Chapter 5 Faraday's Law Transient Process

- 5.1 Faraday's Law of Induction
- 5.2 Two Kinds of Electromotance
- 5.3 Mutual Inductance and Self-Inductance
- **5.4 Transient Process**

Last time ...

Faraday's Law of induction

***** The induced emf ε in a circuit is equal to the rate of B flux.

 $\varepsilon = -\frac{\mathrm{d}\phi_B}{dt}$

Lenz's Law

A The field of induced current always opposes the change of the field producing induction current

▲ The effect of induced current always resists the reason producing induction current.

S

We have two ways to produce electromotive force.

- Conductors moving in magnetic field
- The magnetic field around conductors changing.
 We can divide the electromotive forces into two kinds
 - Motional electromotive force, relative motion.
 - Transformer electromotive force, B changing

Motional electromotive force Conductor moving, vX × Lorentz Force -- Non-electrostatic force X $\mathbf{F}_n = q\boldsymbol{v} \times \boldsymbol{B}$ Non-electrostatic force per unit positive charge $\mathbf{E}_n = \boldsymbol{v} \times \boldsymbol{B}$ Charges accumulated at the ends, and produce E field $\vec{\mathbf{E}} = \vec{\mathbf{E}}_n$ Charge accumulation is over When

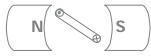
According to the definition of emf

$$\varepsilon = \int_{a}^{b} \vec{E}_{n} \cdot d\vec{l} = \int_{a}^{b} (\vec{v} \times \vec{B}) \cdot d\vec{l}$$
$$= \int_{a}^{b} vB \cdot dl = Blv$$

- A The direction of ε is from a to b
- In general, emf can be calculated by

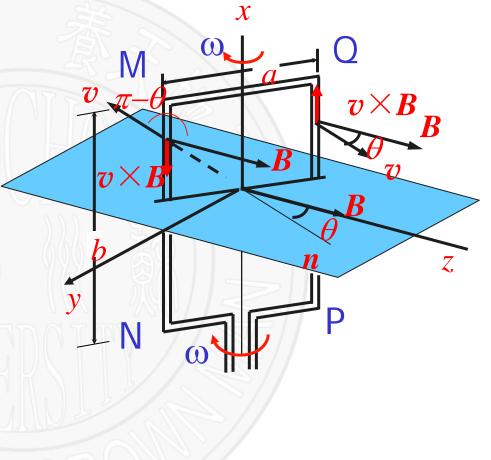
 $\varepsilon = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l}$

a



Alternating current generator

Example 5.2. Alternating current generator The rectangular loop of length a and width b, is rotating with uniform angular velocity ω about the x-axis. The entire loop lies in a uniform, constant **B** field, parallel to the z-axis. Calculate the induced emf in the loop.



5.2 Two Kinds of Electromotive Force Alternating current generator Solution: According to the definition of motional emf W $v \times B$ $\varepsilon = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l}$ $v \times i$ $= \int_{P}^{\Theta} (\vec{v} \times \vec{B}) \cdot d\vec{l} + 0$ Z_{\cdot} V $+\int_{0}^{N} (\vec{v} \times \vec{B}) \cdot d\vec{l} + 0$

 $\omega a/2$

Alternating current generator

 $\mathcal{E} = \int_{P}^{Q} (\vec{v} \times \vec{B}) \cdot d\vec{l} + \int_{M}^{N} (\vec{v} \times \vec{B}) \cdot d\vec{l}$

 $= vB\sin\theta b + vB\sin(\pi - \theta)b$

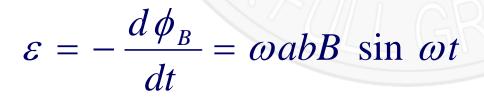
 $v = \omega a/2, \theta = \omega t$

 $\varepsilon = \omega a b B \sin \omega t$

ε is alternative.

We can calculate ϵ by faraday's law

 $\phi_{\scriptscriptstyle B} = Bab\cos\omega t$



Show Generator

π-ωt

a/2

Μ

ωt

(0)

a/2

ωt

 $\omega a/2$

B

Show principle of generator Run flash.exe first

Motional emf

Example 5.3 A copper rod of length L rotates at angular frequency ω in a uniform magnetic field **B** as shown in the figure. Find the emf ε developed between the two ends of the rod.

