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From the perspective of structural linguistics, we explore paradigmatic and syntagmatic lexical
relations for Chinese POS tagging, an important and challenging task for Chinese language
processing. Paradigmatic lexical relations are explicitly captured by word clustering on large-
scale unlabeled data and are used to design new features to enhance a discriminative tagger.
Syntagmatic lexical relations are implicitly captured by syntactic parsing in the constituency
formalism, and are utilized via system combination. Experiments on the Penn Chinese Treebank
demonstrate the importance of both paradigmatic and syntagmatic relations. Our linguistically
motivated, hybrid approaches yield a relative error reduction of 18% in total over state-of-the-art
baselines. Despite the effectiveness to boost accuracy, computationally expensive parsers make
hybrid systems inappropriate for many realistic NLP applications. In this article, we are also
concerned with improving tagging efficiency at test time. In particular, we explore unlabeled data
to transfer the predictive power of hybrid models to simple sequence models. Specifically, hybrid
systems are utilized to create large-scale pseudo training data for cheap models. Experimental
results illustrate that the re-compiled models not only achieve high accuracy with respect to per
token classification, but also serve as a front-end to a parser well.

1. Introduction

In grammar, a part-of-speech (POS) is a linguistic category of words, generally defined
by the syntactic or morphological behavior of the word in question. Automatically
assigning POS tags to words plays an important role in parsing, word sense disam-
biguation, as well as many other NLP applications. Many successful tagging algorithms
developed for English have been applied to many other languages as well. In some
cases, the methods work well without large modifications, such as for German. But a
number of augmentations and changes become necessary when dealing with highly
inflected or agglutinative languages, as well as analytic languages, of which Chinese
is the focus of this article. The Chinese language is characterized by the lack of formal
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devices such as morphological tense and number that often provide important clues
for syntactic processing tasks. Although state-of-the-art tagging systems have achieved
accuracies above 97% on English, Chinese POS tagging has proven to be more challeng-
ing and result in accuracies of about 93–94% (Ng and Low 2004; Tseng, Jurafsky, and
Manning 2005; Huang, Harper, and Wang 2007; Huang, Eidelman, and Harper 2009; Li
et al. 2011).

It is generally accepted that Chinese POS tagging often requires more sophisticated
language processing techniques that are capable of drawing inferences from more
subtle linguistic knowledge. From a linguistic point of view, meaning arises from the
differences between linguistic units, including words, phrases, and so on, and these
differences are of two kinds: paradigmatic (concerning substitution) and syntagmatic
(concerning positioning). The distinction is a key one in structuralist semiotic analysis.
Whereas syntagmatic relations are possibilities of combination, paradigmatic relations
are functional contrasts—they involve differentiation. Both paradigmatic and syntag-
matic lexical relations have a great impact on POS tagging, because the value of a word
is determined by the two relations. For example, the Penn Chinese Treebank (CTB) (Xue
et al. 2005)-style POS tags capture both paradigmatic and syntagmatic relations among
words, given that its annotation criterion is the syntactic distribution of words.

With a linguistic motivation, we examine the impact of paradigmatic and syntag-
matic lexical relations on Chinese POS tagging. Our study is motivated by the key
language-specific property that Chinese is an analytic language and encodes lexical
categorial information in a highly configurational rather than morphological way. This
implies that capturing paradigmatic and syntagmatic relations must leverage on clues
from a wider range of sources rather than surface strings. On the contrary, expressive
morphological information can be found based on the word strings themselves. We
argue that different strategies should be employed for designing tagging models for
Chinese and other morphologically rich languages.

We present an error analysis of two state-of-the-art sequential taggers. The first
one uses a generative hidden Markov model (HMM) that is enhanced by using latent
annotations. This model is also known as symbol-refined HMM (SR-HMM). The second
one is a discriminative tagger that uses linear-chain global linear models (LGLM) with
rich contextual word features. Both achieve state-of-the-art performance. Our error
analysis of both taggers shows that the lack of both paradigmatic and syntagmatic
lexical knowledge accounts for a large part of tagging errors.

Our research is concerned with capturing paradigmatic and syntagmatic lexical
relations to advance the state-of-the-art of Chinese POS tagging. Chinese, as an analytic
language, encodes lexical categorial information in a highly configurational rather than
morphological way. This language-specific property implies that capturing paradig-
matic and syntagmatic relations must leverage clues from a wider range of sources
rather than surface strings. To improve tagging performance, first, we use unsupervised
word clustering to explore paradigmatic relations that are encoded in large-scale un-
labeled data. Using unsupervised algorithms to acquire rich word representations, such
as word clustering and word similarity calculation, is a very practical way to achieve
wide-coverage lexical resources. To enhance the discriminative tagger, word clusters
are explicitly utilized as new features. We are relying on the ability of discriminative
learning to explore informative features that play a central role in boosting tagging
performance.

Second, we study the possible impact of syntagmatic relations on POS tagging by
comparatively analyzing (syntax-free) sequential tagging models and (syntax-based)
parsing models in the constituency formalism. Inspired by the analysis, we use a full
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parser to implicitly capture syntagmatic relations and propose a simple yet effective
stacking model to combine the complementary strengths of sequential taggers and
parsers.

We conduct experiments on the CTB and Chinese Gigaword. We implement a dis-
criminative sequential classification model for POS tagging that achieves state-of-the-art
accuracy. Experiments show that this model is significantly improved by word cluster
features in accuracy across a wide range of conditions. This confirms the importance
of the paradigmatic relations. We then present a comparative study of our tagger and
a constituency parser and a dependency parser, and show that the combination of het-
erogeneous models can significantly improve tagging accuracy. Our experiments show
that stacking is a very effective method to combine the complementary strengths of
heterogeneous models. This demonstrates the importance of the syntagmatic relations.
Cluster-based features and the stacking model result in a relative error reduction of 18%
in terms of the word classification accuracy.

Although predictive powers of hybrid systems are significantly better than indi-
vidual systems, they are not suitable for large-scale real word applications that have
stringent time requirements. The best performing model is slow and large, and fast
and compact models are less accurate, because either they are not expressive enough
or they overfit to the limited training data. To improve POS tagging efficiency without
loss of accuracy, we explore unlabeled data to transfer the predictive power of complex,
inefficient models to simple, efficient models. Specifically, hybrid systems are utilized
to create large-scale pseudo training data for cheap sequence models. For the SR-HMM
tagger, pseudo training data are able to estimate finer-grained latent variables, and for
the discriminative tagger, tagging accuracy can be improved by extending the context
for feature extraction.

Experiments on the CTB and Gigaword demonstrate that unlabeled data are effec-
tive to transfer the predictive power of hybrid models to simple models, including both
latent variable generative models and global linear classifiers. On one hand, the preci-
sion in terms of word classification is improved to 95.34%, which is equivalent to the
parser-integrated hybrid model. On the other hand, re-compiled models are adapted
based on parsing results, and as a result the ability to capture syntagmatic lexical
relations is improved, too. Different from the purely supervised sequence models, re-
compiled models also serve as a front-end to a parser well.

Our study has been partially published in Sun and Uszkoreit (2012) and Sun,
Peng, and Wan (2013). For this iteration, we re-implement all models, and therefore
experimental results are not exactly the same. We also release our implementation for
research purposes. The related resources can be downloaded at www.icst.pku.edu.cn/
lcwm/lexer.

2. Motivating Analysis

Many algorithms have been applied to computationally assigning POS labels to English
words, including hand-written rules, generative HMM tagging, and discriminative
sequence labeling. Such methods have been applied to many other languages as well.
In some cases, the methods work well without large modifications, such as for German
POS tagging. But a number of augmentations and changes became necessary when
dealing with Chinese, a language that has little, if any, inflectional morphology. Whereas
state-of-the-art tagging systems have achieved accuracies above 97% on English,
Chinese POS tagging has proven to be more challenging and obtains accuracies of
about 93–94% (Tseng, Jurafsky, and Manning 2005; Huang, Harper, and Wang 2007;
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Huang, Eidelman, and Harper 2009; Li et al. 2011). In this section, we give a brief
introduction and a comparative analysis to several models that have been recently
designed to resolve the Chinese POS tagging problem.

