Chapter 4 Magnetic Field

4.1 The Magnetic Field
4.2 The Biot - Savart Law
4.3 The Gauss's Law \& Ampere's Circuital Law
4.4 The Magnetic Forces on Current Conductors
4.5 The Motion of Charge in Magnetic Field

4.2 Biot - Savart Law

\Leftrightarrow Biot -Savart Law

- Superposition Principle For E.
- We can also compute B by Biot-Savart Law.
$\mathrm{d} \overrightarrow{\boldsymbol{B}}=\frac{\mu_{0} I}{4 \pi} \frac{\mathrm{~d} \overrightarrow{\boldsymbol{l}} \times \hat{\boldsymbol{r}}}{r^{2}}$ $\mathrm{d} B=\frac{\mu_{0} I}{4 \pi} \frac{\mathrm{~d} / \sin \theta}{r^{2}}$

$$
\overrightarrow{\boldsymbol{B}}=\int \mathrm{d} \overrightarrow{\boldsymbol{B}}=\int \frac{\mu_{0} I}{4 \pi} \frac{\mathrm{~d} \overrightarrow{\boldsymbol{l}} \times \hat{\boldsymbol{r}}}{r^{2}}
$$

4.2 Biot - Savart Law

- Biot -Savart Law
* Applications of Biot-Savart Law

Find the magnetic field of a straight wire with current $/$.

$$
\begin{aligned}
& \mathrm{d} \overrightarrow{\boldsymbol{B}}=\frac{\mu_{0} I}{4 \pi} \frac{\mathrm{~d} \overrightarrow{\boldsymbol{l}} \times \hat{\boldsymbol{r}}}{r^{2}} \\
& B=\int d B=\frac{\mu_{0} I}{4 \pi} \int \frac{\sin \theta d l}{r^{\prime 2}} \\
& \sin (\pi-\theta)=r / r^{\prime}
\end{aligned}
$$

4.2 Biot - Savart Law

- Biot -Savart Law
** Applications of Biot-Savart Law

$$
\begin{aligned}
& r / I=\tan (\pi-\theta) \\
& \mathrm{d} l=\frac{r \mathrm{~d} \theta}{\sin ^{2} \theta} \\
& B=\frac{\mu_{0} I}{4 \pi r} \int_{\theta_{1}}^{\theta_{2}} \sin \theta \mathrm{~d} \theta \\
& B=\frac{\mu_{0} I}{4 \pi r}\left(\cos \theta_{1}-\cos \theta_{2}\right)
\end{aligned}
$$

4.2 Biot - Savart Law

\Leftrightarrow Biot -Savart Law

* The magnetic field of a Infinite current /

If the line is infinite, $\theta_{1}=0, \theta_{2}=\pi$

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

If the line is semi-infinite,
$\theta_{1}=0, \theta_{2}=\pi / 2$ or $\theta_{1}=, \pi / 2, \theta_{2}=\pi$

$$
B=\frac{\mu_{0} I}{4 \pi r}
$$

4.2 Biot - Savart Law

* Applications of Biot-Savart Law

Example 4.3 A circular current loop. The figure below shows a circular loop of radius R carrying a current I. Calculate B for points on the axis.

Solution: According Biot-Savart Law

$$
\mathrm{d} \overrightarrow{\boldsymbol{B}}=\frac{\mu_{0} I}{4 \pi} \frac{\mathrm{~d} \overrightarrow{\boldsymbol{I}} \times \hat{\boldsymbol{r}}}{r^{2}}
$$

4.2 Biot - Savart Law

* Applications of Biot-Savart Law

$$
\begin{aligned}
& \mathrm{d} B=\frac{\mu_{0} I \mathrm{~d} l \sin 90^{\circ}}{4 \pi r^{2}} \\
& \mathrm{~d} B_{/ /}=\mathrm{d} B \cos \alpha \\
& B=\int \mathrm{d} B
\end{aligned}
$$

4.2 Biot - Savart Law

* Applications of Biot-Savart Law

$$
\begin{aligned}
& \mathrm{d} B_{/ /}=\frac{\mu_{0} I R}{4 \pi\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} \mathrm{~d} l \\
& \mathrm{~B}=\oint \mathrm{d} B_{/ /}=\oint \frac{\mu_{0} I R}{4 \pi\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} \mathrm{~d} l=\frac{\mu_{0} I R^{2}}{2\left(R^{2}+x^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

If $x=0$, the center of loop

$$
B=\frac{\mu_{0} I}{2 R}
$$

4.2 Biot - Savart Law

* Applications of Biot-Savart Law

If $x \gg R$

$$
\begin{aligned}
& B=\frac{\mu_{0} I R^{2}}{2 x^{3}} \\
& B=\frac{\mu_{0}}{2 \pi} \frac{(\text { NIS })}{x^{3}}=\frac{\mu_{0}}{2 \pi} \frac{\mathrm{~m}}{x^{3}}
\end{aligned}
$$

Magnetic dipole

4.2 Biot - Savart Law

* Applications of Biot-Savart Law

Helmholtz coils consisting of two circular conductors, each of radius a, are placed parallel to each other with axes coinciding, a distance d apart, as shown the figure. Each loop carries current I in the same sense of circulation.

