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6.3* The Fundamental Magnetic Properties of 
Superconductors

6.1 Magnetization M & Magnetization Current

6.2 Ferromagnetism

6.4 Magnetic Circuit Theorem
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Boundary Condition of Dielectrics

At the Boundary of the Dielectrics, 
no free charges
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The normal component of 
Displacement is continuous
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The normal component of Electric field is not continuous
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Consider the tangent component 

0coscos 1122 =Δ−Δ αα lElE

tt EE 12 =

The tangent component of Electric field is continuous
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The tangent component of Displacement is not continuous

6.4 Magnetic Circuit Theorem

Boundary Condition of Dielectrics



1rμ
2rμ

2B

1B

0
)(

=⋅∫
L

d lE
εr2

εr1

E2
E1

Consider the tangent component 

0coscos 1122 =Δ−Δ αα lElE
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Boundary Condition of Magnetic Medium
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The normal component of Magnetic 
Induction B is continuous

HB r 0μμ=

nrnr HH 202101 μμμμ =

nnnrnr HHHH 212211 , ≠= μμ

The normal component of Magnetic field H is 
not continuous
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Consider the tangent component 
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The tangent component of H is continuous
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Consider the tangent component of B
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The tangent component of Magnetic 
Induction B is not continuous
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The reflection of Induction Lines on the Boundary

μr2

μr1

B2
B1

θ1

θ2

μr2

μr1

H2
H1

θ1

θ2nn BB 12 =
tt HH 12 =

The ratio

n

t

n

t

B
H

B
H

1

1

2

2 =

11

11

22

22

cos
sin

cos
sin

θ
θ

θ
θ

B
H

B
H

=

1
01

2
02

tan1tan1 θ
μμ

θ
μμ rr

=

6.4 Magnetic Circuit Theorem

Boundary Condition of Magnetic Medium



1rμ
2rμ

2B

1B

1
01

2
02

tan1tan1 θ
μμ

θ
μμ rr

=

2

1

2

1

tan
tan

r

r

μ
μ

θ
θ

=

If medium 2 is vacuum or not Ferromagnetism, μr2 =1, 
and medium 1 is Ferromagnetism, μr1 is very large. So 
θ2 is very small and θ1 is approximately right angle. 

It means that the lines of induction in Ferromagnetism are 
parallel to the surface, few lines get out of the medium.
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Magnetic Circuit Theorem
According to the reflection of induction lines, the 
induction lines due to a current-carrying coil without 
iron will go everywhere. But if there is a iron inside the 
coil, the induction lines will concentrate inside the iron 
and go along the iron, Induction tube, electric current 
tube, like electric circuit, Magnetic Circuit .
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In the electric circuit with combinations 
of resistors in series, the currents 
through every resistor are same. 

In the magnetic circuit with irons, the 
fluxes φB through every cross section 
are same. 
For electric circuit:

∑∑∑ ===
i ii

i

i
i

i
i S

lIRIIR
σ

ε

For magnetic circuit:

∑∑∑∫ ===⋅=
)( 0)( 0)()(

0
L

i
ii

iB

L
i

i

i

L
ii

L

l
S

lBlHdNI
μμ
φ

μμ
lH

6.4 Magnetic Circuit Theorem

Magnetic Circuit Theorem



1rμ
2rμ

2B

1B

εm

φB Rm

For the right magnetic circuit, 
the flux φB is the same for 
every segment
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Electric 
circuit

emf
ε

Current
I

Conductivity
σ

Resistance
Ri =li /(σi Si )

Electric 
potential

drop
(IRi )

Magneti 
c circuit

mmf
ε=NI0

flux of B
φB

Permeability
μi μ0

Magnetic
Resistance

Rmi =li /(μi μ0 Si )

Magnetic 
potential

drop
(φB Rmi )

mmf: εm =NI0

Magnetic Resistance: Rmi =l i /(μi μ0 )

Magnetic potential  drop: Hi li =φ B ΣRmi
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εm =Hi li =φB ΣRmi

The magneto motive force in a closed magnetic circuit is 
equal to the algebraic sum of drop of magnetic potential.

U-shaped circuit, 
s1 =0.01m2,l1 =0.6m,μ1 =6000, 
s2 =0.02m2,l2 =1.4m, 
μ2 =700;air gap l3 is variable 
between 0-0.05m.If the turns 
is N=5000, maximum current 
I0 =4A. 
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Find the maximum magnetic field intensity when 
l3 =0.05m and 0.01m  respectively.
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According to Magnetic 
Circuit Theorem
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L3 =0.05m, H=3.93×105A/m=4.9×103 Oersted

L1 =0.01m, H=1.8×106A/m=2.5×104 Oersted

Another unit of H is Oersted
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The Energy of Electric Field
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The energy stored in Inductor with current I 
and self-inductance L
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For a solenoid with area S and length l filled 
with magnetic materials μ.
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ab
A cable with radii a and b and 

length l. If magnetic material (relative 
permeability μr ) is filled in, find the self- 
inductance of unit length.

Solution: 
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