2.1 State-of-the-Art Tagging Models
2.1.1 Linear-Chain Global Linear Model (LGLM). All state-of-the-art English POS taggers
are based on discriminative sequence labeling models—for example, maximum en-
tropy (Toutanova et al. 2003), support vector machines (Giménez and Màrquez 2004),
structure perceptron (Collins 2002; Shen, Satta, and Joshi 2007; Huang, Fayong, and
Guo 2012), and conditional random fields (Sun 2014). A discriminative learner can be
easily extended with arbitrary features and is therefore suitable to recognize more new
words. Moreover, a majority of the POS tags are locally dependent on each other, so the
Markov assumption can well capture the syntactic relations among words. A majority
of discriminative POS taggers utilize Global Linear Models (GLMs) for learning and
prediction. A GLM represents the sequence labeling task through a feature-vector rep-
resentation of the whole observation and tag sequence pair. We use Φ to denote a map
from (x[1:n], y[1:n]) pairs to d-dimensional feature vectors, where x[1:n] and y[1:n] are the
observation and the tag sequences. Φ is often referred to as a global representation
function. Using this feature-vector representation, the conditional probability of the
label sequence given the observation sequence is modeled as:

P(y[1:n]|x[1:n]) ∝ ewΦ(x[1:n],y[1:n] ) (1)

By adopting the global feature-vector representation, we can flexibly incorporate
rich context features. The global feature-vector can be further decomposed into the sum
of local feature-vectors with smaller granularity:

Φ(x[1:n], y[1:n]) =
n∑

i=1

φ(hi, yi) (2)

where hi is the history correlated with yi. Using this local representation, we can use
the Viterbi algorithm for inference, which finds the optimal tag sequence ŷ[1:n] that
maximizes the following score:

ŷ[1:n] = arg max
y[1:n]

n∑
i=1

wφ(hi, yi) (3)

Discriminative learning is also an appropriate solution for Chinese POS tagging,
because of its flexibility to include knowledge from multiple linguistic sources. Tseng,
Jurafsky, and Manning (2005) introduced a maximum entropy–based model, which
includes morphological features for unknown word recognition, and Sun (2011) studied
the joint word segmentation and POS tagging problem and developed a fully discrim-
inative method. However, they did not deeply analyze the problem from a linguistic
view.

The global linear algorithm we adopt in this article is averaged perceptron (Collins
2002).
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2.1.2 Symbol-Refined Hidden Markov Model (SR-HMM). Generative models with latent
annotations (LAs) obtain state-of-the-art performance for a number of NLP tasks.
For example, both context-free Grammar (CFG) and tree-substitution grammar (TSG)
with refined latent variables achieve excellent results for syntactic parsing (Matsuzaki,
Miyao, and Tsujii 2005; Shindo et al. 2012). For Chinese POS tagging, Huang, Eidelman,
and Harper (2009) described and evaluated a bigram HMM tagger that utilizes latent
annotations. The use of latent annotations substantially improves the performance of a
simple generative bigram tagger, outperforming a trigram HMM tagger with sophisti-
cated smoothing.

An HMM POS tagger models the joint distribution of the observation sequence
x[1:n] and the tag sequence y[1:n]. Under the first-order Markov assumption, the inference
problem can be computed as:

ŷ[1:n] = arg max
y[1:n]

P(x[1:n], y[1:n])

= arg max
y[1:n]

n∏
i=1

P(yi|yi−1)P(xi|yi)
(4)

where the set {P(yi|yi−1)} are transition parameters, which model the transition from
tag yi−1 to tag yi, and the set {P(xi|yi)} are emission parameters, which model the
generation of word xi from tag yi. However, the first-order Markov independence as-
sumption of a bigram tagger is too strong in many cases. Huang, Eidelman, and Harper
(2009) introduces using latent annotation to refine the tags of a bigram HMM model.
For example, the NR tag may be split into NR-1 and NR-2, and the corresponding
symbol-refined tag sequence for “Mr./NR Smith/NR saw/VV Ms./NR Smith/NR” can
be denoted as “Mr./NR-2 Smith/NR-1 saw/VV-2 Ms./NR-2 Smith/NR-1.”

The objective of training a symbol-refined bigram tagger is to solve the LA-involved
emission and transition parameters by maximizing the likelihood of the training data.
In contrast with a non-symbol-refined HMM tagger, where the POS tags are observed,
the latent annotations are unseen variables. In order to learn these parameters, a variant
of EM algorithm is used. The objective function used for decoding is:

ŷ[1:n] = arg max
y[1:n]

n−1∏
i=1

P(yi, yi+1|x[1:n]) (5)

This goal function is a variant of the MAX-RULE-PRODUCT algorithm in Petrov and
Klein (2007), which maximizes the product of rule posteriors. This algorithm is not prob-
abilistically correct but follows the instinct of choosing the tree with the greatest chance
of having all rules correct. Similarly, the goal function used in the SR-HMM POS tagger
tries to find the tag sequence with the greatest chance of having all bigrams correct. The
bigram tag posterior is calculated by marginalizing out the latent annotations in the
bigram latent tag posterior.

P(yi = t, yi+1 = s|x[1:n]) =
∑

ta∈S(t)

∑
sb∈S(s)

P(ta, sb|x[1:n]) (6)
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Table 1
Training, development, and test data on CTB 6.0.

#Sentence #Word

Training 22,277 609,060
Development 1,763 49,620
Test 2,556 73,153

Huang, Harper, and Wang (2007) and Huang, Eidelman, and Harper (2009) present
empirical studies of generative Chinese POS tagging. In particular, evaluation of the
SR-HMM model obtains state-of-the-art performance. In this article, we adopt their
tagger for experiments.

2.1.3 Local Classification. A very simple approach to POS tagging is to formulate it as
a local word classification problem. Various features can be drawn upon information
sources such as word forms and characters that constitute words. Previous study on
many languages shows that local classification is inadequate to capture structural infor-
mation of output labels, and thus does not perform as well as structured models. The
local classification algorithm we adopt in this article is linear SVM.1 Because it is a local
linear model, we denote it as LLM.

2.2 Evaluation
2.2.1 Setting. Penn Chinese Treebank (CTB) (Xue et al. 2005) is a popular data set to
evaluate a number of Chinese NLP tasks, including word segmentation (Sun and Xu
2011), POS tagging (Huang, Harper, and Wang 2007; Huang, Eidelman, and Harper
2009), constituency parsing (Wang, Sagae, and Mitamura 2006; Zhang and Clark 2009),
and dependency parsing (Zhang and Clark 2008; Huang and Sagae 2010; Li et al. 2011).
We use CTB 6.0 as the labeled data for the study. The corpus was collected during
different time periods from different sources with a diversity of topics. In order to
obtain a representative split of data sets, we conduct experiments following the setting
of the CoNLL 2009 shared task. The setting is provided by the principal organizer of
the CTB project, and considers many annotation details. This setting is more robust for
evaluating Chinese language processing algorithms. Table 1 shows the statistics of our
experimental settings.

To deeply analyze the POS tagging problem for Chinese, we implement a linear-
chain global linear model. A majority of state-of-the-art English POS taggers are based
on LGLMs, for example, structured perceptron (Collins 2002) and conditional random
fields (Lafferty, McCallum, and Pereira 2001). We choose structured perceptron (Collins
2002) to estimate parameters.

2.2.2 Features for LLM and LGLM. In our experiments, we use a feature set that
draws upon information sources such as word forms and characters that constitute

1 www.csie.ntu.edu.tw/~cjlin/liblinear/.
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words. To conveniently illustrate, we denote a word in focus with a fixed window
w−2w−1ww+1w+2, where w is the current token. Our features includes:r Word unigrams: w−2, w−1, w, w+1, w+2r Word bigrams: w−2 w−1, w−1 w, w w+1, w+1 w+2r In order to better handle unknown words, we extract morphological

features: character n-gram prefixes and suffixes for n up to 3

That means 15 features are used to represent a given word token. When a different
amount of data is available, the best configuration of feature template varies. Normally,
a larger window of context leads to improved accuracy when more labeled data is
available. This setting can be tuned on the development data. In our experiments on
the CTB 6.0, the window size is tuned to 2.

2.2.3 Overall Performance. Table 2 summarizes the performance in terms of per word
classification of different supervised models on the development data. We present the
results of both first- and second-order LGLMs. There is only a slight gap between the
local classification model and various structured models. Although the local classifier
achieves comparable results when applied to Chinese data, there is a much more signif-
icant gap between the corresponding structured models. Similarly, the gap between the
first- and second-order LGLMs is very modest too.