4.2 Biot - Savart Law

Example 4.4 Helmholtz coils: (a) Sketch in the field lines you expect for a cross-sectional plane containing the common axis(the $x-y$ plane). (b) Calculate the magnetic field B on the common axis at the midpoint between the coils. (c) Demonstrate that this field of the Helmholtz coils is relatively uniform at the midpoint by show that

$$
\left.\frac{d B_{x}}{d x}\right|_{x=0}=\left.0 \quad \frac{d^{2} B_{x}}{d x^{2}}\right|_{x=0}=0
$$

4.2 Biot - Savart Law

Solution: (a) The lines is shown in the figure
(b)From the equation of magnetic field due to current ring

$$
\mathrm{B}=\frac{\mu_{0} I a^{2}}{2\left(a^{2}+x^{2}\right)^{\frac{3}{2}}}
$$

Obviously, B have the max Value at the center. At the region between coils along the axis, the total field is the sum of fields due to the coils.

4.2 Biot - Savart Law

Helmholtz coils

$$
\mathrm{B}=\frac{\mu_{0} I a^{2}}{2\left(a^{2}+(x+a / 2)^{2}\right)^{\frac{3}{2}}}+\frac{\mu_{0} I a^{2}}{2\left(a^{2}+(x-a / 2)^{2}\right)^{\frac{3}{2}}}
$$

4.2 Biot - Savart Law

Helmholtz coils

$$
\begin{aligned}
& \frac{\mathrm{dB}}{\mathrm{dx}}=\frac{3 \mu_{0} I a^{2}}{2}\left[\frac{x+a / 2}{\left(a^{2}+(x+a / 2)^{2}\right)^{\frac{5}{2}}}+\frac{x-a / 2}{\left(a^{2}+(x-a / 2)^{2}\right)^{\frac{5}{2}}}\right] \\
& \text { If } \mathrm{x}=0, \mathrm{~dB} / \mathrm{dx}=0 \\
& \frac{\mathrm{~d}^{2} \mathrm{~B}}{\mathrm{dx}^{2}}=\frac{3 \mu_{0} I a^{2}}{2}\left[\frac{4(x+a / 2)^{2}-a^{2}}{\left(a^{2}+(x+a / 2)^{2}\right)^{\frac{7}{2}}}+\frac{4(x-a / 2)^{2}-a^{2}}{\left(a^{2}+(x-a / 2)^{2}\right)^{\frac{7}{2}}}\right] \\
& \text { If } \mathrm{x}=0, \mathrm{~d}^{2} \mathrm{~B} / \mathrm{dx}^{2}=0
\end{aligned}
$$

So, B is relatively uniform near the midpoint

4.2 Biot - Savart Law

Example 4.5 In the Bohr model of the hydrogen atom the electron circulated around the nucleus in a path of radium $5.1 \times 10^{-11} \mathrm{~m}$ at a frequency $v=6.8 \times 10^{15} \mathrm{~Hz}$. (a) What value of B is set up at the center of the orbit; (b) What is the equivalent magnetic dipole moment?

Solution:

(a) The current is the rate at which charge passes any point on the orbit and is given

4.2 Biot - Savart Law

$$
\begin{aligned}
& I=\frac{q}{T}=e v=1.6 \times 10^{-19} \times 6.8 \times 10^{15}=1.1 \times 10^{-3}(\mathrm{~A}) \\
& B=\frac{\mu_{0} \mathrm{I}}{2 R}=\frac{4 \pi \times 10^{-7} \times 1.1 \times 10^{-3}}{2 \times 5.1 \times 10^{-11}}=14 \mathrm{~T}=14 \mathrm{wb} / \mathrm{m}^{2} \\
& m=\text { NIS }=1 \times 1.1 \times 10^{-3} \times \pi \times\left(5.1 \times 10^{-11} \mathrm{~m}\right)^{2} \\
& m=9.0 \times 10^{-24}\left(\mathrm{~A} \cdot \mathrm{~m}^{2}\right)
\end{aligned}
$$

