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ABSTRACT: 

 

Virtual 3D models of cities are now being extensively employed for the estimation of thermal energy demand at varying spatial and 

temporal scales. Efforts in preparing and management of the datasets required for the simulations have reached an advanced stage. 

Thus allowing to perform city scale simulations using simplified thermal energy balance models. However, the uncertainty inherent 

in datasets and the reliability of their data sources are often not given due consideration. Such consideration to the uncertainty 

problem would need a paradigm shift in simulation practices from a single value assignment to uncertainty characterization followed 

by assessment of qualitative and quantitative impact on the simulation results. The proposed study establishes a mechanism to handle 

the uncertainty arising from the building geometry reconstruction process and its possible consequences on the thermal energy 

demand calculations.   

 

1. INTRODUCTION 

1.1 Background 

Ambitious decarbonisation targets set in the urban energy field 

impose concerned stakeholders to promote utilization of energy 

efficient and low carbon technologies. Simulation studies 

particularly on predictions of the energy demand in buildings 

have guided planning, management and implementation of these 

technologies. The conclusions derived have their own 

implications on the ways with which the low emission targets 

can be being achieved by selection of different strategies. 

Therefore, while planning and decision making on the urban 

energy relevant investments and sustainability, a value-added 

investigation on the current urban energy simulation practices in 

the context of involved uncertainties and their possible impacts 

on the energy-related decision making has been found to be 

crucial. 

 

Energy flows in buildings satisfy energy service requirements - 

majority of them for space heating and cooling service. Several 

simulation studies have demonstrated the application of virtual 

3D city models for the space heating demand estimations (Bahu 

et al. 2013) (Kaden and Kolbe 2013) (Eicker et al. 2012)  

(Carrión, Lorenz, and Kolbe 2010) (Strzalka et al. 2010). These 

studies involved typical data acquisition tasks for the simulation 

models and are progressing towards the establishment of 

efficient data management strategies. But, it is fact that the 

urban energy data management system provides a marginal 

expression about the uncertain and imprecision element 

inherent in the data. Moreover, the data preprocessing tasks also 

contribute to the uncertainty.  

 

1.2 Motivation 

Depending upon the data availability and the type of simulation 

model used, the range of required input data would vary largely 

from the coarse to fine granularities on both spatial and 

temporal scales. In general, the relevant information required 

pertains to the building geometry, construction and household 

compositions, and meteorology. In order to understand the 

uncertainty inherent in the input data, it is essential to know 

how a particular dataset is acquired, processed and assigned to 

the respective simulation input data parameter. For the scope of 

proposed study, we are only concerned about the uncertainty 

problem discussion related to building geometry.  

 

Building models are reconstructed from different data sources 

such as cadastre maps, high resolution aerial images (Suveg and 

Vosselman 2004), airborne LiDAR (Verma et. al. 2006) and 

terrestrial laser scanning point clouds (El Meouche et al. 2013). 

For the reconstruction at urban scale, the building model is 

extracted automatically from the airborne LiDAR point clouds 

using model- and data-driven approaches ranging from basic 

(Maas and Vosselman 1999) to contemporary ones described in 

Haala and Kada (2010), Huang et. al. (2013). The aim of 

automatic reconstruction is to provide an error-free and water-

tight 3D building geometry for different applications (Biljecki, 

Stoter, et al. 2015), including energy simulation. In 

reconstruction process, the acquired point cloud data undergoes 

transformation in three major steps: segmentation of building 

points, roof feature extraction and modeling, affecting the final 

quality of building models (Oude Elberink and Vosselman 

2011). Thus the reconstructed building geometry may deviate 

from reality in terms of position, orientation, dimensions and 

the amount of details represented. Consequently, the simulation 

applications based on the geometry related data can have 

discrepancy in their predictions. Hence, the need for rigorous 

consideration of the uncertainty arising from the building 
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modeling process has been identified, which could eventually 

provide an opportunity to quantify its possible impacts on the 

energy demand predictions.  

 

2. RELATED WORKS 

Guptill and Morrison (1995) define spatial data quality 

elements as the metric of discrepancy in geospatial datasets. 

