文章编号:1001-0920(2015)11-2041-07

DOI: 10.13195/j.kzyjc.2014.1432

多比特概率幅编码的量子衍生粒子群优化算法

李盼池,李滨旭

(东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318)

摘 要:为了提高粒子群算法的优化能力,提出一种新的量子衍生粒子群优化算法.该方法采用多比特量子系统的基态概率幅对粒子编码,基于自身最优粒子和全局最优粒子确定旋转角度,采用基于张量积构造的多比特量子旋转门实施粒子的更新.在每步迭代中,只需更新粒子的一个量子比特相位,即可更新该粒子上的所有概率幅.标准函数极值优化的实验结果表明,所提出算法的单步迭代时间较长,但优化能力较同类算法有大幅度提高.
 关键词:量子计算;粒子群优化;多比特概率幅编码;算法设计中图分类号:TP18

Quantum-inspired particle swarm optimization algorithm encoded by probability amplitudes of multi-qubits

LI Pan-chi, LI Bin-xu

(School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China. Correspondent: LI Pan-chi, E-mail: lipanchi@vip.sina.com)

Abstract: To enhance the optimization ability of the particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of the basic states of the multi-qubits system. The rotation angles of multi-qubits are determined based on the local optimum particle and the global optimal particle, and the multi-qubits rotation gates are employed to update the particles. At each of iteration, updating any a qubit can lead to update all probability amplitudes of the corresponding particle. The experimental results of some benchmark functions optimization shows that, although its single step iteration consumes a long time, the optimization ability of the proposed method is significantly higher than other similar algorithms.

Keywords: quantum computing; particle swarm optimization; multi-qubits probability amplitudes encoding; algorithm design

0 引 言

1995年, Kennedy等^[1]提出了粒子群优化算法 (PSO), 作为一种新兴的优化工具, 现已广泛应用于 组合优化^[2]和数值优化^[3].在PSO性能改进方面, 目 前主要采取以下几种策略:针对控制参数的选择^[4]、 针对粒子速度和位置的更新规则^[5]、与其他算法相 融合^[6]、采用量子计算机制设计更新策略的量子 PSO(QPSO)^[7].这些改进使PSO性能均有不同程度 的提高.量子计算是信息科学与量子力学相结合的 新兴交叉学科, 其与智能优化算法的融合始于 20世 纪 90年代, 目前比较成熟的算法有量子行为粒子群 优化算法^[8]、量子衍生进化算法^[9]、量子衍生和声搜 索算法^[10]、量子衍生免疫算法^[11]、量子衍生遗传算 法^[12]、量子衍生差分进化算法^[13]等.这些算法的编码 方式除文献 [8] 采用实数编码外,均采用单比特概率 幅编码.具体而言,在目前的量子衍生粒子群优化算 法中,每个粒子用 D 个概率幅描述(其中 D 为维数), 即每一维用单个概率幅编码.这种单比特概率幅编码 的缺点是,调整一个量子比特仅能改变个体上的一个 基因位,因此优化效率不够理想.对于本文提出的多 比特概率幅编码,"多比特"的含义并不仅仅在于一 个粒子采用多个量子比特概率幅编码,否则将与现有 方法没有区别,重点在于对粒子的每一维采用多个量 子比特概率幅编码.这种编码方法的核心优势是,利

收稿日期: 2014-09-16; 修回日期: 2015-03-09.

- **基金项目:** 国家自然科学基金项目(61170132); 黑龙江省教育厅科学技术研究项目(12541059); 黑龙江省自然科学基金项目(F2015021).
- **作者简介:**李盼池(1969-),男,教授,博士生导师,从事量子智能优化、量子神经网络等研究;李滨旭(1992-),女,硕士生,从事群智能优化算法的研究.

用量子态的相干性,每调整一个量子比特,均可改变 多比特量子叠加态中所有基态的概率幅,从而改变该 粒子上的所有基因位,并实现对该粒子的更新;若每 步迭代调整 n 个量子比特,则每步迭代可对每个粒子 实施 n 次更新,从而可以显著提高优化效率.

