Tutorial for chapter 3

A Electric current I:

$$
I=\frac{d q}{d t}
$$

A Electric current density j

$$
j=\frac{\mathrm{d} I}{\mathrm{~d} S_{\perp}}
$$

A Continuity equation:

$$
\oiint_{(\mathrm{S})} \overrightarrow{\boldsymbol{j}} \cdot \mathrm{d} \overrightarrow{\boldsymbol{S}}=-\frac{d q}{d t}
$$

Tutorial for chapter 3

A Steady-state condition:
$\oiint_{(S)} \vec{j} \cdot d \vec{S}=0$
A Ohm's law:
Macroscopic: $\quad I=\frac{V}{R}$
Microscopic: $\quad \overrightarrow{\boldsymbol{J}}=\sigma \overrightarrow{\boldsymbol{E}}$
$\mathrm{R}=$ resistance $\quad R=\int \rho \frac{\mathrm{d} l}{\mathrm{~S}}$

Tutorial for chapter 3

A Resistors in series

$$
R=R_{1}+R_{2}+\ldots+R_{3}
$$

A Resistors in parallel

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}
$$

\& The Condition of Maximum Output

$$
R=r
$$

A Charging and Discharging

$$
\begin{aligned}
& V=\varepsilon+I r \\
& V=\varepsilon-I r
\end{aligned}
$$

Tutorial for chapter 3

A Kirchhoff 's first Law
Point rule (current law for node or junction theorem) The algebraic sum of the currents toward any node is zero

$$
\sum(\pm I)=0
$$

A Kirchhoff 's Second Law
Loop rule(voltage law) The algebraic sum of the voltage drop in any loop, including those associated with emfs and those of resistive elements, must equal zero:

$$
\sum(\pm \varepsilon)+\sum(\pm \mathrm{IR})=0
$$

Tutorial for chapter 3

Example 3.4. The potentiometerThe Figure shows the rudiments of a potentiometer, which is a device for measuring an unknown emf ε_{x} The currents and emfs are marked as shown. Applying the loop theorem to loop abed yields

$$
\begin{aligned}
& \varepsilon_{S}+I\left(r+R_{G}\right)-\left(I_{0}-I\right) R_{S}=0 \\
& I=\frac{I_{0} R_{S}-\varepsilon_{S}}{R_{S}+r+R_{G}}
\end{aligned}
$$

Adjust R_{0} to make $\mathrm{I}=0{ }^{I_{0} \mid}$ $I_{0} R_{S}=\varepsilon_{S}$

Tutorial for chapter 3

$$
\begin{aligned}
& \varepsilon_{x}+I\left(r+R_{G}\right)-\left(I_{0}-I\right) R_{x}=0 \\
& I=\frac{I_{0} R_{x}-\varepsilon_{x}}{R+r+R_{G}}
\end{aligned}
$$

Adjust R_{x} to make $\mathrm{I}=0$ $I_{0} R_{S}=\varepsilon_{S}$

$$
\varepsilon_{x}=\varepsilon_{s} \frac{R_{x}}{R_{s}}
$$

Tutorial for chapter 3

The Wheatstone bridge. In figure on the right, R_{2} is to be adjusted in value until points a and b are brought to exactly the same potential. (One tests for this these points are at the same potential, the meter will not deflect-balanced.) Show that when this adjustment is made, the following relation holds:

$$
\mathrm{R}_{2} \mathrm{R}_{3}=\mathrm{R}_{1} \mathrm{R}_{4}
$$

Solution: According to Kirchhoff's Law, We get

$$
\begin{array}{ll}
I_{0}=I_{1}+I_{3} & I_{1} R_{1}+I_{9} R_{9}-I_{3} R_{3}=0 \\
I_{3} R_{3}+\left(I_{3}+I_{g}\right) R_{4}-\varepsilon=0 & \left(I_{1} I_{g}\right) R_{2}-\left(I_{3}+I_{9}\right) R_{4}-I_{9} R_{9}=0
\end{array}
$$

Tutorial for chapter 3

$I_{g}=\frac{\left(R_{2} R_{3}-R_{1} R_{4}\right) R_{3} \varepsilon}{R_{1}\left(R_{3}+R_{4}\right)\left(R_{g} R_{4}+R_{2} R_{3}+R_{3} R_{4}+R_{3} R_{g}\right)+\left(R_{2} R_{3}-R_{1} R_{4}\right)\left(R_{3} R_{4}+R_{g} R_{3}+R_{g} R_{4}\right)}$
If $\left(R_{2} R_{3}-R_{1} R_{4}\right)=0$, then, $I_{g}=0$, No current passes through the Galvanometer, the bridge is in the balance.
The condition for balance of bridge: $R_{2} R_{3}=R_{1} R_{4}$
When a bridge is in the balance, The equivalent resistance between c and d can be calculated as follow

$$
\begin{aligned}
R_{c d}=\frac{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)}{\left(R_{1}+R_{2}+R_{3}+R_{4}\right)} & \left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \text { Cut circuit } \\
\text { or } \quad R_{c d}=\frac{R_{1} R_{3}}{R_{1}+R_{3}}+\frac{R_{2} R_{4}}{R_{2}+R_{4}} & \left(\mathrm{R}_{1} / / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{2} / / \mathrm{R}_{4}\right) \text { short circui }
\end{aligned}
$$