Solution: According to the definition of motional emf

$$d\varepsilon = (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

 $= vBdl = \omega lBdl$

$$\varepsilon = \int_{0}^{L} \omega lB dl = \frac{1}{2} \omega BL^{2}$$

Can we find ε by Faraday's law?

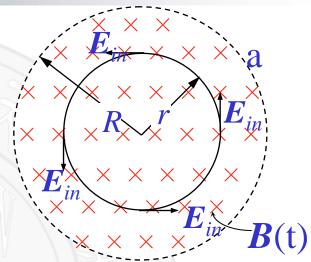
To complement part conductors and form a closed loop.

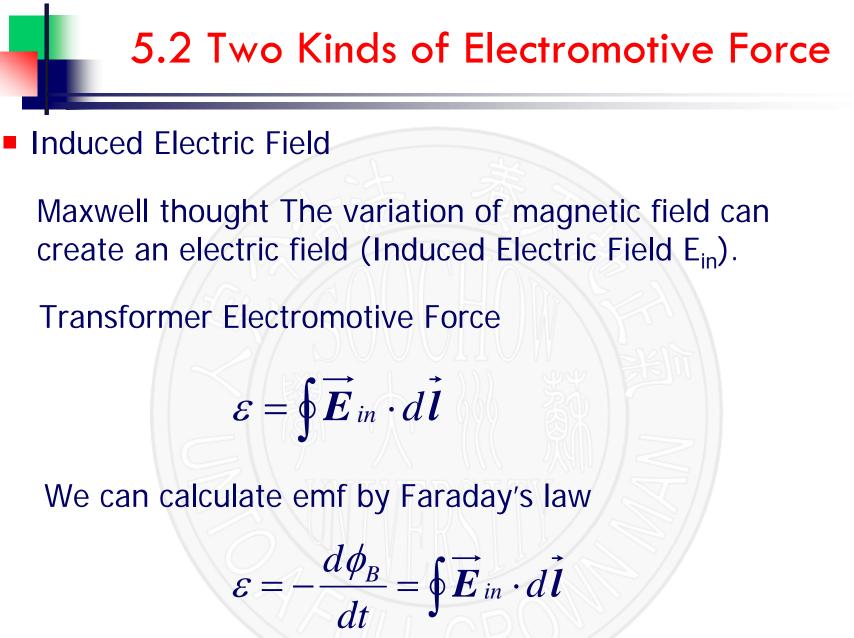
 $\varepsilon = \frac{d\phi_B}{dt} = \frac{BdS}{dt} = B\frac{\frac{1}{2}L^2\omega dt}{dt} =$ $-\frac{1}{B}\omega L^2$ 2 \times X X Find emf in the semicircle X X X X X \times

Transformer electromotive force

- No physical motion
- Magnetic field variation with time
- Who drive particle to move ?
- Maxwell——Induced Electric Field, produced by Variation of Magnetic Field

In section of solenoid, B is increasing. Put a conductor loop, Electric Current Appears





Example 5.4 Let **B** in the figure be increasing at the rate dB/dt. Let R be the radius of the cylindrical region in which the magnetic field is assumed to exist. What is the magnitude of the electric field E_{in} at any radius r?

Solution: (a) For r < R, the flux ϕ_R through the loop is $\phi_{\mathbf{B}} = \pi r^2 B$ Substituting into Faraday's law $\boldsymbol{B}(t)$ $\oint \boldsymbol{E}_{in} \cdot \mathrm{d}\boldsymbol{l} = -\frac{\mathrm{d}\,\phi_B}{dt}$ $\phi \boldsymbol{E}_{in} \cdot \mathrm{d}\boldsymbol{l} = E_{in} 2\pi r$

S

$$\varepsilon = -\frac{d\phi_B}{dt} = -\frac{d(B\pi r^2)}{dt} = -\pi r^2 \frac{dB}{dt}$$

$$E_{in} 2\pi r = -\pi r^2 \frac{dB}{dt}$$

$$E_{in} = -\frac{1}{2} r \frac{dB}{dt}$$
(b) For $r > R$, the flux ϕ_B through the loop is
$$\phi_B = \pi R^2 B$$

$$E_{in} 2\pi r = -\pi R^2 \frac{dB}{dt}$$

$$E_{in} = -\frac{1}{2} \frac{R^2}{r} \frac{dB}{dt}$$

 E_{in}

R

Although the magnetic field distributes inside the solenoid, the induced electric field can be exist outside of the solenoid

