
Chapter 6 Magnetic Materials

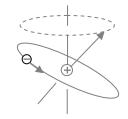
6.1 Magnetization M & Magnetization Current

6.2 Ferromagnetism

6.3* The Fundamental Magnetic Properties of Superconductors

6.4 Magnetic Circuit Theorem

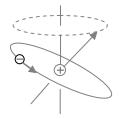
Magnetic Field: Created by


- Current due to Motion of Free Charges
- The Motion of Electrified Bodies
- The Motion of Electrified Bodies (electron and proton) in Atom
- Spinning and Going around atom

Purpose on Computation of Magnetic Field due to Magnetization Current.

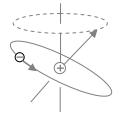
Magnetic Materials \cong Dielectrics, possess magnetic moment oriented properly(maybe magnetized) and creates M field

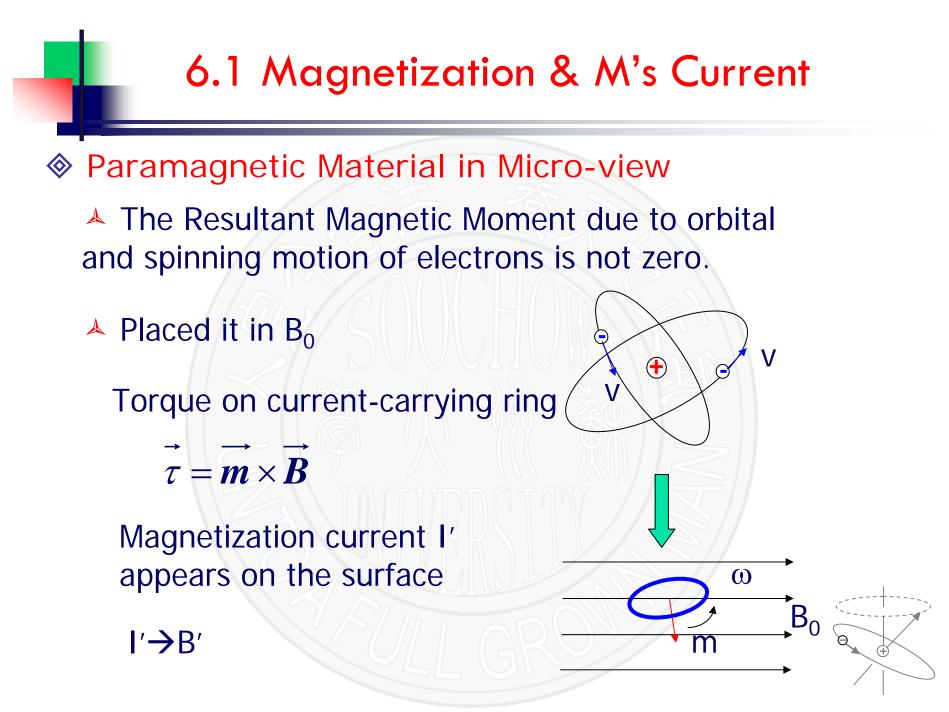
Classification


- Diamagnetic Materials
- Paramagnetic Materials
- Ferromagnetic Materials
- Paramagnetic Materials:
 - The Resultant Magnetic Moment due to orbital and spinning motion of electrons is not zero.
 - The Magnetic Field created by Magnetization I', B'
 - B' << B₀ (By conduction current), B' 11 B₀
 - B (total) \approx B₀ B is a little bigger than B₀

Diamagnetic Materials:

▲ The Resultant Magnetic Moment due to orbital and spinning motion of electrons is zero.


- A The Magnetic Field created by Magnetization I', B'
 - $B' < < B_0$ (By conduction current), $B' \uparrow \downarrow B_0$
 - B (total) \approx B₀ B is a little smaller than B₀



Ferromagnetic Materials:

▲ The Resultant Magnetic Moment due to Exchanging interaction is very strong.

- ▲ The Magnetic Field created by Magnetization I', B'
 - B'>>B₀ (By conduction current), B'11 B₀
 - B (total) >> B₀,

6.1 Magnetization & M's Current Paramagnetic Material in Micro-view Magnetization current Run flash.exe first Diamagnetic Material in Micro-view V \bigcirc A The Resultant Magnetic Moment due to orbital and spinning motion V of electrons is zero.

 B_0

dJ

B'

m

No magnetic properties in atom scale

A But Because of induction, a current appears in the direction to oppose the the transformed set of the transform

 $\vec{J} = \vec{r} \times m\vec{v}$ $d\vec{J} = \vec{\tau}dt$

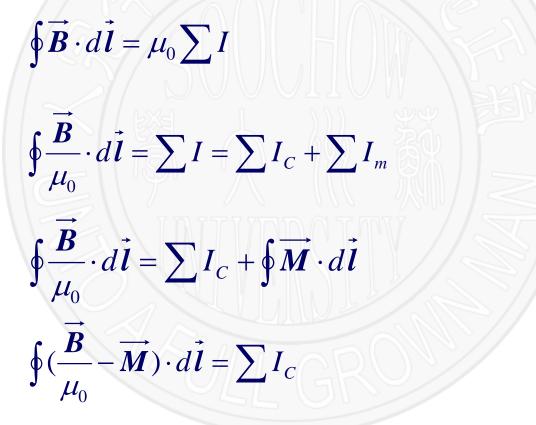
The *The Relation of magnetization M to magnetization Current*