Tutorial for chapter 3

3.2.13 When a metal rod is heated, not only its resistance but also its length and its cross-sectional area change. The relation $R=\rho L / A$ suggests that all three factors should be taken into account in measuring ρ at various temperatures. (a) If the temperature changes by $1.0 \mathrm{C}^{\circ}$, what percent changes in R, L, and A occur for a copper conductor? (b) What conclusion do you draw? The coefficient of linear expansion is $\gamma=1.7 \times 10^{-5} \mathrm{C}^{\circ}$.
Solution: From $\rho=\rho_{0}(1+\alpha \Delta t)$

$$
\frac{\rho-\rho_{0}}{\rho_{0}}=\alpha \Delta t=3.9 \times 10^{-3} \times 1=0.39 \%
$$

From $l=l_{0}(1+\gamma \Delta t)$

$$
\frac{l-l_{0}}{l_{0}}=\gamma \Delta t=1.7 \times 10^{-5} \times 1=0.0017 \%
$$

Tutorial for chapter 3

$$
\begin{aligned}
& \frac{A-A_{0}}{A_{0}}=2 \gamma \Delta t=2 \times 1.7 \times 10^{-5} \times 1=0.0034 \% \\
& R=\rho \frac{l}{A}
\end{aligned}
$$

The logarithm of the equation above is

$$
\ln R=\ln \rho+\ln l-\ln A
$$

Differential to the equation is

$$
\frac{\Delta R}{R}=\frac{\Delta \rho}{\rho}+\frac{\Delta l}{l}-\frac{\Delta A}{A}=0.39 \%+0.0017 \%-0.0034 \%=0.3883 \%
$$

So the change of ρ with temperature is mainly part.

Tutorial for chapter 3

3.2.19.(a) Derive the formulas $p=j^{2} \rho$ and $p=E^{2} / \rho$ where $p=$ power per unit volume in a resistor, (b) A cylindrical resistor of radius 0.50 cm and length 2.0 cm has a resistivity of $3.5 \times 10^{-5} \Omega$. m. What are the current density and potential difference when the power dissipation is 1.0W?

Solution: Consider a element volume $\Delta \mathrm{V}$

$$
\begin{aligned}
& \mathrm{P}=\mathrm{i}^{2} \mathrm{R} \quad \mathrm{i}=\mathrm{j} \Delta \mathrm{~S}, \mathrm{R}=\rho \Delta \mathrm{l} / \Delta \mathrm{S} \\
& \mathrm{P}=\mathrm{i}^{2} \mathrm{R}=\mathrm{j}^{2} \Delta \mathrm{~S}^{2}(\rho \Delta \mathrm{l} / \Delta \mathrm{S}) \\
& =\mathrm{j}^{2} \rho \Delta \mathrm{l} \Delta \mathrm{~S}=\mathrm{j}^{2} \rho \Delta \mathrm{~V} \\
& p=\mathrm{P} / \Delta \mathrm{V}=\mathrm{j}^{2} \rho \\
& p=\mathrm{j}^{2} \rho=\rho \mathrm{E}^{2} / \rho^{2}=\mathrm{E}^{2} / \rho
\end{aligned}
$$

Tutorial for chapter 3

$$
\begin{aligned}
& R=\rho \frac{l}{A}=\frac{3.5 \times 10^{-5} \times 2 \times 10^{-2}}{3.14 \times\left(0.5 \times 10^{-2}\right)^{2}}=8.9 \times 10^{-3} \Omega \\
& \mathrm{P}=\mathrm{i}^{2} \mathrm{R} \\
& i=\sqrt{\frac{P}{R}}=\sqrt{\frac{1}{8.9 \times 10^{-3}}}=1.06 \mathrm{~A} \\
& j=\frac{i}{S}=\frac{1.06}{3.14 \times\left(0.5 \times 10^{-2}\right)^{2}}=1.35 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

$\mathrm{V}=\mathrm{i} \mathrm{R}=1.06 \times 8.9 \times 10^{-3}=9.434 \times 10^{-3} \mathrm{~V}$

Tutorial for chapter 3

Find (a) the electric fields in the materials 1 and $2, \mathrm{E}_{1}$ and E_{2}
(b) Potential differences $\mathrm{V}_{\mathrm{AB}}, \mathrm{V}_{\mathrm{BC}}$