Iron

Vacuum

S

Ν

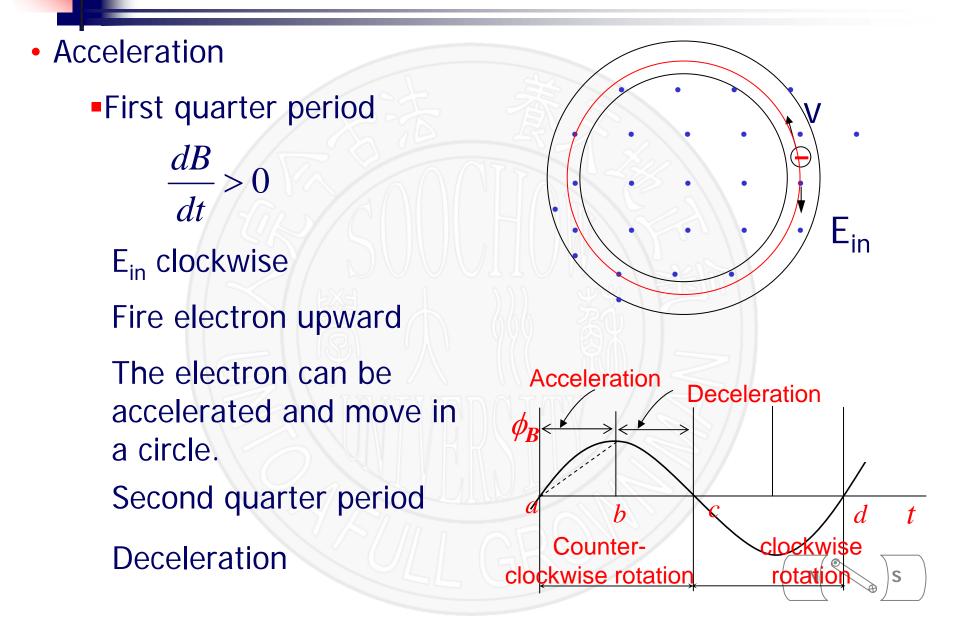
- Betatron
 - Betatron can accelerate a charged particle
 - Remember Cyclotron and Synchrotron?
 - They met relativistic difficulty

Coils

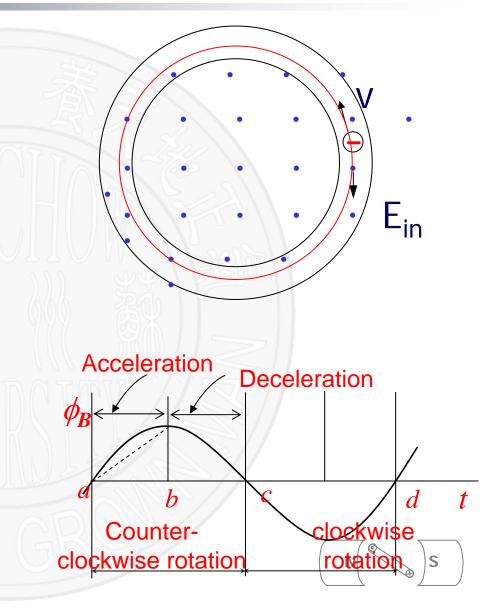
Electrons

beam

Betatron can overcome the difficulty



- Acceleration
 - Third quarter period
 - Deceleration
 - Fourth quarter period
 - Can be accelerated but can not move in a circle. No centripetal force.
 - Only first quarter period



Similarities and Differences Between Vortex and static field

Electrostatic field	Vortex Electric field
Created by stationary charge	Created by variation of <i>B</i> with <i>t</i>
Field lines not closed	Field lines closed
Conservative field	Nonconservative field
Force on charge	Force on charge

Applications of Electromagnetic induction

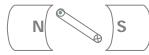
Eddy current

high frequency induction furnace

Magnetic Damping

Show hardening

Show damped pendulum



Induced Emf and Reference Frames

The general equation of motional emf

 $\varepsilon = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l}$

where v is the velocity of the length element dl of the moving conductor.