Error and uncertainty are often used interchangeably to measure 

the amount of discrepancy between a spatial data representation 

of reality and the reality itself. Gottsegen et. al. (1999) points 

out the minute difference between the two – error is a measure 

of absolute deviation from ground truth or true value while 

uncertainty as a measure of relative discrepancy due to lack of 

perfect knowledge about the phenomenon. Fisher (1999) 

proposed a conceptual model of uncertainty by categorising its 

nature and sources. He assumed uncertainty as broader term 

than error in describing the quality of spatial datasets.  

 

The impact of input data quality on the outputs of GIS based 

models has been analysed using analytical (Taylor 1982) and 

numerical methods (Hammersley and Handscomb 1964). The 

studies reviewed in error or uncertainty propagation literature, 

differ in how the output discrepancy is computed i.e. namely in 

terms of variance (Lilburne and Tarantola 2009) and RMSE 

(Biljecki et al. 2015). We found variance based uncertainty and 

sensitivity analysis studies as more fundamental in addressing 

of the uncertainty issues faced in the assessment of building 

performance.                            

 

2.1 Spatial uncertainty in energy simulation studies 

Uncertain building geometry problem in energy simulation 

studies has been given a limited consideration. Our focus is on 

the studies concerning the energy estimations of the buildings, 

as intent is to handle the impact of uncertainty arising from the 

building geometry reconstruction methods and modeling 

schemes. The presented review captures the different 

mechanisms with which the uncertainty in geometry had been 

identified and characterized for its use in respective sensitivity 

analysis studies.  

 

Mechri et. al. (2010) have applied a quantitative method to 

identify the influential design variables affecting energy 

performance of office building design case under different 

climate conditions in Italy. The design configurations for an 

office floor were expressed in terms of orientation, compactness 

and glazing ratio variations, where glazing ratio dominated the 

energy performance. Hygh et al. (2012) considered a variation 

in building aspect ratio1 for cardinal direction orientations. The 

resultant eight scenarios for the office building were simulated 

along with other construction material property settings in four 

US climate zones. Silva and Ghisi (2014a; 2014b) proposed an 

uncertainty analysis methodology to account for the impact of 

level of building modeling, physical properties and also 

occupant related behaviour on the energy performance. The 

approach was limited to only 15 uncertain building models 

generated by simplifying internal zones and external façade 

geometry where uncertainty was reported with respect to the 

uncertain model rather than the basic geometry parameters. A 

more detailed study on the design variable setting of building 

form introduced horizontal (aspect ratio) and vertical proportion 

                                                                 
1 Length to width ratio. 

(stacking2) variations (Hemsath and Bandhosseini 2015). The 

different situations combining three aspect ratios, stacking (four 

shoe-box forms), orientation and roof types (flat, mono-pitched 

and gabled) were evaluated for understanding their impact on 

the energy performance of residential building where stacking 

was the most influential factor and roof type the least.  

 

Although the demonstrated studies were comprehensive in 

comparing energy performances under the different building 

configurations, but they can be further improved by giving 

justifications behind the conduct of building geometry impact 

evaluation on the energy use. First, the degree of variation in 

architectural parameters was found to be quite wide which 

might seem less realistic when foreseen in the context of urban 

development plan. Second, equiprobable variations in the 

default range were assigned to the variables without considering 

the constraints of local weather conditions, trend in general 

morphological characteristics, etc. on the building architecture 

design. The way in which these constraints are considered in 

fact would vary from a designer to designer and are possibly the 

main cause of improbable variations. Third, as a consequence, 

the inherent variation or uncertainty in the variables had not 

been pragmatically characterised. Considering the ubiquitous 

use of virtual 3D city models for the simulations at varying 

spatial scales, the approaches presented in literature are found 

to be restrictive in identifying the sources of uncertainty and the 

corresponding assessment of possible impacts on the simulation 

results.  

 

The objective of proposed study is to identify the most 

influential building geometry parameters affecting the thermal 

energy demand predictions. Thereby, propagating the amount of 

uncertainty present in them and then qualitatively ranking their 

impact on the annual energy demand.    

 

3. PROPOSED METHODOLOGY 

Models of building thermal energy demand predictions range 

from simplified energy balance equations to the detailed ones 

involving and solving of complex thermodynamic interactions 

between the building surface and mass components. Depending 

upon the model used, the nature of impact assessment study 

would vary. In proposed study, we are considering the 

simplified thermal energy balance model as a “systemic” black-

box and then applying the qualitative measure for uncertain 

geometry impact analysis.  