Solution: The materials are conducting
From the definition of current density

$$
j=\frac{I}{S}
$$

According to differential form of Ohm's Law: $j=\sigma E$, we can get

$$
\begin{array}{ll}
E_{1}=\frac{j}{\sigma_{1}}=\frac{I}{\sigma_{1} S} & E_{2}=\frac{I}{\sigma_{2} S} \\
V_{A B}=E_{1} d_{1}=\frac{I d_{1}}{\sigma_{1} S} & V_{B C}=E_{2} d_{2}=\frac{I d_{2}}{\sigma_{2} S}
\end{array}
$$

Tutorial for chapter 3

(c) Find the charges on the surfaces A, B, C.

Because σ is very large, the electric fields in the conductors, right and left, are zero

$$
E=\frac{j}{\sigma}
$$

Choose a Gaussian surface enclosing surface A

$$
\begin{aligned}
& \oiint_{(S)} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=E_{1} S=\frac{I}{\sigma_{1}}=q_{A} / \varepsilon_{0} \\
& q_{A}=\frac{\varepsilon_{0} I}{\sigma_{1}} \quad q_{C}=-\frac{\varepsilon_{0} I}{\sigma_{2}} \quad q_{B}=\frac{\varepsilon_{0} I}{\sigma_{2}}-\frac{\varepsilon_{0} I}{\sigma_{1}}
\end{aligned}
$$

Tutorial for chapter 3

$$
\begin{aligned}
& R_{a}=\frac{R}{2}+\frac{R}{2}=R \\
& R_{a}=2 R / / 2 R=R{ }_{2} \\
& \mathrm{~V}_{x y}=\mathrm{I}_{1} \mathrm{R}+\mathrm{I}_{2}(2 \mathrm{R}) \\
& R_{x y}=\frac{V_{1}+\mathrm{I}_{2}}{I}=\frac{I_{1} R+2 I_{2} R}{I_{1}+I_{2}}=\frac{R+2 R \frac{I_{2}}{I_{1}}}{1+\frac{I_{2}}{I_{1}}}=\frac{R+2 R \times \frac{2}{3}}{1+\frac{2}{3}}=\frac{7}{5} R
\end{aligned}
$$

Loop xabx:
$I_{1} R+\left(I_{1}-I_{2}\right) R-2 I_{2} R=0$
$I_{2} / I_{1}=2 / 3$

Tutorial for chapter 3

Find the current in each resistor and the potential difference between a and b. Put $\varepsilon_{1}=6.0 \mathrm{~V}$, $\varepsilon_{2}=5.0 \mathrm{~V}, \varepsilon_{3}=4.0 \mathrm{~V}, R_{1}=100 \Omega$, and $R_{2}=50 \Omega$.
Solution:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\varepsilon_{2}+\varepsilon_{3}=9 \mathrm{~V} \\
& \mathrm{I}_{1} \mathrm{R}_{1}-\varepsilon_{2}=0 \\
& \mathrm{I}_{2} \mathrm{R}_{2}+\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}=0 \\
& \mathrm{I}_{1}=\varepsilon_{2} / \mathrm{R}_{1}=50 \mathrm{~mA} \\
& \mathrm{I}_{2}=\left(\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{1}\right) / \mathrm{R}_{2}=60 \mathrm{~mA}
\end{aligned}
$$

Tutorial for chapter 3

(b) ab is connected, find $V_{a b}$ and the current flowing R_{2}

Solution:

$$
\begin{aligned}
& \varepsilon_{3}-\varepsilon_{1}+\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}+\mathrm{r}_{1}+\mathrm{r}_{2}\right)=0 \\
& I=\frac{\varepsilon_{1}-\varepsilon_{3}}{\left(R_{1}+R_{2}+R_{4}+R_{5}+r_{1}+r_{3}\right)}=0.4 \mathrm{~A}
\end{aligned}
$$

Tutorial for chapter 3

$$
\begin{aligned}
& \mathrm{Iab}_{\mathrm{ab}}=\varepsilon_{3}-\varepsilon_{2}+\mathrm{l}\left(\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{r}_{3}\right) \\
& =8-9+0.4 \times 5=1 \mathrm{~V} \\
& \text { (b) When ab is connected, } \\
& \text { from Kirchhoff's Law } \\
& \mathrm{R}_{3} \uparrow \text { It } \varepsilon_{1}-\varepsilon_{2}-\mathrm{I}_{1}\left(\mathrm{r}_{1}+\mathrm{R}_{1}+\mathrm{R}_{5}\right)-\mathrm{I}_{2}\left(\mathrm{r}_{2}+\mathrm{R}_{2}\right)=0
\end{aligned}
$$