2.3 Error Analysis
2.3.1 Correlating Tagging Accuracy with Word Frequency. Table 3 summarizes the pre-
diction accuracy on the development data with respect to the word frequency on the
training data. To avoid overestimating the tagging accuracy, these statistics exclude
all punctuation that can be easily recognized. From this table, we can see that words
with low frequency, especially the out-of-vocabulary (OOV) words, are hard to label.
Compared with a generative model, one major advantage of a discriminative model
is its ability to utilize flexible features for disambiguation. This is quite important for
predicting an unknown word. When a word is very frequently used, its behavior is com-
plicated and therefore hard to predict. A typical example of such words is the language-
specific function word “的.” This analysis suggests that a main topic to enhance Chinese
POS tagging is to bridge the gap between the infrequent words and frequent words.

2.3.2 Correlating Tagging Accuracy with Span Length. In this work, we define the maximal
projection of a word x as the span of words below x in the dependency tree. The key

Table 2
Tagging accuracies on the development data. LGLM1 and LGLM2 denote first- and second-order
global linear model respectively.

System Accuracy (%)

LLM 93.61
LGLM1 94.30
LGLM2 94.42
SR-HMM 94.08
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Table 3
Tagging accuracies (%) relative to word frequency.

Freq. LLM LGLM1 LGLM2 SR-HMM

0 78.72 79.77 80.66 77.49
1–5 87.75 87.95 88.13 87.57
6–10 90.04 91.04 91.28 90.69
11–100 94.49 94.94 94.80 94.60
101–1000 95.68 96.08 96.12 96.23
1001– 91.81 93.62 93.94 93.41

property is that a word projects its grammatical property to its maximal projection and
it syntactically governs all words under the span of its maximal projection. Though
maximal projection is traditionaly defined on deep structure by transformational gen-
erative grammaticians, we can empirically borrow the idea that a word in a sentence
only governs a limited domain. Measuring the area governed by a word is helpful for
error analysis. Sometimes modeling such an observation can even improve practical
NLP systems such as a semantic role labeller (Sun, Sui, and Wang 2008). The concept of
maximal projection used here is adopted from our early work on semantic role labeling
(Sun, Sui, and Wang 2008).

Table 4 shows the tagging accuracies relative to the length of the spans. The spans
are calculated according to the corresponding dependency annotations converted from
CTB and provided by the CoNLL shared task. We can see that with the increase of the
number of words governed by the token, the difficulty of its POS prediction increases.
Especially, higher-order models make better predictions for words governing larger
spans. This analysis suggests that syntagmatic lexical relations play a significant role
in POS tagging, and sometimes words located far from the current token significantly
affect its tagging.

An interesting phenomenon is that the performance decline stops when the length
is greater than 7. The main reason is that these words usually have clear collocation
words nearby but the collocated words govern a very large area. Typical examples are
words that take a clause as its complement, such as “说/say.” It is relatively easy to label
this word, but its complement could be of a large size. In other words, the usage of a
word that is complex from one particular view is not necessarily complex from another.

Table 4
Tagging accuracies (%) relative to length. The length is defined as one plus the number of words
that are dominated by the target word.

Len. LLM LGLM1 LGLM2 SR-HMM

1–2 92.77 93.51 93.55 93.37
3–4 91.97 92.94 93.13 92.50
5–6 91.21 92.29 92.51 91.62
7– 93.37 94.17 94.58 93.77
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Table 5
Tagging F1 scores relative to POS types.

Type LLM LGLM1 LGLM2 SR-HMM

NN 94.51 94.77 94.82 94.32
NR 93.94 94.37 94.90 94.42
NT 97.13 97.41 97.26 97.56

DEC 78.72 81.17 81.89 79.25
DEG 82.35 85.59 86.61 84.38

2.3.3 Correlating Tagging Accuracy with POS Type. Table 5 presents F-scores of several
POS types, including nouns and functional words. The POS types NR, NT, and NN,
respectively, represent proper nouns, temporal nouns, and other common nouns. We
can clearly see that models that only explore local dependencies are good enough to
deal with nouns. Superisingly, the local classifier that does not directly define features
of possible POS tags of other surrounding words performs even better than structured
models for proper nouns and other common nouns.

The tag DEC denotes a complementizer or a nominalizer, and the tag DEG denotes
a genitive marker and an associative marker. These two types only include two words:
“的” and “之.” The latter is mainly used in ancient Chinese. About 5.19% of words
appearing in the training data set is DEC/DEG. In addition to the high frequency,
“的” takes much functional information that is very important for syntactic processing.
The pattern of the DEC recognition is clause/verb phrase+DEC+noun phrase, and the
pattern of the DEG recognition is nominal modifier+DEC+noun phrase. To distinguish the
sentential/verbal and nominal modification phrases, the DEC and DEG words usually
need long-range syntactic information for accurate disambiguation. We claim that the
prediction performance of the two specific types is a good clue to how well a tagging
model resolves long-distance dependencies. We can see that though these taggers work
relatively well on predicting content words, they cannot handle function words sat-
isfyingly. The significant performance gap between content words and function words
again suggests that syntagmatic lexical relations plays an important role in POS tagging.

3. Capturing Paradigmatic Relations via Word Clustering

To bridge the gap between high- and low-frequency words, we use word clustering
to acquire the knowledge about paradigmatic lexical relations from large-scale texts.
Our work is also inspired by the successful application of word clustering to named
entity recognition (Miller, Guinness, and Zamanian 2004) and dependency parsing
(Koo, Carreras, and Collins 2008).

3.1 Word Clustering

Word clustering is a technique for partitioning sets of words into subsets of syntacti-
cally or semantically similar words. It is a useful technique to capture paradigmatic or
substitutional similarity among words.
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3.1.1 Clustering Algorithms. Various clustering techniques have been proposed, some
of which, for example, perform automatic word clustering optimizing a maximum-
likelihood criterion with iterative clustering algorithms. In this article, we focus on
distributional word clustering that is based on the assumption that words that appear in
similar contexts (especially surrounding words) tend to have similar syntactic distribu-
tions. Note that syntactic rather than morphological distributions are the key evidence
to determine the grammatical categories of Chinese words, given that Chinese is an
analytic language. Automatic word clustering has been successfully applied to many
NLP problems, such as language modeling.

The main problem is that we cannot expect these independently optimized classes
to be correspondent with syntactic structures. In the feature induction framework, this
problem is partially resolved by exploring the ability of discriminative learning to
automatically identify the correspondence between the two types of “word classes.” In
the literature, contexts have been defined as subjective and objective relations involving
the word, as the documents containing the word, or as search engine snippets for the
word as a query. We derive new features for POS tagging by applying two distributional
clustering methods, which both take into account surrounding words as contexts.

Brown Clustering. Our first choice is the bottom–up agglomerative word clustering
algorithm of Brown et al. (1992), which derives a hierarchical clustering of words from
unlabeled data. This algorithm generates a hard clustering—each word belongs to
exactly one cluster. The input to the algorithm is sequences of words w1, ..., wn. Initially,
the algorithm starts with each word in its own cluster. As long as there are at least
two clusters left, the algorithm merges the two clusters that maximize the quality of
the resulting clustering. The quality is defined based on a class-based bigram language
model as follows.

P(wi|w1, ...wi−1) ≈ p(C(wi)|C(wi−1))p(wi|C(wi)) (7)

where the function C maps a word w to its class C(w). We use a publicly available
package2 (Liang, Collins, and Liang 2005) to train this model.

MKCLS Clustering. We also do experiments by using another popular clustering method
based on the exchange algorithm (Kneser and Ney 1993). The objective function is
maximizing the likelihood

∏n
i=1 P(wi|w1, ..., wi−1) of the training data given a partially

class-based bigram model of the form

P(wi|w1, ...wi−1) ≈ p(C(wi)|wi−1)p(wi|C(wi)) (8)

We use the publicly available implementation MKCLS3 (Och 1999) to train this model.
One downside of both Brown and MKCLS clustering is that they are based solely on

bigram statistics, and do not consider word usage in a wider context. We choose to work
with these two algorithms considering their prior success in other NLP applications.
However, we expect that our approach can function with other clustering algorithms.

2 http://cs.stanford.edu/~pliang/software/brown-cluster-1.2.zip.
3 http://code.google.com/p/giza-pp/.
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3.1.2 Data. Chinese Gigaword is a comprehensive archive of newswire text data that
has been acquired over several years by the Linguistic Data Consortium (LDC). The
large-scale unlabeled data we use in our experiments come from the Chinese Gigaword
(LDC2005T14). We choose the Mandarin news text, that is, Xinhua newswire. These data
cover all news published by Xinhua News Agency (the largest news agency in China)
from 1991 to 2004, which contains over 473 million characters.

