aligned}
$$

- Magnetic intensity

$$
\overrightarrow{\boldsymbol{H}}=\frac{\overrightarrow{\boldsymbol{B}}}{\mu_{0}}-\overrightarrow{\boldsymbol{M}}
$$

\Leftrightarrow Ampere's circuital Law in magnetic material

$$
\oint \overrightarrow{\boldsymbol{H}} \cdot d \overrightarrow{\boldsymbol{I}}=\sum I_{C}
$$

© Linear and isotropic-homogenous materials

$$
\overrightarrow{\boldsymbol{M}}=\chi_{m} \overrightarrow{\boldsymbol{H}}
$$

Tutorial for chapter 6

Linear and isotropic-homogenous materials

$$
\overrightarrow{\boldsymbol{B}}=\mu_{r} \mu_{0} \overrightarrow{\boldsymbol{H}}
$$

\Leftrightarrow Permeability

$$
\mu=\frac{B}{H}
$$

© Initial permeability

$$
\mu_{i}=\frac{d B}{d H}
$$

Tutorial for chapter 6

6.1.A toroid having 500 turns of wire and a mean circumferential length of 50 cm carries a current of 0.3 A . The relative permeability of the core is 600 .
(a) What is the magnetic field in the core?
(b) What is the magnetic intensity?
(c) What part of the magnetic field is due to surface currents?

Solution: (a) According Ampere's law for Magnetic intensity

$$
\begin{aligned}
& \oint \overrightarrow{\boldsymbol{H}} \cdot d \overrightarrow{\boldsymbol{l}}=\sum I_{C} \\
& H l=N I \\
& H=\frac{N I}{l}=\frac{500 \times 0.3}{50 \times 10^{-2}}=300 \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

Tutorial for chapter 6

(b) From the relation B to H

$$
\begin{gathered}
\overrightarrow{\boldsymbol{B}}=\mu_{r} \mu_{0} \overrightarrow{\boldsymbol{H}} \\
B=\mu_{r} \mu_{0} H=600 \times 4 \pi \times 10^{-7} \times 300=0.226 T
\end{gathered}
$$

(c) If there is no magnetic material in the toroid

$$
\begin{aligned}
& \oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{0} \sum I \\
& \quad B_{0} l=\mu_{0} N I \\
& B_{0}=\frac{\mu_{0} N I}{l}=\frac{4 \pi \times 10^{-7} \times 500 \times 0.3}{50 \times 10^{-2}}=3.77 \times 10^{-4} T \\
& \mathrm{~B}^{\prime}=\mathrm{B}-\mathrm{B}_{0}=0.226-3.77 \times 10^{-4}=0.2257 \mathrm{~T}
\end{aligned}
$$

Tutorial for chapter 6

6.2.The current in the windings on a toroid is 2.0 A . There are 400 turns and the mean circumferential length is 40 cm . With the aid of a search coil and charge-measuring instrument, the magnetic field B is found to be 1.0 T. Calculate
(a) the magnetic intensity H ,
(b) the magnetization,
(c) the magnetic susceptibility,
(d) the equivalent surface current, and
(e) the relative permeability.

Solution: (a) Find the B_{0} without magnetic material first.

$$
\begin{gathered}
\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{0} \sum I \\
B_{0} l=\mu_{0} N I
\end{gathered}
$$

Tutorial for chapter 6

$$
\begin{aligned}
& B_{0}=\frac{\mu_{0} N I}{l}=\frac{4 \pi \times 10^{-7} \times 400 \times 2.0}{40 \times 10^{-2}}=2.512 \times 10^{-3} T \\
& \mathrm{~B}^{\prime}=\mathrm{B}-\mathrm{B}_{0}=1.0-2.512 \times 10^{-3}=0.9975 \mathrm{~T} \\
& \mathrm{~B}^{\prime}=\mu_{0} \mathrm{i}^{\prime}=\mu_{0} \mathrm{M} \\
& \quad M=\frac{B^{\prime}}{\mu_{0}}=\frac{0.9975}{4 \pi \times 10^{-7}}=7.94 \times 10^{5} \mathrm{~A} / \mathrm{m} \\
& H=\frac{B}{\mu_{0}}-M=\frac{B_{0}+B^{\prime}}{\mu_{0}}-M=\frac{B_{0}+B^{\prime}-\mu_{0} M}{\mu_{0}} \\
& H=\frac{B_{0}}{\mu_{0}}=\frac{2.512 \times 10^{-3}}{4 \pi \times 10^{-7}}=2000 \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