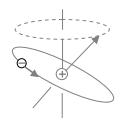
M & magnetization current I_c

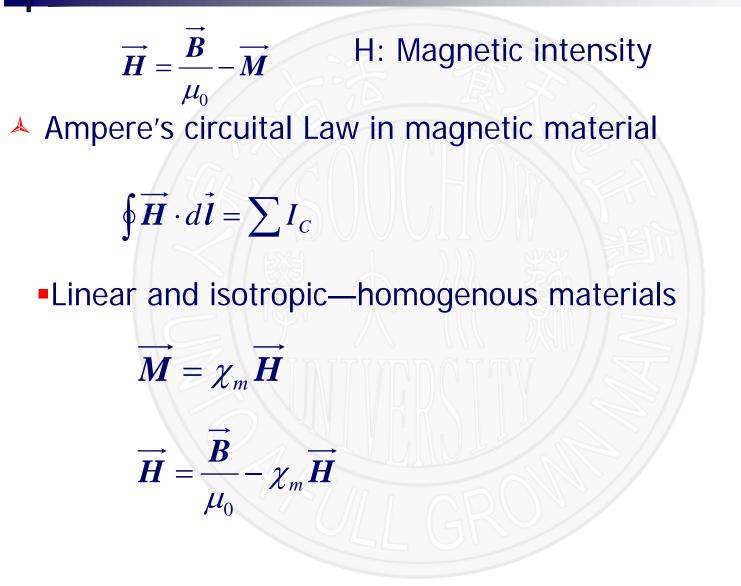
- ▲ I_m :Total Current on the surface
- ▲ S: The cross-sectional area
- ▲ I_mS : Total moment
- ▲ SI : Total volume

Paramagnetic material

► M

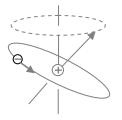

 $I_{\rm C}$


m


$$M = \frac{\sum m}{V} = \frac{I_m S}{Sl} = \frac{I_m}{l} = i_m$$
$$\vec{i}_m = \vec{M} \times \vec{n}$$

$$\oint \vec{M} \cdot d\vec{l} = Ml = i_m l = I_m$$

Ampere's circuital Law in magnetic material



Linear and isotropic—homogenous materials

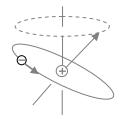
 $\vec{\boldsymbol{B}} = \mu_0 (1 + \chi_m) \vec{\boldsymbol{H}} = \mu_r \mu_0 \vec{\boldsymbol{H}}$

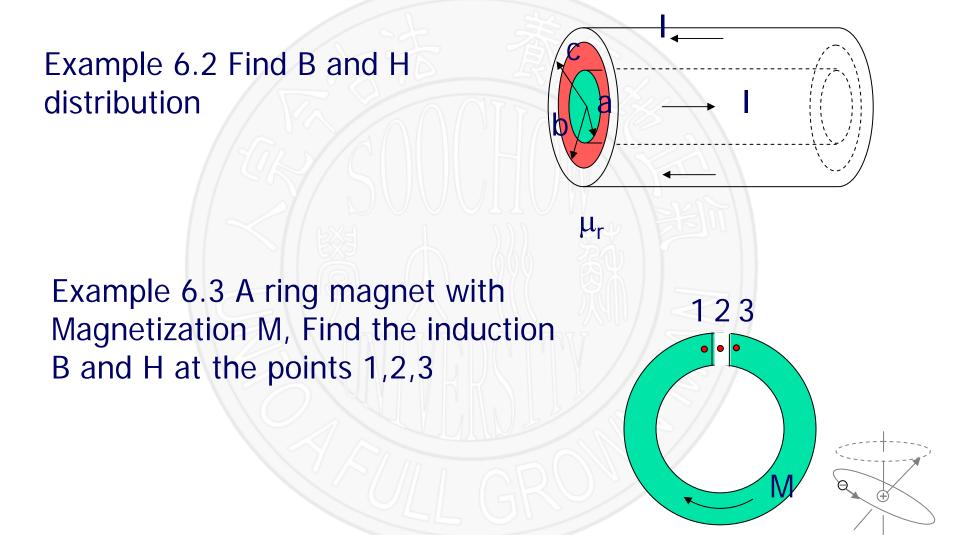
 χ_m magnetic susceptibility

 $\mu(\mu_r\mu_0)$ permeability, μ_r relative permeability

Table 6.1 Magnetic susceptibilities of paramagnetic and diamagnetic materials

Materials	Temperature,° C	$\chi_{\rm m} = \mu_{\rm r} - 1$	
Paramagnetic			
Iron ammonium alum	-269	4830×10 ⁻⁵	
Iron ammonium alum 铁铵明矾	-183	213×10 ⁻⁵	
Oxygen, liquid	-183	152×10-5	
Iron ammonium alum	+20	66×10-5	
Uranium (铀)	20	40×10-5	
Platinum(铂,白金)	20	26×10-5	
Aluminum	20	2.2×10-5	


Sodium	20	0.72×10^{-5}	
Oxygen gas	20	0.19×10-5	
Diamagnetic			
Bismuth	20	-16.6×10 ⁻⁵	
Mercury	20	-2.9×10^{-5}	
Sliver	20	-2.6×10-5	
Carbon(diamond)	20	-2.1×10^{-5}	
Lead	20	-1.8×10^{-5}	
Rock salt	20	-1.4×10-5	
Copper	20	-1.0×10-5	


 Paramagnetic susceptibilities decrease with increasing temperature because of the disorienting effect of thermal motion;

 Diamagnetic susceptibilities are nearly independent of temperature.

Example 6.1 A bar magnet with Magnetization M, Find the induction B and H at the points 1,2,3,4,5,6,7

$$4 \bullet 5 \qquad 3 \bullet M \quad 6 \bullet \bullet 7$$