3.1.3 Pre-processing: Word Segmentation. Different from English and other Western lan-
guages, Chinese is written without explicit word delimiters such as space characters. To
find the basic language units (i.e., words), segmentation is a necessary pre-processing
step for word clustering. Our previous research showed that character-based segmen-
tation models trained on labeled data are reasonably accurate (Sun 2010). In this work,
we use a supervised segmenter introduced in Sun and Xu (2011) to process raw texts.

3.2 Improving Tagging with Cluster Features

Our discriminative sequential tagger is easy to be extended with arbitrary features
and therefore suitable to explore additional features derived from other sources. We
propose using word clusters as substitutes for word forms to assist the POS tagger. We
are relying on the ability of the discriminative learning method to explore informative
features, which play central role to boost the tagging performance. Five clustering-based
features are added:

r Cluster unigrams: wc−1, wc, wc+1r Cluster bigrams: wc−1 wc, wc wc+1

where wci denotes the clustering index of word wi.

Table 6
Tagging accuracies (%) with different feature configurations.

Features #Sent Brown MKCLS
LLM LGLM1 LGLM2 LLM LGLM1 LGLM2

Baseline 93.61 94.30 94.42 93.61 94.30 94.42

+c100 2.39M 94.30 94.70 94.76 94.48 94.75 94.88
+c500 2.39M 94.41 94.71 94.66 94.59 94.67 94.87
+c1000 2.39M 94.37 94.59 94.77 94.50 94.84 94.86

+c100 7.17M 94.31 94.68 94.88 94.46 94.73 94.80
+c500 7.17M 94.51 94.74 94.86 94.68 94.82 94.95
+c1000 7.17M 94.51 94.74 94.89 94.62 94.77 94.94

+c100 11.96M 94.53 94.81 94.87 94.62 94.83 95.00
+c500 11.96M 94.55 94.75 94.79 94.60 94.87 94.94
+c1000 11.96M 94.66 94.87 94.91 94.66 94.79 94.96
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3.3 Evaluation

Table 6 summarizes the tagging results on the development data with different feature
configurations. In this table, the symbol “+” in the Features column means that the cur-
rent configuration contains both the baseline features and new cluster-based features;
the number is the total number of the clusters; the number in the #Sent column means
how many millions of raw sentences are used to cluster words. From this table, we can
clearly see the impact of word clustering features on POS tagging. The new features
lead to substantial improvements over the strong supervised baseline. In particular, the
word clustering information bridges the gap between the local classifier and structured
prediction models much. Moreover, these increases are consistent regardless of the
clustering algorithms. Both clustering algorithms contribute to the overall performance
equivalently. A natural strategy for extending current experiments is to include both
clustering results together. However, we find no further improvement. For each clus-
tering algorithm, there are not many differences among different sizes of the total
clustering numbers. When a small size of unlabeled data is added, the semi-supervised
learning only yields minor improvements. When a comparable amount of unlabeled
data are used, the further increase of the unlabeled data for clustering does not lead to
much changes of the tagging performance.

3.4 Learning Curves

We do additional experiments to evaluate the effect of the derived features as the
amount of labeled training data is varied. We use the LGLM1 model and the clustering
results with “MKCLS+11.96M” setting for these experiments. Table 7 summarizes the
accuracies of the systems when trained on smaller portions of the labeled data. We can
see that the new features obtain consistent gains regardless of the size of the training
set. The error is reduced significantly on all data sets. In other words, the word cluster
features can significantly reduce the amount of labeled data required by the learning
algorithm. The relative reduction is greatest when smaller amounts of the labeled data
are used, and the effect lessens as more labeled data are added. This result gives a rough
impression of the amount by which derived features reduce the need for supervised
data, given a desired level of accuracy.

Table 7
Tagging accuracies (%) relative to sizes of training data. Size = number of sentences in the
labeled training corpus. Bold identifies best performance at the given size.

Size Supervised +c100 +c500 +c1000

100 66.94 76.78 71.91 68.59
500 77.89 84.19 82.17 81.14
1000 83.70 87.68 87.74 86.49
5000 90.57 91.84 91.93 91.95
10000 93.17 94.00 93.91 94.02
15000 93.76 94.42 94.47 94.39
20000 94.11 94.76 94.58 94.73
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Table 8
Tagging accuracies (%) with IV clustering.

Clusters +c100 +c500 +c1000

IV 94.37 (↑0.07) 94.41 (↑0.11) 94.40 (↑0.10)
All 94.83 (↑0.46) 94.87 (↑0.46) 94.79 (↑0.39)

Table 9
The tagging recall (%) of OOV words.

Type #Words Baseline +c100 +c500 +c1000

AD 21 42.86 47.62 (↑) 52.38 (↑) 52.38 (-)
CD 237 98.73 98.31 (↓) 99.16 (↑) 98.73 (↑)
JJ 86 26.74 37.21 (↑) 31.40 (↑) 23.26 (↓)
NN 1012 85.47 87.06 (↑) 88.44 (↑) 86.86 (↑)
NR 863 81.23 88.30 (↑) 85.86 (↑) 89.92 (↑)
NT 21 57.14 57.14 (-) 61.90 (↑) 66.67 (↑)
VA 15 40.00 73.33 (↑) 80.00 (↑) 73.33 (↑)
VV 402 69.15 72.14 (↑) 72.89 (↑) 76.37 (↑)

3.5 Analysis

Word clustering derives paradigmatic relational information from unlabeled data by
grouping words into different sets. As a result, the contribution of word clustering
to POS tagging is two-fold. On the one hand, word clustering captures and abstracts
context information. This new linguistic knowledge is thus helpful to better correlate a
word in a certain context to its POS tag. On the other hand, the clustering of the OOV
words to some extent fights the sparse data problem by correlating an OOV word with
in-vocabulary (IV) words through their classes. To evaluate the two contributions of
the word clustering, we limit entries of the clustering lexicon to only contain IV words,
that is, words appearing in the training corpus. Using this constrained lexicon, we train
new first-order LGLMs with “+MKCLS+11.96M” clustering and report its prediction
power in Table 8. The gap between the baseline and +IV models can be viewed as the
contribution of the first effect, and the gap between the +IV and +All models can be
viewed as the second contribution. This result indicates that the improved predictive
power partially comes from the new interpretation of a POS tag through clustering, and
mainly comes from its memory of OOV words that appear in the unlabeled data.

Table 9 shows the recall of OOV words on the development data set. Only the
word types appearing more than 10 times are reported. For more information about
the definition POS tags, refer to the guideline4 provided by the CTB project. We give
a brief illustration of the POS tags in Appendix A. The results are evaluated using the
first-order LGLM tagger. The recall of almost all OOV words is improved with any kind
of clustering results, especially of proper nouns (NR) and common verbs (VV). Another

4 http://www.cs.brandeis.edu/~clp/ctb/posguide.3rd.ch.pdf.
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interesting fact is that almost all of them are content words. This table is also helpful to
understand the impact of the clustering information on the prediction of OOV words.

4. Capturing Syntagmatic Relations via Parsing

To capture syntagmatic relations among words, a trivial idea is to use higher order
Markov models. However, the empirical evaluation on the CTB data indicates that the
second-order model does not benefit much, especially when word clustering features
are added. This result suggests that a linear-chain structure is relatively weak to capture
complex syntagmatic lexical relations. Different from lexical analysis, syntactic analysis,
especially the full and deep one, reflects syntagmatic relations of words and phrases
of sentences. We present a series of empirical studies of the tagging results of the
two syntax-free sequential taggers and a state-of-the-art syntax-based parser, aiming at
illuminating more precisely the impact of information about phrase-structures as well
as dependency structures on POS tagging. The analysis is helpful to understand the role
of syntagmatic lexical relations in POS prediction.

4.1 CFG-Based Parsing

POS tags can be taken as pre-terminals of a constituency parse tree, so a constituency
parser can also provide POS information. The majority of the state-of-the-art constituent
parsers are based on generative probabilistic CGF (PCFG) learning, with lexicalized
(Charniak 2000; Collins 2003) or latent annotation (Matsuzaki, Miyao, and Tsujii 2005;
Petrov et al. 2006) refinements. Compared with complex lexicalized parsers, the symbol-
refined PCFG (SR-PCFG) parsers leverage on an automatic procedure to learn refined
grammars and are more robust to parse many non-English languages that are not well
studied. For Chinese, a SR-PCFG parser achieves the state-of-the-art performance and
outperforms many other types of parsers (Zhang and Clark 2009). In our work, the
Berkeley parser,5 an open source implementation of the SR-PCFG model, is used for
experiments.