Tutorial for chapter 6

$$
\begin{aligned}
& \chi_{m}=\frac{M}{H}=\frac{7.94 \times 10^{5}}{2000}=397 \\
& i^{\prime}=M=7.94 \times 10^{5} \mathrm{~A} / \mathrm{m} \\
& \mu_{\mathrm{r}}=\chi_{\mathrm{m}}+1=398
\end{aligned}
$$

Tutorial for chapter 6

6.5.Table 6.3 lists corresponding values of H and B for a specimen of commercial hot-rolled silicon steel, a material widely used in transformer cores.
(a) Construct graphs of B and μ as functions of H, in the range from $H=0$ to $H=1000 \mathrm{~A} / \mathrm{m}$.
(b) What is the maximum permeability?
(c) What is the initial permeability $(H=0)$?
(d) What is the permeability when $\mathrm{H}=800,000 \mathrm{~A} / \mathrm{m}$?

Solution: (a) See the Graphs on next page
(b) $\mu_{m}=0.54 / 50=0.0108 T \cdot m \cdot A^{-1}$
(c) the initial permeability $\mu_{\mathrm{i}}=0.05 / 10=0.005 \mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}-1$
(d) $\mu=2.92 / 800000=0.00000365 \mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}^{-1}$

Magnetic intensity H, (A/m)	Flux density B, (T)	hapter 6		
		$\mathrm{B}\left(10^{-2 \mathrm{~T}}\right)$	B vs H	
0	0			
10	0. 050	130		
20	0.15	120		
40	0.43	$100-$		
50	0. 54	$\begin{aligned} & \mathbf{9 0} \\ & \mathbf{8 0} \end{aligned}$		
60	0.62	$\begin{aligned} & 00 \\ & 70 \\ & 60 \end{aligned}$		
80	0.74		$50 \quad \backslash \mu \text { vs } H$	
100	0.83			
150	0.98	$\begin{aligned} & 40 \\ & 30 \\ & 20 \\ & 10 \end{aligned}$		
200	1.07			
500	1. 27		$\frac{1}{1} \frac{1}{1}$	
1000	1. 34			
800000	2. 92			

Tutorial for chapter 6

6.8.A bar magnet has a coercivity of $4 \times 10^{3} \mathrm{~A} / \mathrm{m}$. It is desired to demagnetize it by inserting it inside a solenoid 12 cm long and having 60 turns. What current should be carried by the solenoid?

Solution:

$$
\begin{aligned}
& H=n I \\
& I=\frac{H_{c}}{n}=\frac{4 \times 10^{3} \times 12 \times 10^{-2}}{60}=8 \mathrm{~A}
\end{aligned}
$$

Tutorial for chapter 6

Rectangular Ferromagnetism, memory element in computer. $d_{1}=0.5 \mathrm{~mm}, d_{2}=0.8 \mathrm{~mm}$, $\mathrm{H}_{\mathrm{c}}=2$ Oersted. If we want to make the direction of magnetization opposite, what is the current in the wire?

Tutorial for chapter 6

6.10.A Rowland ring has a cross section of $2 \mathrm{~cm}^{2}$, a mean length of 30 cm , and is wound with 400 turns. Find the current in the winding that is required to set up a flux density of 0.1 T in the ring, (a) if the ring is of annealed iron (Fig. 6.3); (b) if the ring is of silicon steel (Table 6.3). (c) Repeat the computations above if a flux density of 1.2 T is desired.