Induced emf associated with the non-conservative electric field:

$$\varepsilon = \oint \vec{E}_{in} \cdot d\vec{l}$$

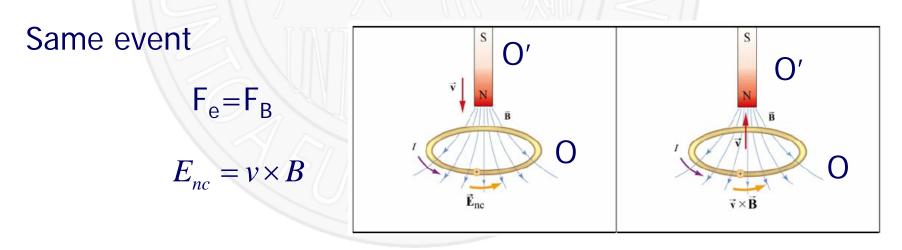
However, whether an object is moving or stationary actually depends on the reference frame.

• A bar magnet is approaching a conducting loop.

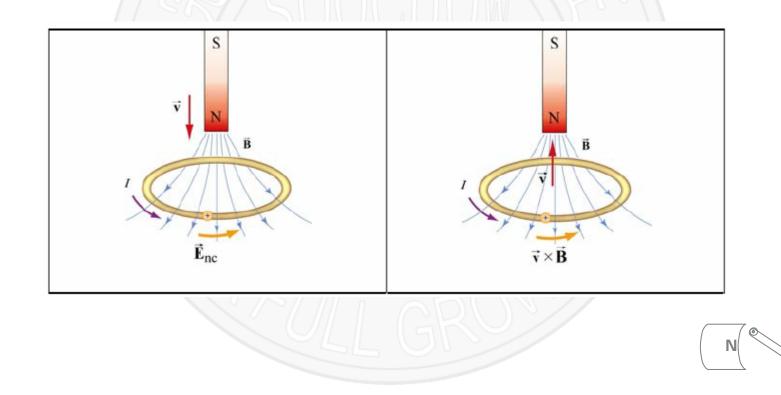
An electric field E_{nc} is induced to drive the current around the loop $F = \, q E_{nc}$

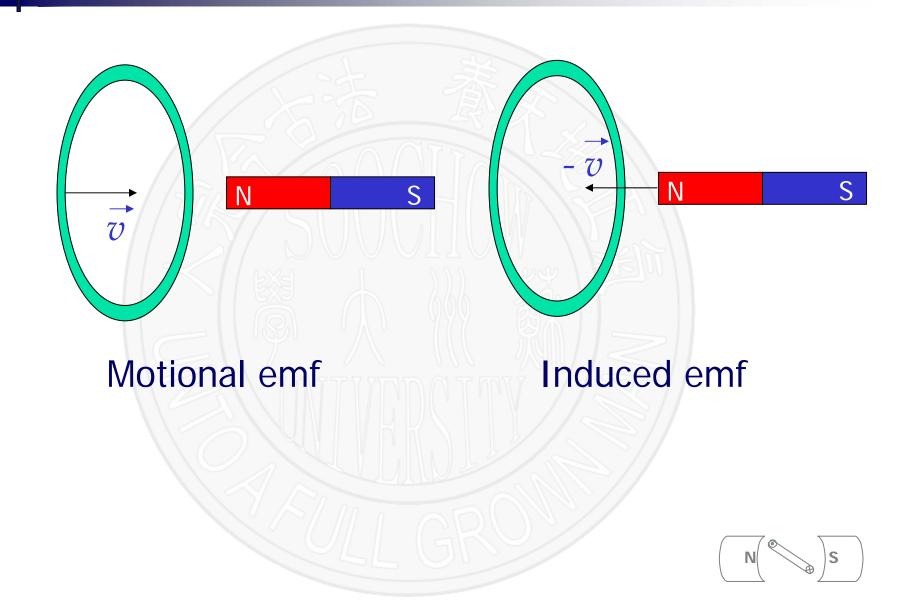
• An observer O' sees the loop moving toward the magnet.