4.2 Comparing Tagging and Parsing

From a linguistic view, we can distinguish syntax-free and syntax-based models. In a
syntax-based model, POS tagging is integrated into parsing, and thus (to some extent)
is capable of capturing a considerable amount of long range syntactic information. From
a machine learning view, we can distinguish generative and discriminative models.
Compared with generative models, discriminative models define expressive features
to classify words. Note that the two generative models use latent variables to refine the
output spaces, which significantly boost the accuracy and increase the robustness of
simple generative models.

Table 10 shows their overall and detailed performance with respect to representa-
tive types. In the following, we present a comparative analysis.

4.2.1 Content Words vs. Function Words. Table 10 gives a detailed comparison regarding
different word types. For each type of word, we report the accuracy of both solvers
and compare the difference. The majority of the words that are better labeled by the

5 code.google.com/p/berkeleyparser/.
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Table 10
Tagging F1 scores of relative to word classes.

Type LLM LGLM1 LGLM2 SR-HMM Parser

NN 94.51 94.77 94.82 94.32 93.46
NR 93.94 94.37 94.90 94.42 89.76
NT 97.13 97.41 97.26 97.56 96.80

CD 97.26 97.57 97.63 97.57 95.50

VA 79.34 83.25 84.49 80.57 81.47
VC 97.10 97.20 97.00 96.90 96.01

AD 93.47 94.53 94.59 94.81 94.13
JJ 82.19 83.80 83.18 82.54 81.38

CC 90.52 91.99 91.98 92.91 94.00
P 93.51 94.52 94.35 95.10 96.19

DEC 78.72 81.17 81.89 79.25 85.69
DEG 82.35 85.59 86.61 84.38 88.94
DER 75.86 77.42 75.00 83.33 78.05
DEV 57.73 74.38 74.14 76.81 84.89

Overall 93.61% 94.30% 94.42% 94.08% 93.69%

tagger are content words, including nouns (NN, NR, NT), numbers (CD), predicates
(VA, VC), adverbs (AD), nominal modifiers (JJ), and so on. It is worth noting that both
discriminative and generative sequential taggers consistently outperform the parser.
In contrast, most of the words that are better predicted by the parser are function
words, including most particles (DEC, DEG, DER, DEV, AS, MSP), prepositions (P),
and coordinating conjunctions (CC).

4.2.2 Open Classes vs. Close Classes. POS can be divided into two broad supercategories:
closed class types and open class types. Open classes accept the addition of new
morphemes (words), through such processes as compounding, derivation, inflection,
coining, and borrowing. On the other hand closed classes are those that have rela-
tively fixed membership. For example, nouns and verbs are open classes because new
nouns and verbs are continually coined or borrowed from other languages, whereas
DEC/DEG are two closed classes because only the function word “的” is assigned to
them. The discriminative model can conveniently include many features, especially
features related to the word formation, which are important to predict words of open
classes. Table 11 summarizes the tagging accuracies relative to IV and OOV words.
These statistics exclude all punctuations that can be trivially recognized. On the whole,
the Berkeley parser processes IV words slightly better than our tagger, but processes
OOV words significantly worse. The numbers in this table clearly show that the main
weakness of the Berkeley parser is the the predictive power of the OOV words.

4.2.3 Local Disambiguation vs. Global Disambiguation. Closed class words are generally
function words that tend to occur frequently and often have structuring uses in gram-
mar. These words have little lexical meaning or have ambiguous meaning, but instead
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Table 11
Tagging accuracies (%) of the IV and OOV words.

IV OOV

LLM 93.56 78.72
LGLM1 94.35 79.77
LGLM2 94.43 80.66
SR-HMM 94.22 77.49
Parser 94.61 64.43

serve to express grammatical relationships with other words within a sentence. They
signal the structural relationships that words have to one another and are the glue that
holds sentences together. Thus, they serve as important elements to the structures of
sentences. The disambiguation of these words normally requires more syntactic clues,
which are very hard and inappropriate for a sequential tagger to capture. Based on
global grammatical inference of the whole sentence, the full parser is relatively good at
dealing with structure-related ambiguities.

We conclude that a discriminative sequential tagging model can better capture local
syntactic and morphological information, and the full parser can better capture global
syntactic structural information. The discriminative tagging models are limited by the
Markov assumption and are inadequate to correctly label structure-related words.

4.3 Impact on Parsing

The weak ability for non-local disambiguation also imposes restrictions on using a
sequence POS tagging model as a front module for parsing. To evaluate the impact, we
use the Berkeley parser to parse a sentence based on the POS tags provided by sequence
models. Table 12 shows the parsing performance. Labeled bracketing precision, recall,
and F-score (LP, LR, and LF) are listed. Note that the overall tagging performance of the
Berkeley parser is significantly worse than the sequence models. However, better POS
tagging does not lead to better parsing. Our experiments suggest that sequence models

Table 12
Parsing accuracies (%) on the development data.

Devel. LP LR LF

Berkeley(ALL) 82.44 80.31 81.36

LLM(ALL) 79.17 78.46 78.82 (↓)
LGLM1(ALL) 80.28 79.52 79.90 (↓)
LGLM2(ALL) 79.59 80.58 80.08 (↓)
SR-HMM(ALL) 80.59 79.35 79.96 (↓)

LLM(non-De)+Berkeley(De) 81.12 79.18 79.64 (↓)
LGLM1(non-De)+Berkeley(De) 80.82 79.94 80.38 (↓)
LGLM2(non-De)+Berkeley(De) 81.14 80.07 80.60 (↓)
SR-HMM(non-De)+Berkeley(De) 81.32 80.01 80.66 (↓)
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propagate too many errors to the parser. Moreover, the parser is very sensitive to errors
of prediction of some specific categories. The numbers presented in the bottom block
of Table 12 give a rough illustration. The results are obtained by providing the parser
mixed POS tagging analysis: The tags of “的/得” predicted by the Berkeley parser and
the tags of other words are utilized. We can see that though the overall parsing quality
is still worse than Berkeley parser, it is better than sequence models. The performance
change demonstrates the importance of prediction of these two particular words. Our
linguistic analysis can also better explain the poor performance of Chinese CCG parsing
when applying the C&C parser (Tse and Curran 2012). We think the failure is mainly
due to overplaying sequence models in both POS tagging and supertagging.

4.4 Enhancing Tagging via Stacking

We study a simple way of integrating multiple heterogeneous models in order to
exploit their complementary strengths and thereby improve tagging accuracy beyond
what is possible by either model in isolation. The method integrates the heterogeneous
models by allowing the outputs of SR-HMM and the parser to define features for the
LLM/LGLM. Similar to our work on combining a sequence model and a parser, Rush
et al. (2010) proposed a principled decoding technique based on dual decomposition
to take advantages of heterogeneous models. There are two differences between their
model and ours. First, the base models for combining are separately trained in their
solution. In other words, one key difference is whether to allow integration of base
models at learning time. Second, the application of the decomposition technique is de-
pendent on the solvability of sub-problems. This technique, therefore, is not as flexible
as stacking.

4.4.1 Stacked Learning. Stacked generalization is a meta-learning algorithm that was first
proposed in Wolpert (1992) and Breiman (1996). Stacked learning has been applied as
a system ensemble method in several NLP tasks, such as joint word segmentation and
POS tagging (Sun 2011), and dependency parsing (Nivre and McDonald 2008). The idea
is to include two “levels” of predictors. The first level includes one or more predictors
g1, ..., gK : Rd → R; each receives input x ∈ Rd and outputs a prediction gk(x). The second
level consists of a single function h : Rd+K → R that takes as input 〈x, g1(x), ..., gK(x)〉
and outputs a final prediction ŷ = h(x, g1(x), ..., gK(x)). The predictor, then, combines an
ensemble (the gk’s) with a meta-predictor (h).

Training is done as follows. The training data S = {(xt, yt) : t ∈ [1, T]} are split into
L equal-sized disjoint subsets S1, ..., SL. Then functions g1, ..., gL (where gl = 〈gl

1, ..., gl
K〉)

are separately trained on S− Sl, and are used to construct the augmented data set Ŝ =
{(〈xt, ŷ1

t , ..., ŷK
t 〉, yt) : ŷk

t = gl
k(xt) and xt ∈ Sl}. Finally, each gk is trained on the original

data set and the second level predictor h is trained on Ŝ. The intent of the cross-validation
scheme is that yk

t is similar to the prediction produced by a predictor which is learned
on a sample that does not include xt.

