Chapter 6 Magnetic Materials

- 6.1 Magnetization M & Magnetization Current
- 6.2 Ferromagnetism
- 6.3* The Fundamental Magnetic Properties of Superconductors
- 6.4 Magnetic Circuit Theorem

The normal component of Electric field is not continuous

6.4 Magnetic Circuit Theorem Boundary Condition of Magnetic Medium The normal component of Magnetic Induction B is continuous μ_{r2} $B = \mu_r \mu_0 H$ $B_{1n} = B_{2n}$ B_2 $\mu_{r_1}\mu_0H_{1n} = \mu_{r_2}\mu_0H_{2n}$ μ_{r}

 $\mu_{r1}H_{1n} = \mu_{r2}H_{2n}, H_{1n} \neq H_{2n}$

The normal component of Magnetic field H is not continuous

The tangent component of H is continuous

The tangent component of Magnetic Induction B is not continuous

Boundary Condition of Magnetic Medium The reflection of Induction Lines on the Boundary $H_{2t} = H_{1t}$ μ_{r2} $B_{2n} = B_{1n}$ The ratio $\frac{H_{2t}}{B_{2n}} = \frac{H_{1t}}{B_{1n}}$ $H_2 \sin \theta_2 \ H_1 \sin \theta_1$ μ_{r2} $B_2 \cos \theta_2 \quad B_1 \cos \theta_1$ B_2 $\frac{1}{\tan \theta_2} = \frac{1}{\tan \theta_1} \tan \theta_1$ $\mu_{r2}\mu_0$ $\mu_{r1}\mu_0$

Boundary Condition of Magnetic Medium

If medium 2 is vacuum or not Ferromagnetism, $\mu_{r2}=1$, and medium 1 is Ferromagnetism, μ_{r1} is very large. So θ_2 is very small and θ_1 is approximately right angle.

It means that the lines of induction in Ferromagnetism are B_{B} parallel to the surface, few lines get out of the medium.

Magnetic Circuit Theorem

According to the reflection of induction lines, the induction lines due to a current-carrying coil without iron will go everywhere. But if there is a iron inside the coil, the induction lines will concentrate inside the iron and go along the iron, Induction tube, electric current tube, like electric circuit, Magnetic Circuit.

Magnetic Circuit Theorem

In the electric circuit with combinations of resistors in series, the currents through every resistor are same.

In the magnetic circuit with irons, the fluxes ϕ_B through every cross section are same.

For electric circuit:

$$\varepsilon = \sum_{i} IR_{i} = I\sum_{i} R_{i} = I\sum_{i} \frac{l_{i}}{\sigma_{i}S_{i}}$$

For magnetic circuit:

$$NI_0 = \oint_{(L)} \vec{\mathbf{H}} \cdot d\vec{\mathbf{l}} = \sum_{(L)} H_i l_i = \sum_{(L)} \frac{B_i}{\mu_i \mu_0} l_i = \sum_{(L)} \frac{\phi_{B_i}}{\mu_i \mu_0 S_i} l_i$$

Magnetic Circuit Theorem

Electric circuit	emf ε	Current I	Conductivity σ	Resistance R _i =l _i /(σ _i S _i)	Electric potential drop (IR _i)
Magneti c circuit	mmf $\epsilon = NI_0$	flux of B ¢ _B	Permeability µ _i µ ₀	Magnetic Resistance $R_{mi} = l_i / (\mu_i \mu_0 S_i)$	Magnetic potential drop ($\phi_{\rm B} { m R}_{ m mi}$)

mmf: $\varepsilon_m = NI_0$

Magnetic Resistance: $R_{mi} = l_i / (\mu_i \mu_0)$ Magnetic potential drop: $H_i l_i = \phi_B \Sigma R_{mi}$

Magnetic Circuit Theorem

 $\varepsilon_{\rm m} = H_{\rm i}I_{\rm i} = \phi_{\rm B}\Sigma R_{\rm mi}$

The magneto motive force in a closed magnetic circuit is equal to the algebraic sum of drop of magnetic potential.

Example U-shaped circuit, $s_1=0.01m^2$, $l_1=0.6m$, $\mu_1=6000$, $s_2=0.02m^2$, $l_2=1.4m$, $\mu_2=700$; air gap l_3 is variable between 0-0.05m. If the turns is N=5000, maximum current $l_0=4A$.

Solution Structure
Senergy of Magnetic Field
The Energy of Electric Field $W_e = \iiint_{(V)} w_e dV = \iiint_{(V)} \frac{1}{2} \vec{\mathbf{D}} \cdot \vec{\mathbf{E}} dV$ Where $w_e = \frac{1}{2} \vec{\mathbf{D}} \cdot \vec{\mathbf{E}}$

The energy stored in Inductor with current I and self-inductance L

$$W_m = \frac{1}{2}LI^2$$

For a solenoid with area S and length l filled with magnetic materials μ .

Energy of Magnetic Field

Example A cable with radii a and b and length *l*. If magnetic material (relative permeability μ_r) is filled in, find the self-inductance of unit length.

 $\oint \vec{\mathbf{H}} \cdot d\mathbf{i} = \sum I_0$

 $\mu_r \mu_0$

(L)

Solution:

Energy of Magnetic Field

$$W_{m} = \iiint_{(V)} \frac{1}{2} \vec{\mathbf{B}} \cdot \vec{\mathbf{H}} dV = \int_{a}^{b} \frac{1}{2} \frac{I}{2\pi r} \frac{\mu_{r} \mu_{0} I}{2\pi r} 2\pi r dr$$
$$= \frac{\mu_{r} \mu_{0} I^{2}}{4\pi} \int_{a}^{b} \frac{dr}{r} = \frac{\mu_{r} \mu_{0} I^{2}}{4\pi} \ln \frac{b}{a}$$
$$= \frac{1}{2} L I^{2}$$
$$L = \frac{\mu_{r} \mu_{0}}{2\pi} \ln \frac{b}{a}$$