 

Uncertainty and sensitivity analysis (U&SA) techniques offer 

pragmatic treatment to the uncertainty in model predictions by 

providing understanding of model behaviour. The model input-

output relationship can be investigated to reveal the additivity, 

linearity and monotonicity of the model. Uncertainty analysis 

quantifies the amount of uncertainty in the model output due to 

the uncertainties in its inputs. While, on other hand, sensitivity 

analysis provides measures to decompose the total uncertainty 

in the model output into the respective sources of uncertainty in 

model inputs. U&SA techniques can be classified into: (1) 

Qualitative measures are screening or ranking methods to 

identify the most influential inputs affecting the model results 

and (2) Quantitative measures to know by how much the given 

uncertain input is important than the other amongst their 

rankings. The comprehensive review and mathematical 

formulations of these measures are given in Saltelli et al. (2004; 

                                                                 
2 Aspect ratio and volume of building form is kept constant by 

varying footprint area and height.  
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2008). We are proposing a three step methodology involving 

uncertainty identification, characterization and qualitative 

screening. 

 

3.1 Uncertainty Identification 

With the increase in point density of airborne laser scanning 

(ALS) datasets, the share of point clouds as a data source to the 

3D reconstruction techniques has increased. Although 

techniques have become more accurate and robust, general 

problems still exist in data acquisition and modeling stages, 

discussed in Oude Elberink (2008). Height and planimetric 

discrepancies in ALS data acquisition occur due to data gaps, 

strip offsets and sensor noise. Modeling approaches add another 

layer of discrepancy during the process of building detection 

and roof feature extraction. Table 1 specifies possible sources of 

uncertainty in building parameters according to the sub-steps 

involved in reconstruction.  

 

Table 1. Uncertainty sources in building parameters 

Parameter Source 

Vertex X Building segmentation and 

roof outline detection Vertex Y 

Length 

Width 

Orientation Ridge line extraction 

Eaves Height Roof step-edges extraction  

Ridge Height Intersection of roof planes 

 

3.2 Uncertainty Characterization 

Uncertainty characterization is a procedure of assigning a 

mathematical structure to the sources of uncertainty in order to 

describe the state of uncertain knowledge (Roy and Oberkampf 

2011). The mathematical structure consists of probability 

distribution represented by random variables. The statistical 

parameters (mean μ and standard deviation ) of the 

distributions determine shape and value ranges of the structure. 

The amount of uncertainty can be expressed as either variance3 

or entropy4 measures. Accounting for all the possible sources of 

uncertainty stated above, we assume normal distribution with a 

maximum deviation of 0.25 meter for planimetric vertex 

position and building dimensions (length, width and height), 

and a deviation of 2.5 decimal degrees in building orientation5 

(Baltrusch and Fröhlke 2016). 

 

3.3 Qualitative Screening 

Qualitative measure consists of experiment design and the 

screening method. Experiment design is a sampling procedure 

to select the small number of points from marginal input 

distributions in such a way that they faithfully represent the 

whole input space. The model is executed at these evenly 

distributed sample points. Then, the screening method is 

employed to identify the most influential inputs or the groups 

containing influential inputs. In screening methods, the 

indicators about the influence of input xi on model output y are 

                                                                 
3 Variance V measures the variability of data values from the 

mean μ. 
4 Entropy H is a measure of randomness or uncertainty in 

random variable. 
5 Orientation deviation is calculated as inverse tangent of ratio 

of maximum deviation in one direction to the maximum 

deviated length dimension.  

determined at the local point in input space. These indicators 

convey the model behaviour in terms of total and interaction 

effects. While total effect accounts for the overall influence of 

input on output, interaction effect determines the higher order 

influence involving interactions of xi with other inputs due to 

model non-linearity and non-additivity. The improved screening 

methods provide indicator to detect the model monotonicity. 

Here, the applicability of Morris design and screening method 

to our uncertainty problem is explored. 