This framework is also explored as a solution for learning long range features in
Torres Martins et al. (2008). Torres Martins et al. explored a stacked framework for learn-
ing long range features for dependency parsing. In machine learning research, stacked
learning has been applied to structured prediction (Cohen and Carvalho 2005). In this
work, stacked learning is used to acquire extended training data for sub-word tagging.
For example, Cohen and Carvalho (2005) described a sequential learning scheme called
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“stacked sequential learning.” In that meta-learning algorithm, an arbitrary base learner
is augmented so as to make it aware of the labels of nearby examples.

4.4.2 Applying Stacking to POS Tagging. We use the LLMs or LGLMs (as h) for the level-1
processing, and other models (as gk) for the level-0 processing. The characteristic of
discriminative learning makes LLMs/LGLMs very easy to integrate into the outputs
of other models as new features. T is set to 5 to generate augmented training data
for estimating h. We are relying on the ability of discriminative learning to explore
informative features, which play a central role in boosting the tagging accuracy. For
output labels produced by each auxiliary model, five new label uni/bigram features are
added: w−1, w, w+1, w−1 w, w w+1. This choice is tuned on the development data.

4.4.3 Evaluation. Table 13 summarizes the tagging accuracy of different stacking models.
From this table, we can clearly see that the new features derived from the outputs of
other models lead to substantial improvements over the baseline LLM/LGLM. The
output structures provided by the SR-PCFG model is most effective in improving
the LLM/LGLM baseline systems. Among different stacking models, the syntax-free
hybrid one (i.e., stacking LLM/LGLM with SR-HMM) does not need any treebank
to train their systems. For the situations in which parsers are not available, this is a
good solution. Moreover, the decoding algorithms for linear-chain Markov models are
very fast. Therefore the syntax-free hybrid system is more appealing for many NLP
applications.

Table 14 shows the F1 scores of the DEC/DEG prediction obtained by different
stacking models. Compared with Table 10, we can see that the hybrid sequence model is
still not good at handling long-distance ambiguities. As a result, it still does not serve the
parser well, though it achieves higher overall precision. On the other hand, the syntax-
based hybrid model can refine the POS tags returned by the same parser, and therefore
improve the final parsing results. In other words, by parsing twice, we can obtain better
phrase-structure trees.

Table 13
Tagging accuracies (%) of different stacking models on the development data.

LLM LGLM1 LGLM2

+SR-HMM 94.59 94.80 94.83
+SR-PCFG 94.83 95.06 95.04
+Word clustering+SR-HMM 95.03 95.11 95.12

+Word clustering+SR-PCFG 95.40 95.45 95.54

Table 14
F1 score of the DEC/DEG prediction and parsing performance of different stacking models on
the development data.

DEC DEG LP LR LF

LGLM1(SR-HMM) 82.72 86.99 81.13% 80.12% 80.63 (↓)
LGLM1(SR-PCFG) 87.05 90.06 82.66% 81.20% 81.92 (↑)
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4.5 Combining Both

We have introduced two separate improvements for Chinese POS tagging that capture
different types of lexical relations. We therefore expect further improvement by com-
bining both enhancements, since their contributions to the task is different. We still
use the stacking model to integrate the discriminative tagger and the Berkeley parser.
The only difference between current experiment and the previous experiment is that
the discriminative models are trained with the help of word clustering features. The
last line of Table 13 also shows the performance of the new hybrid models on the
development data set. We can see that the improvements that come from two methods,
namely, capturing syntagmatic and paradigmatic relations, do not overlap much and
their combination yields a better combined result.

5. Reducing Hybrid Models to Sequence Models

We have shown that higher accuracy can be achieved by applying learning techniques
to capture deep lexical relations. Especially, syntagmatic lexical relations have been
shown playing an essential role in Chinese POS tagging. To capture such relations, we
utilize hybrid models that obtain such information from a syntactic parser. However,
it is inappropriate to use computationally expensive parsers to improve POS tagging
for many realistic NLP applications, mainly because of efficiency considerations. In this
section, we investigate the feasibility of capturing some longer-distance dependencies
in a sequence model.

5.1 The Idea

We explore unlabeled data to transfer the predictive power of hybrid models to se-
quence models. The main idea behind this is to use a fast model to approximate the
function learned by a slower, larger, but better-performing ensemble model. Unlike
the true function that is unknown, the function learned by a high-performing model is
available and can be used to label large amounts of pseudo data. A fast and expressive
model trained on large-scale pseudo data will not overfit and will approximate the
function learned by the high performing model well. This allows a slow, complex model
such as a massive ensemble to be compressed into a fast sequence model such as a first-
order LGLM with very little loss in performance.

This idea to use unlabeled data to transfer the predictive power of one model to
another has been investigated in many areas, for example, from high accuracy neural
networks to more interpretable decision trees (Craven 1996), from high accuracy ensem-
bles to faster and more compact neural networks (Bucila, Caruana, and Niculescu-Mizil
2006), from structured prediction models to local classification models (Liang, Daumé,
and Klein 2008), or from complicated parsing models to simpler ones (Petrov et al. 2010).

5.2 Applying Structured Compilation to POS Tagging

We do some experiments to explore the feasibility of reducing hybrid tagging models
to a SR-HMM or LGLM for Chinese POS tagging. The large-scale unlabeled data we
use in our experiments come from the Chinese Gigaword. We choose the Mandarin
news text (i.e., Xinhua newswire). We tag Gigaword sentences by applying a successful
model, namely, the stacked second order LGLMs with Berkeley parser. According to
our evaluation, the automatically annotated texts obtained in this step is of relatively
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high quality. Note that the process of this step is somewhat time-consuming, given that
a chart parser is used. We viewed the annotated results as pseudo training data, which
is imperfect but still of high quality. Such pseudo training data could be of very large-
scale theoretically and practically. Together with gold standard training data, large-scale
pseudo training data can be used to train SR-HMMs and LGLMs. We expect that the
SR-HMM tagger can be improved by exploring better latent variables, and that the
discriminative taggers can be improved by using features in a larger context.

5.3 Beam Decoding for LGLM

For a number of NLP tasks, including tagging and parsing, the generic beam-search
algorithmic technique has been shown to be very powerful to build efficient systems
with comparable accuracy (Zhang and Clark 2011). In our model re-compilation case,
to train a second order LGLM on a very large data set is quite time-consuming. Rather
than the Viterbi algorithm, we here use the beam search algorithm for decoding. Beyond
simple beam decoding that essentially implements the greedy search strategy, Huang
and Sagae (2010) discuss how the state-merging strategy that is used by dynamic
programming methods can be applied to enhance a beam decoder. Considering that the
total number of possible tags is much larger than conventional tagging, we implement
a beam-search algorithm with state merging for our discriminative tagger.

In a second-order model, the basic factor contains three consecutive tags, but only
the last two influence future decoding. That means that all partial tag sequences with
the same last two tags can be merged together. Specifically, at each decoding step, our
decoder first generates all new partial tag sequences by labeling the next word, then
the top-b sequences with different last two tags are collected for future prediction while
others are thrown away. With the state-merging strategy, our beam decoder can per-
form dynamic programming too. Note that when the beam width is large enough, our
decoding algorithm actually searches the whole space and is exactly a Viterbi decoder.

5.4 Multi-View Learning with Unlabeled Data

The key for the success of hybrid tagging models is the existence of a large diversity
among learners. Zhou (2009) argued that when there are many labeled training exam-
ples, unlabeled instances are still helpful for hybrid models because they can help to
increase the diversity among the base learners. The author also briefly introduced a
preliminary theoretical study. In this work, we also combine the re-trained models to
see if we can benefit more. The final combination is very simple: We utilize voting as the
strategy for final combination. In the tagging phase, the re-trained LGLM and SR-HMM
systems with different settings output multiple tagging results, in which each word is
assigned one POS label. The final tagging is the voting result of these labels.

5.5 Evaluation
5.5.1 Reducing Hybrid Models to SR-HMMs. With the increase of (pseudo) training data,
a SR-HMM may learn better latent variables to subcategorize POS tags, which could
significantly improve a purely supervised SR-HMM. In our experiments, SR-HMM
models are trained with six, seven, and eight iterations of split, merge, smooth. Table
15 shows the performance of the re-trained SR-HMMs. The first column is the number
of sentences of pseudo sentences, and the second column lists the number of words. The
pseudo sentences are selected from the Xinhua news section of the Chinese Gigaword.
We can clearly see that the idea to leverage unlabeled data to transfer the predictive
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Table 15
Tagging accuracies (%) of re-compiled SR-HMM models on the development data. “I-x” denotes
the number (x) of split-merge-smooth iterations for training. Bold identifies best performance
results.