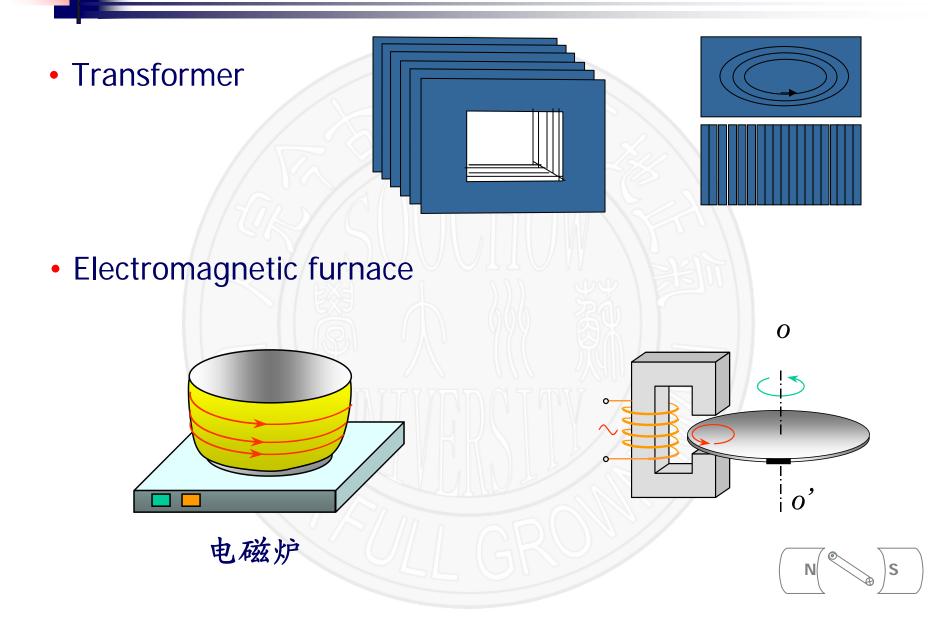
 $F_B = qv \times B$

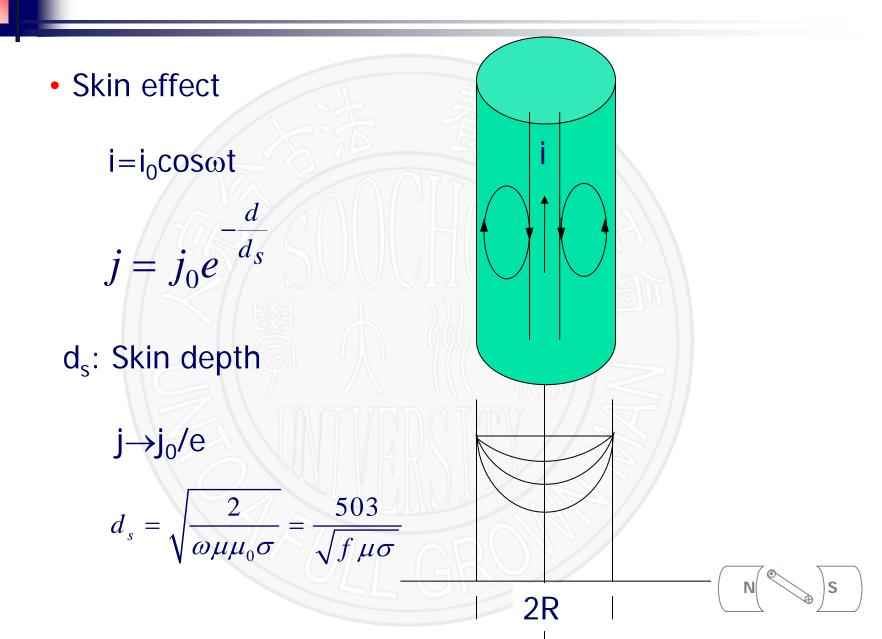


In general, as a consequence of relativity, an electric phenomenon observed in a reference frame O may appear to be a magnetic phenomenon in a frame O' that moves at a speed v relative to O.



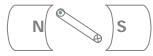




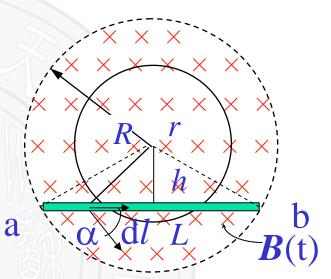


5.2 Two Kinds of Electromotive Force Lorentz Force Doesn't do work? $\vec{f} = -e(\vec{v} \times \vec{B})$ Х X X $\vec{f}' = -e(\vec{u} \times \vec{B})$ X $\times \vec{v} \times$ $\vec{F} = \vec{f}' + \vec{f}$ $= -e(\vec{v} + \vec{u}) \times \vec{B}$ $\times \vec{v} + \vec{u}$ X Ē $\vec{f} \cdot \vec{u} = -e(\vec{v} \times \vec{B}) \cdot \vec{u}$ ×