 

3.3.1 Morris design and method  

 

Morris design is a type of One-At-Time (OAT6) design, where 

changes in input values are represented by the finite levels 

within an interval. The local measure of incremental ratios or 

elementary effect is computed at each of these levels accounting 

for the whole input space. The measures are averaged out to 

give the single effect independent of the selection of sample 

point. Morris (1991) proposed two sensitivity measures based 

on the elementary effect to determine whether the effect of xi on 

y is negligible, linear and additive or nonlinear and non-

additive. Elementary effect and measures are defined as: k 

independent inputs xi, i = 1, 2…k define k-dimensional input 

space discretized into a p-level grid . For a given input xi, the 

elementary effect is defined as:  

 

EEi = 


 )],...,,(),...,,...,([ 21121 xxxyxxxxxy kkii
 (1) 

where   = multiple of )1(1 p  for p   2, 

 

X = (x1, x2…xk) is transformed to a point (X+ei) for each input i 

= 1,...,k and ei is a vector of zeros but with a unit as its ith 

component. The random sampling of X from  is used to 

generate the distribution of elementary effects Fi for every ith 

input. If p is even,  is assumed to be p/ (2(p-1)) with number 

of effects EEi in Fi is equal to pk-1[p-(p-1)]. 

 

The mean µi and standard deviation i estimates of distribution 

Fi represent sensitivity measures. While mean µi measures the 

overall influence of input on the output, i measures the 

collective effects of input due to non-linearity and/or 

interactions with other inputs. In simplest design, a computation 

of single elementary effect requires two sample points i.e. 

economy of design = ½, so for r EEs per k inputs result in 2rk 

model executions. The economy of design can be improved by 

building r random trajectories i.e. computing r EEs per k inputs 

from (k+1) sample points where each trajectory provides k EEs, 

one per input. So with efficient Morris design, the total 

simulation runs required are r (k+1) with the economy of design 

= k/ (k+1). Figure 1 illustrates a trajectory for k=2, p=4 and 

=2/3. Here, trajectory r=1, (k+1) = 3 sample points and model 

runs = 3 at X(1) [1/3,1] , X(2) [1,1] and X(3) [1,1/3]. For the case 

of non-uniform distributions, input is sampled in the quantiles 

space [0, 1] of the distributions and then actual values are 

obtained using the inverse function method.   

 

 

 

 

 

                                                                 
6 OAT is a local method where model output is computed by 

changing the value of only one input between the 

consecutive pair of simulation runs. 
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The Morris method in current form is prone to type II errors7 - 

failing to identify the influential input. When underlying model 

exhibit a considerable non-monotonous response, the mean µi 

would measure negligible overall influence due to cancelling 

effects of the opposite polarity elements. Alternatively, Morris 

suggested to study both µi and i measures simultaneously with 

a graphical representation in (µ,) plane. Although the µi would 

measure negligible, but i measure would certainly capture the 

variability in elementary effects. However, this approach has 

been found to be impractical in case of large models having 

multiple outputs. 

 

Campolongo et. al. (2007) defined improved Morris measure 

µi
* as the mean estimate of distribution Gi of absolute values of 

the elementary effect |EEi|. µi
* measure is suitable for the models 

with several uncertain inputs and multiple outputs. This 

improved model independent measure is robust against type II 

errors providing realistic ranking of inputs. Efficient Morris 

design based generation of trajectories is susceptible to non-

uniform representation of input space due to small fixed number 

of random trajectories. This leads to the biased estimates of the 

sensitive measures when inputs involved are highly uncertain. 

Campolongo proposed selection of r trajectories from the set of 

random number of trajectories in a way that they are optimally 

dispersed in input space. High number of different trajectories 

M are generated using efficient Morris design discussed earlier. 

The optimal r trajectories are selected from M by maximising 

geometric distances between them. According to the 

experiments conducted in literature, selection of p = 4,  = 2/3 

and r = 10 has been considered as optimum for highly dispersed 

representation of the input space. The measures are given as: 

 




r

j

j
ii EE

r 1

1
  

 

(2) 




r

j

j
ii EE

r 1

* 1
  

 

(3) 

 





r

j
i

j
ii EE

r 1

22 )(
1

1
  

 

(4) 

 

where i = 1,2,…k. 