I-6 I-7 I-8
#Sent #Word Overall Overall DEC DEG Overall DEC DEG

100K 2.36M 94.27 94.46 80.76 85.82 94.64 81.27 86.34
200K 4.72M 94.51 94.65 80.21 85.29 94.70 81.72 86.39
500K 11.82M 94.57 94.75 80.30 85.26 94.78 81.62 86.57
1000K 23.63M 94.79 94.87 81.26 86.32 94.96 82.09 88.95

ability of the hybrid model works. Self-training can also slightly improve a SR-HMM
(Huang, Eidelman, and Harper 2009). Our auxiliary experiments show that self-training
is not as effective as our structure compilation method.

With the increase of training iterations, finer-grained latent variables are estimated
and they can enhance tagging. Note that the training procedure on the purely super-
vised setting obtains the best tagging results at iteration 6. More training data, even if
it is not perfect, can improve the generative learning process. The table also presents
the performance with respect to DEC/DEG disambiguation. The results suggest that
finer-grained latent variables lead to better long-range disambiguation.

5.5.2 Reducing Hybrid Models to LGLMs. To increase the expressive power of a discrimi-
native classification model, we extend the feature templates. This strategy is proposed
by Liang, Daumé, and Klein (2008). In our experiments, we increase the window size of
word uni-/bigram features to approximate longer distance dependencies. For window
size 3, we will add w−3, w3, w−3w−2, and w2w3 as new features; for size 4, we will add
w−4, w−3, w3, w4, w−4w−3, w−3w−2, w2w3, and w3w4. Using features derived from a
longer window is harmful when only limited labeled data are available. That is why

Table 16
Tagging accuracies (%) of re-compiled LGLM1 and LGLM2 models on the development data.
The beam size is set to 4. “win=x” denotes the window size (x) of word uni-/bigrams for feature
extraction. Bold identifies best performance results.

win=2 win=3 win=4
#Sent #Word Model Overall Overall DEC DEG Overall DEC DEG

100K 2.36M LGLM1 94.98 95.15 83.99 87.53 95.14 84.05 87.68
200K 4.72M 95.03 95.21 84.70 88.25 95.19 85.12 88.46
500K 11.82M 95.14 95.24 85.17 88.94 95.27 86.02 89.31
1000K 23.63M 95.20 95.24 84.89 89.03 95.30 86.50 89.91

100K 2.36M LGLM2 95.09 95.18 84.84 88.10 95.09 84.70 88.14
200K 4.72M 95.13 95.15 84.96 87.96 95.24 86.08 89.76
500K 11.82M 95.22 95.23 85.51 88.79 95.27 85.51 89.01
1000K 23.63M 95.24 95.30 85.28 89.04 95.40 86.59 89.85
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we only use these features in the structure compilation setting. Table 16 shows the per-
formance of the re-compiled first- and second-order LGLMs. The “+MKCLS+11.96M”
algorithm is used to provide word clustering information, and the number of total
clusters is 500. Similar to the generative model, the discriminative LGLM tagger can
be improved too. The second-order model performs slightly better than the first-order
one. Considering the decoding time is equivalent because of the fixed beam width, the
second-order model is a better choice for application.

In these experiments, we set the beam width for decoding to be 4. Our auxiliary
experiments shows that the “beam search with state merging” is quite effective, even
with a very small beam size. We vary the beam width and present the results in Table 17.

Compared with the generative model, the re-compiled discriminative model is
more effective and more efficient. Although the time complexity for the SR-HMM is
linear with respect to the number of words contained in a sentence, the practical running
time is influenced by the number of latent variables. Even if we expect further accuracy
improvements via adding more data and using more split-merge-smooth iterations to
get more effective latent variables, such a setting will significantly affect the tagging
efficiency. On the other hand, the beam decoder for the discriminative model achieves
equivalent tagging accuracies to the Viterbi decoder. As a result, the efficiency of both
training and testing can be guaranteed. Another advantage of the discriminative tagger
is its relatively good prediction power of the longer-distance dependencies. The best
re-compiled LGLM2 obtains better DEC/DEG prediction than the Berkeley parser.

5.5.3 Voting. Table 18 is the final voting results of the SR-HMM and LGLM. We use
three base models for combination, which is the minimum for performing voting. In
other words, the final tagging is the voting result of these three labels. Obviously, the re-
trained models are still diverse and complementary, so the voting can further improve
the sequence models. The result of the best hybrid sequence model is equivalent to the
best stacking models.

Table 17
Tagging accuracies (%) relative to beam width on the development data. The LGLM2 model is
applied.

#Sent Beam win=2 win=3 win=4

500K 8 95.19 95.31 95.26
500K 16 95.18 95.31 95.31
500K 32 95.22 95.25 95.34
500K 64 95.20 95.30 95.27

Table 18
Tagging accuracies (%) of the voting models on the development data. Bold identifies best
performance results.

Voter 1 Voter 2 Voter 3 Acc.

SR-HMM, I-8, 1000K SR-HMM, I-7, 1000K LGLM, win=4, 1000K 95.17
SR-HMM, I-8, 1000K LGLM, win=4, 1000K LGLM, win=3, 1000K 95.45
SR-HMM, I-8, 1000K LGLM, win=4, 1000K LGLM, win=4, 500K 95.54
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Table 19
Accuracies (%) of parsing based on re-compiled tagging. Column “SC” denotes whether
structure compilation is applied.

SC LP LR LF

Berkeley - - 82.44 80.31 81.36

SR-HMM NO 80.59 79.35 79.96 (↓)
LGLM2 NO 79.59 80.58 80.08 (↓)

SR-HMM YES 82.86 80.60 81.22 (↓)
LGLM2 YES 82.50 81.39 81.94 (↑)
Voting YES 82.57 81.47 82.01 (↑)

5.5.4 Improved Parsing. There are two ways for the sequence models to encode long-range
information. On one hand, the models can be built upon high-order linear structures
(e.g., Ye et al. 2009). One of main challenges of this solution is the high computational
complexity. On the other hand, sequence models can incorporate features extracted
from a larger context (e.g., by extending window size). This solution cannot work well if
only a limited amount of annotated data is available. The key idea underlying structure
compilation is to appropriately utilize automatically annotated data to estimate weights
for more contextual features. Because features extracted from a larger context provide
important clues to detect longer-distance relationships, a re-compiled sequence model
can approximate the behavior of a parser to some extent.

Purely supervised sequence models are not good at predicting function words,
and accordingly are not good enough to be used as front modules to parsers. The
re-compiled models can mimic some behaviors of parsers, and therefore are suitable
for parsing. Especially, we have seen that the predictive power for the function word
disambiguation is enhanced significantly. Our evaluation shows that the significant
improvement of the POS tagging stop harming syntactic parsing. Results in Table 196

indicate that the parsing accuracy of the Berkeley parser can be simply improved by in-
putting the Berkeley parser with the re-trained sequential tagging results. Additionally,
the success to separate tagging and parsing can improve the efficiency of the syntactic
processing.

5.5.5 Final Results. Table 20 shows the performance of different systems evaluated on the
test data. Our final sequence model achieves the state-of-the-art performance, which is
obtained by combining a state-of-the-art parser as well as sequence models.

5.5.6 Comparison with Other Taggers. We compare our final sequence labeling based
tagger to other representative taggers. Though most research papers report experiments
on CTB, they usually define different training/developement/test sets. Nevertheless,
numeric performance still reflects accuracy level of existing systems and our tagger. The
first three taggers for comparison are based on the joint POS tagging and dependency
parsing architecture, which is able to leverage on rich syntactic information to capture
syntagmatic relations. They also use global linear models for disambiguation, given

6 Some relevant information is copied from Table 12.
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Table 20
Tagging accuracies (%) on the test data.

System Acc.

Baseline LGLM2 94.29

Hybrid LGLM1(SR-PCFG)+c500 95.32
Re-compiled Voting 95.34

that such discriminative learning method achieves state-of-the-art for both tagging
and parsing. The major difference between these three taggers is the corresponding
parsing approach: They apply transition-based, graph-based and easy-first methods,
respectively. Table 21 presents the results. We can see our re-compiled tagger achieves
significantly better results, though it utilizes a simpler technique (i.e., sequence labeling)
and does not explicitly use syntactic information.

Very recently, neural networks have been widely applied various NLP tasks, in-
cluding word segmentation (Chen et al. 2015; Ma and Hinrichs 2015), syntactic parsing
(Chen and Manning 2014; Weiss et al. 2015), and machine translation (Devlin et al.
2014). We also compare our tagger with a neural network–based tagger. Alberti et al.
(2015) introduced a neural network–based joint tagging and parsing model that obtains
state-of-the-art results on multiple languages. Table 22 shows the results. Because their
experiments used the data from CoNLL 2009 shared task, their results are directly
comparable to ours. We can see that our final tagger is significantly better than this
currently developed neural network–based system.