 $\vec{f}' \cdot \vec{v} = -e(\vec{u} \times \vec{B}) \cdot \vec{v}$



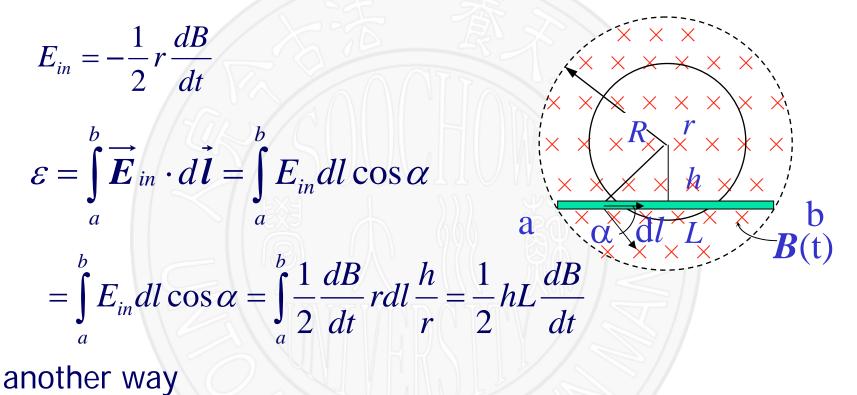
Example 5.5 A uniform magnetic field **B** fills a cylindrical volume of radius *R*. A metal rod of length L is placed as shown in the figure. If **B** is changing at the rate dB/dt, Find that the emf that is produced by changing magnetic field



Solution: According to the Definition of induced emf

$$\varepsilon = \oint \vec{E}_{in} \cdot d\vec{l}$$

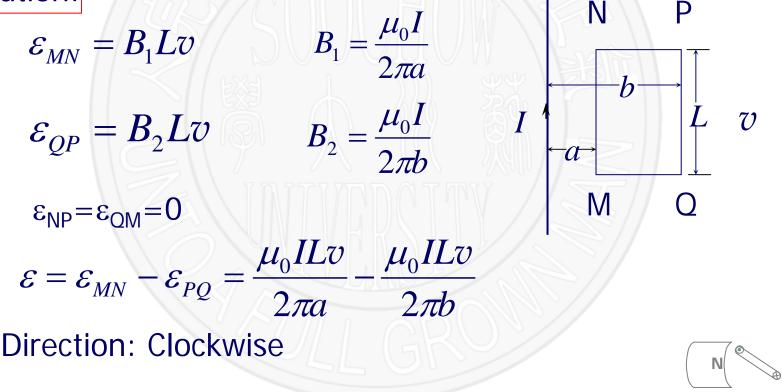
The induced electric field inside the solenoid



 $\varepsilon = -\frac{d\phi}{dt} = -\frac{d(B\frac{1}{2}Lh)}{dt} = -\frac{1}{2}hL\frac{dB}{dt}$

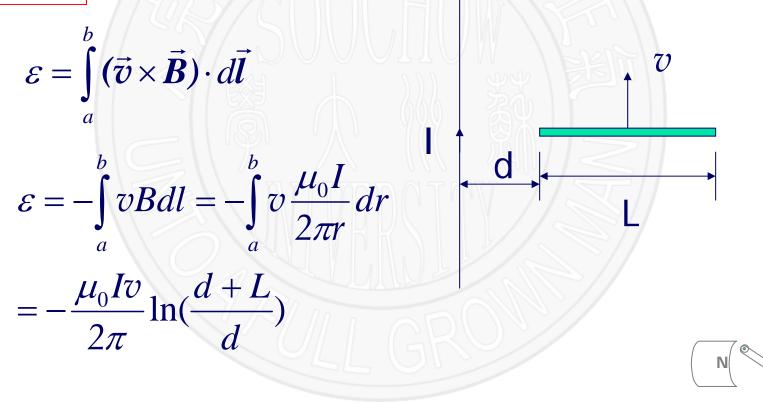
Example 5.6 A rectangular loop moves away an infinite wire with current I, the speed is v, the other configurations as shown in the figure, find emf in the loop.

Solution:



Example 5.7 A wire moves upward near an infinite wire with current I, the speed is v, the other configurations as shown in the figure, find emf in the wire.

Solution:



Example 5.8 A wire is rotating with angular velocity ω as shown in the figure in magnetic field B, find emf in the wire.