 

 

Measures i & i
* represents the average and absolute average 

of elementary effects, while i represents their deviation from 

the mean effect. Using the settings as mentioned for Morris 

                                                                 
7 Null hypothesis H0: Input is non influential. Alternative 

hypothesis Ha: Input is influential. Type II error occurs when 

one accepts a null hypothesis when it is actually not true.   

sampling design, the input sample points are obtained from the 

previously characterized distributions.  

 

For the case of flat roof-type geometry, factors8 = 6, r = 10, p = 

4 and  = 2/3, the total of 70 representative sample points are 

obtained from the 6-dimensional input space. The simplified 

thermal model is executed at these points and the annual 

thermal energy demand (kWh/m2) values are obtained. Then, 

the Morris measures (i, i
*,i) are computed and (i

*,i) plots 

are plotted for the screening analysis.   

 

4. UNCERTAIN GEOMETRY ALGORITHM 

Typical test cases are selected after analysing the roof types of 

building geometry. It was revealed that there is approximately 

90% chance that the given geometry could have either flat / 

mono-pitch or gabled type roof geometry (Baltrusch and 

Fröhlke 2016). Therefore, in present study we are focusing on 

the analysis of building geometries having flat and gabled type 

roof geometry (Figure 2). In order to calculate the energy 

demand values, we have used the typical meteorological data of 

our case study city Geneva, Switzerland.  

 

 
 

(a) Flat roof-type 

 

 
 (b) Gabled roof-type 

Figure 2. Test cases for uncertain geometry generation 

 

4.1 Uncertain Geometry Generation 

We assume that the available 3D building model reconstructed 

from the different data sources represents only one possible 

instance or sample of reality. If the reconstruction procedure is 

altered slightly, then there could result different representation 

of building than that obtained using previous procedure. So, we 

generate uncertain samples of building geometry in order to 

                                                                 
8 Since for flat roof-type eaves and ridge heights are equal.  

X
1
 

X
2
 

 

0 1/3 2/3 1 

1 

2/3 

1/3 

X
(1)

 X
(2)

 

X
(3)

 

Figure 1. Illustration of trajectory in input space when k = 2 
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simulate the uncertainty arising from different sources: 

acquisition, modeling, simplification, generalisation, etc. We 

obtain uncertain samples by varying the basic geometry 

parameters in their uncertainty ranges mentioned in previous 

section 3.1 and 3.2. At the moment, the current variant of our 

technique is simple although less sophisticated than the 

generative statistical approach proposed by Huang et. al. 

(2013).        

 

Steps 1 & 2 below are the preprocessing steps to extract 

geometry parameters from the given building geometry. Step 3 

generates parameter samples using Morris design. Step 4 is an 

iterative step that constructs uncertain geometry instances from 

the parameter samples.     

 

For flat roof-type building geometry, let vertices V  R3, 

polygons P = {p =
m
iiv 1)(  } such that vi  V, v1 = vm & m  3.  

 

Step 1:  

Extract, 

Ground polygons PG  P where tilt of polygon normal is equal 

to 180 and roof polygons PR  P where normal tilt = 0.   

Then, obtain ground and roof vertices (vgi and vri) from the 

respective polygons. 

Step 2: 

Calculate, 

Ground polygon length LG = max (||vi - vi+1||, ||vi-1 - vi||) and width 

WG = min (||vi - vi+1||, ||vi-1 - vi||), where vi  V.  

Building height BH = |vgi.z – vri.z| i.e. the difference between z-

coordinates of roof and ground vertices.  

Length orientation OGL = (90 - ), where  is the slope of LG 

and width orientation OGW = 90 + OGL in order to preserve the 

orthogonality of edges in polygon geometry.  

Step 3:      

Generate samples of quantile using Morris design with settings - 

factors = 6, trajectories = 10, levels p = 4 and  = 2/3. 

Obtain sample values for the parameters from their distributions 

using the inverse function method.    

Step 4: Repeat for number of samples. 

Consists of sequential sub-steps as illustrated in Figure 3 below:  

- Assign ground reference vertex from the sample. 

- Obtain first next ground vertex using line equation defined by 

length LG, orientation OGL as slope, and ground reference 

vertex. 

- Obtain second next ground vertex using line equation defined 

by width WG, orientation OGW as slope, and first ground vertex. 