Table 21
Comparison with other taggers. Tagging accuracies are all evaluated on CTB, but different
training and test data sets are used.

System Architecture Learning Acc. (%)

Ours Sequential Tagging Linear 95.34

Hatori et al. 2011 Transition-based Joint Tagging & Parsing Linear 94.01
Li et al. 2011 Graph-based Joint Tagging & Parsing Linear 93.08
Ma et al. 2012 Easy-first Joint Tagging & Parsing Linear 94.27

Table 22
Comparison with other taggers. Tagging accuracies are obtained on the test data of CoNLL 2009
shared task.

System Architecture Learning Acc. (%)

Ours Sequential Tagging Linear 95.34

Alberti et al. 2015 Transition-based Joint Tagging & Parsing Neural 94.62
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6. Related Work

Many successful tagging algorithms designed for English have been applied to many
other languages as well. In some cases, the methods work well without large modifi-
cations, such as for German POS tagging. But a number of augmentations and changes
became necessary when dealing with highly inflected or agglutinative languages, as
well as analytic languages, of which Chinese is the focus of this article.

Both discriminative and generative models are explored for accurate Chinese POS
tagging (Ng and Low 2004; Tseng, Jurafsky, and Manning 2005; Huang, Harper, and
Wang 2007; Huang, Eidelman, and Harper 2009). Ng and Low (2004) and Tseng et
al. (2005) introduced a maximum entropy–based model, which includes morphological
features for unknown word recognition. Huang, Harper, and Wang (2007) and Huang,
Eidelman, and Harper (2009) mainly focused on the generative HMM models. To en-
hance a trigram HMM model, Huang, Harper, and Wang (2007) proposed a re-ranking
procedure to include both morphology and syntactic structure features, which is dif-
ficult to capture for a generative model. Different from the discriminative re-ranking
strategy, Huang, Eidelman, and Harper (2009) proposed a latent variable incorporated
model to improve a bigram HMM model.

Recently, researchers developed several models that integrate tagging into parsing
(Hatori et al. 2011; Li et al. 2011; Bohnet and Nivre 2012; Ma et al. 2012; Alberti et al.
2015). The joint decoding architecture on one hand allows tagging to use rich syntactic
features to improve accuracy, but on the other hand decreases the decoding efficiency.
Different from the joint tagging and parsing approach, our method does not explicitly
use syntactic features in the tagging phase. Only a simple sequence labeler with beam
search is applied and therefore our tagger is much more efficient.

Our work also borrows some ideas from investivations in Chinese word segmen-
tation. Notably, the idea to harvest string knowledges from large-scale raw texts to
define new features for disambiguation is also successfully applied in our early work
on semi-supervised segmentation (Sun and Xu 2011). Recently, neural network models
have been widely applied to induce various linguistic knowledges in an unsupervised
learning fashion. Such models have also been applied to word segmentation (Zheng,
Chen, and Xu 2013; Chen et al. 2015; Ma and Hinrichs 2015). As an alternative way to
exploit unlabeled data, neural network models can be also applied in our solution.

7. Conclusion

Chinese POS tagging has been proven much more challenging because of language-
specific properties. We hold a view of structuralist linguistics and study the impact
of paradigmatic and syntagmatic lexical relations on Chinese POS tagging. First, we
harvest word partition information from large-scale raw texts to capture paradigmatic
relations and use such knowledge to enhance a supervised tagger via feature engi-
neering. Second, we comparatively analyze syntax-free and syntax-based models and
use a stacking model to integrate a sequential tagger and a chart parser to capture
syntagmatic relations that have a great impact on non-local disambiguation. Both en-
hancements significantly improve the state-of-the-art of Chinese POS tagging. The final
model results in an error reduction of 18% over a state-of-the-art baseline. To improve
tagging efficiency at test time, we explore unlabeled data to transfer the predictive
power of hybrid models to simple sequence or even local classification models. Hybrid
systems are utilized to create large-scale pseudo training data for cheap models. By
applying complex machine learning techniques, we are able to build good sequential
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Table A.1
Illustration of some POS tags mentioned in Tables 9 and 10.

AD AD represents various adverbs that modify predicate or sentential phrases.
CC CC represents coordinating conjunctions.
CD CD represents cardinal numbers.
DEC DEC represents complementizers or nominalizers.
DEG DEG represents genitive markers or associative markers.
DER DER denotes the specific word “得” when it locates before a resultative phrase.
DEV DEV denotes the specific word “地” when it locates in between a predicate and its

modifier.
JJ JJ represents prepositions.
NN NN represents common nouns.
NR NR represents proper nouns that are a subclass of nouns.
NT NT represents temporal nouns.
P P represents prepositions.
VA VA represents predicative adjectives which roughly correspond to adjective in

English.
VC VA represents copula words.
VV VV represents common verbs.

POS taggers. Another advantage of our system is that it serves as a front-end to a
parser very well, and more accurate POS tagging yields more accurate phrase-structure
parsing.

Appendix A. POS Tags Used in This Article

The CTB utilizes syntactic distribution as the main criterion for distinguishing lexical
categories. In Table A.1, we present a brief introduction to the POS tags mentioned in
Table 9 and 10. For more details, refer to the original annotation guidelines.

Acknowledgments
This work was supported by the National
Natural Science Foundation of China under
grants no. 61300064 and 61331011, and the
National High-Tech R&D Program under
grant no. 2015AA015403. We are very
grateful to the anonymous reviewers for
their insightful and constructive comments
and suggestions.

References
Alberti, Chris, David Weiss, Greg Coppola,

and Slav Petrov. 2015. Improved
transition-based parsing and tagging with
neural networks. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 1354–1359,
Lisbon.

Bohnet, Bernd and Joakim Nivre. 2012. A
transition-based system for joint
part-of-speech tagging and labeled
non-projective dependency parsing. In

Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language
Processing and Computational Natural
Language Learning, pages 1455–1465,
Jeju Island.

Breiman, Leo. 1996. Stacked regressions.
Machine Learning, 24:49–64.

Brown, Peter F., Peter V. deSouza, Robert L.
Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. 1992. Class-based n-gram
models of natural language. Computational
Linguistics, 18:467–479.

Bucila, Cristian, Rich Caruana, and
Alexandru Niculescu-Mizil. 2006.
Model compression. In Proceedings of
the Twelfth ACM SIGKDD International
Conference on Knowledge Discovery
and Data Mining, pages 535–541,
Philadelphia, PA.

Charniak, Eugene. 2000. A
maximum-entropy-inspired parser. In
Proceedings of the First Conference of the
North American Chapter of the Association for

416



Sun and Wan Towards Accurate and Efficient Chinese POS Tagging

Computational Linguistics, pages 132–139,
Seattle, WA.

Chen, Danqi and Christopher Manning.
2014. A fast and accurate dependency
parser using neural networks. In
Proceedings of the 2014 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 740–750, Doha.

Chen, Xinchi, Xipeng Qiu, Chenxi Zhu, and
Xuanjing Huang. 2015. Gated recursive
neural network for Chinese word
segmentation. In Proceedings of the 53rd
Annual Meeting of the Association for
Computational Linguistics and the 7th
International Joint Conference on Natural
Language Processing (Volume 1: Long
Papers), pages 1744–1753, Beijing.

Cohen, William W. and Vitor R. Carvalho.
2005. Stacked sequential learning. In
Proceedings of the 19th International Joint
Conference on Artificial Intelligence,
pages 671–676, San Francisco, CA.

Collins, Michael. 2002. Discriminative
training methods for hidden Markov
models: Theory and experiments with
perceptron algorithms. In Proceedings of the
2002 Conference on Empirical Methods in
Natural Language Processing, pages 1–8,
Philadelphia, PA.

Collins, Michael. 2003. Head-driven
statistical models for natural language
parsing. Computational Linguistics,
29(4):589–637.

Craven, Mark. 1996. Extracting
Comprehensible Models from Trained Neural
Networks. Ph.D. thesis, University of
Wisconsin–Madison, Department of
Computer Sciences. Also appears as UW
Technical Report CS-TR-96-1326.

Devlin, Jacob, Rabih Zbib, Zhongqiang
Huang, Thomas Lamar, Richard Schwartz,
and John Makhoul. 2014. Fast and robust
neural network joint models for statistical
machine translation. In Proceedings of the
52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 1370–1380, Baltimore, MD.
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