- Obtain final ground vertex using line equation defined by 

length LG, orientation OGL as slope, and second ground vertex. 

- Elevate these ground vertices by sampled building height BH 

in order to obtain respective roof vertices.  

Obtain uncertain geometry sample (Figure 4) using these set of 

vertices forming ground, roof and wall polygons of the 

building.  

 

 

Figure 3. Step sequence for flat roof type geometry 

 

 

Figure 4. Uncertain geometry instance deviating from 

highlighted reconstructed geometry 

For gabled roof-type geometry, similar Morris design steps are 

established with one added factor of ridge height. Following 

Figure 5 depicts these steps. This leads to the creation of 

uncertain gabled roof-type building geometry samples as shown 

below (Figure 6). 

  

 

Figure 5. Step sequence for gabled roof type geometry 

 

 

Figure 6. Uncertain geometry instance deviating from 

highlighted reconstructed geometry 

 

4.2 Simplified thermal model: Input-Output description 

We are testing our first steps in uncertainty analysis 

methodology with the simplified simulation model based on 

German DIN 18599-2 standard9. Although with standard based 

model it could be possible to understand the model input-output 

relationship by directly studying equations, but we aim to 

extend our approach for physics based models involving 

deterministic and stochastic phenomenon where such 

relationship would become complex to comprehend. Thus we 

propose quite generic “simulation model” as a black-box 

approach which could be adapted for the models of varying 

complexity.  

 

                                                                 
9 (DIN V 18599 2007) 
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The standard specifies energy balance equations involving heat 

losses QHL and gains QHG through the building envelope. Net 

energy demand QH is the summation of terms multiplied by the 

gain and loss utilization factors which are functions of building 

heat storage capacity. The net energy demand (kWh/m2) is 

expressed as: 

 

QH = QHL - G*QHG, 

 

(5) 

QHL = QTR + QVE = f (TR, , AS) + f (aR, , , VE), 

 

(6) 

QHG = QINT + QSOL = f (OD, MG, GLE) + f (I, , FF, VF, AS), (7) 

 

where, G = gain utilization factor, QTR = transmission losses, 

QVE = ventilation losses, QSOL = solar heat gains, QINT = internal 

gains, TR = heat transfer coefficient,  represents internal set-

point and external temperatures, AS = envelope surface areas, aR 

= airflow rate,  = heat capacity of air, VE = air volume, OD = 

occupant density, MG = metabolic gains, GLE represents lighting 

and equipment gains, I = solar irradiance,  = glazing ratio and 

FF, VF represent building form and view factors. 

 

The geometrical inputs to model are envelope surface areas, 

volume, form and view factors which are varying according to 

the initial uncertain samples of building geometry. The 

observed variable output is an annual energy demand.  

 

5. IMPLEMENTATION 

The concept is implemented in SimStadt10 platform as an 

independent workflow. SimStadt allows creation of workflows 

consisting of the workflow steps where each workflow step 

performs certain defined task and passes its results to the next 

consecutive workflow steps. The steps perform the tasks of 

importing building geometry dataset11, preprocessing and model 

execution. Morris design and screening measures (i, i
*,i) are 

computed using “sensitivity” package in R software12. We have 

introduced our algorithm as “Uncertain Geometry Creation” 

workflow step between import and preprocessing steps and 

thereby configured a new “Uncertain Geometry Impact 

Analysis” workflow in SimStadt.     

 

6. RESULTS AND DISCUSSION 

Morris measures (i, i
*,i) are used to understand the model 

behaviour as well as to compute the qualitative ranking of 

influential geometrical parameters. Sanchez et al. (2012) 

introduced an indicator (i/i) to detect the underlying model 

behaviour. For a given input factor i: 

  

(i) Linear (0  i/i
   0.1): deviations of elementary effect are 

so small that all the effects are very close to their mean or 

constant depicting linear response w.r.t factor i. 

(ii) Monotonic (0.1  i/*
i
   0.5 & i = i

*): most of the effects 

have same sign (+ve/-ve) leading to monotonically increasing or 

decreasing effect of factor on the model output. 

(iii) Almost monotonic (0.5  i/*
i
   1 & i  i

*): although 

there are high deviations in effects, but most of them are either 

highly +ve or –ve. 

 

                                                                 
10 http://www.simstadt.eu/en/index.html 
11 OGC CityGML standard is used to represent building 

geometry in LoD2.  
12 https://www.r-project.org/ 

(iv) Non-linear, Non-monotonic & Non-additive (i/*
i  1 & i 

 i
*): the elementary effects deviate highly from the mean 

effect having non-linear and/or interactive effect on the model 

output.  

 

For qualitative ranking of the parameters, i
* measures the 

influence and i accounts for the effect of interactions between 

the input parameters on the model output. (i
*,i) and ranking 

graphs are plotted. (See Table 2 & Table 3; Figure 7, Figure 8, 

Figure 9 & Figure 10.)               

 

For flat roof type case, the model exhibits highly non-linear, 

non-monotonous and non-additive behaviour indicated by 

consistent high values of i/i
*. The results state that the 

building orientation and height are the most influential 

parameters affecting the annual heating demand values. It is 

also observed that the building height and orientation have 

higher interaction effect on the model output.   

    

Table 2. Estimated qualitative measures (Flat roof-type case) 

Factor µ µ*   /µ* 

 

Is µ* = 

abs (µ)?  

OriginX -12.14 25.16 29.04 1.15 No 

OriginY -4.69 40.2 56.5 1.41 No 

Length 13.57 32.93 52.67 1.6 No 

Orientation -28.13 54.38 60.19 1.11 No 

Width 30.53 40.5 57.13 1.41 No 

Height -26.06 47.53 78.52 1.65 No 

 

 

Figure 7. (*,) plot 

 

Figure 8. Ranking of influential parameters 

Similar results are observed for gabled roof-type case. Here, 

also the input parameters have highly non-linear, non-
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monotonous and non-additive impact on the model response 

(i/i
*1) with approximately same sequence for the individual 

and interaction effects. 

 

Table 3. Estimated qualitative measures (Gabled roof-type case) 

Factor µ µ*   /µ* 

 

Is µ* = 

abs (µ)?  

OriginX 13.79 29.29 37.89 1.29 No 

OriginY -8 39.68 58.62 1.48 No 

Length -12.57 28.48 33.82 1.19 No 

Orientation 33.5 63.16 70.46 1.12 No 

Width 9.98 20.24 25.47 1.26 No 

EH 20.57 31 45.05 1.45 No 

RH 0.54 36.27 54.3 1.5 No 

 

 

Figure 9. (*,) plot 

 

Figure 10. Ranking of influential parameters 

From the building modeling literature, it can be understood that 

the orientation and height parameters are more accurate to 

extract than others. Because usually they are obtained from the 

intersection of roof planes derived from the large number of 

LiDAR point measurements. However in case of annual energy 

demand predictions they are found to be the most influential 

ones, essentially indicating that even a small amount uncertainty 

present in them can cause substantial variation in energy 

predictions. In other words, a large proportion of uncertainty 

energy demand predictions can be reduced by employing near 

accurate techniques for roof plane and ridge line extraction.      

 

7. CONCLUSION AND FUTURE WORKS 

The work has introduced the mechanism to account for the 

uncertainty arising from building modeling and assessed its 

impact on the energy demand calculations. The methodology 

has proposed probabilistic simulation practice for the inclusion 

of building geometry data uncertainties. The study has also 

attempted to address the impact of uncertain geometry problem 

by establishing a qualitative screening method. Considering the 

context of study (e.g. simulation model used, type of input 

varied), the building orientation and height were assessed as the 

most influential parameters affecting the energy demand 

calculations.  

 

As a next step, a more refined mechanism for uncertainty 

characterization will be investigated by evaluating the nature of 

uncertainties arising from their extraction procedures and also 

possible dependencies between the parameters. The analysis 

will be further strengthened by computing confidence interval 

around sensitivity indices and as well as by evaluating the 

reliability of their ranking. The methodology will be further 

extended to quantify the uncertainties arising from deterministic 

and stochastic phenomena involved in prediction of energy 

performance of buildings in their urban context. A comparative 

study of simulation results will be conducted while considering 

the different modelled levels of building geometry abstraction. 

The comparison could be used to answer the question of how 

detailed the geometry should be acquired in order to obtain 

sufficiently reliable simulation results.  
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