鉴于此,本文提出一种全新的采用多比特概率幅 编码的量子衍生粒子群优化算法,标准函数极值优化 的实验结果验证了所提出方法的优越性.

1 基本 PSO 模型

设在n维空间中有M个粒子组成一个种群,其 中第i个粒子位置 X_i 、速度 V_i 、自身最优位置 P_i^L 、 整个种群最优位置 P_q 分别记为

$$X_{i} = (x_{i1}, x_{i2}, \cdots, x_{in}),$$

$$V_{i} = (v_{i1}, v_{i2}, \cdots, v_{in}),$$

$$P_{i}^{L} = (p_{i1}, p_{i2}, \cdots, p_{in}),$$

$$P_{q} = (p_{q1}, p_{q2}, \cdots, p_{qn}).$$

将 X_i代入目标函数可计算其目标值, 粒子状态更新 策略为

$$V_{i}(t+1) = wV_{i}(t) + c_{1}r_{1}(P_{i}^{L} - X_{i}(t)) + c_{2}r_{2}(P_{g} - X_{i}(t)), \qquad (1)$$

$$\mathbf{X}_i(t+1) = \mathbf{X}_i(t) + \mathbf{V}_i(t).$$
⁽²⁾

其中: $i = 1, 2, \dots, M$; w为惯性因子; c_1 为自身因子; c_2 为全局因子; $r_1, r_2 \to (0, 1)$ 之间的随机数.

对种群中每个粒子应用式(1)和(2)循环迭代,使 整个种群逐步逼近全局最优解.为便于叙述,将式(1) 重写为如下形式:

$$\boldsymbol{V}_i(t+1) = w \boldsymbol{V}_i(t) + [\boldsymbol{\Phi}](\boldsymbol{P}_i - \boldsymbol{X}_i(t)).$$
(3)

其中

$$\boldsymbol{P}_{i} = \operatorname{diag}\left(\frac{c_{1}r_{1}^{1}}{c_{1}r_{1}^{1} + c_{2}r_{1}^{2}}, \cdots, \frac{c_{1}r_{n}^{1}}{c_{1}r_{n}^{1} + c_{2}r_{n}^{2}}\right)\boldsymbol{P}_{i}^{L} + \operatorname{diag}\left(\frac{c_{2}r_{1}^{2}}{c_{1}r_{1}^{1} + c_{2}r_{1}^{2}}, \cdots, \frac{c_{2}r_{n}^{2}}{c_{1}r_{n}^{1} + c_{2}r_{n}^{2}}\right)\boldsymbol{P}_{g}, \quad (4)$$

 $[\Phi] = \text{diag}(c_1r_1^1 + c_2r_1^2, \cdots, c_1r_n^1 + c_2r_n^2).$ (5) 为使 PSO 收敛, 所有粒子必须逼近式 (4) 定义的 *P_i*.

2 多比特量子系统和多比特量子旋转门

2.1 量子比特和单比特量子旋转门

在量子计算中,量子比特有两个可能的基态|0> 和|1>,与经典比特的区别在于,量子比特的状态可以 落在基态|0>和|1>之外,即可以是基态的线性叠加态, 其中叠加系数称为基态的概率幅.量子比特的状态也 可以借助三角函数表示为

$$|\phi\rangle = \cos\theta|0\rangle + \sin\theta|1\rangle = \begin{bmatrix} \cos\theta\\ \sin\theta \end{bmatrix}^{1}.$$
 (6)

其中: θ 为 $|\phi\rangle$ 的相位, $\cos \theta \pi \sin \theta$ 为 $|\phi\rangle$ 的概率幅.

量子门是物理实现量子计算的基础,它包含了量 子计算的特点.单比特量子旋转门的定义为

$$\boldsymbol{R}(\Delta\theta) = \begin{bmatrix} \cos\Delta\theta & -\sin\Delta\theta\\ \sin\Delta\theta & \cos\Delta\theta \end{bmatrix}.$$
 (7)

2.2 矩阵张量积

设**A**是*m*×*n*矩阵,**B**是*p*×*q*矩阵,则**A**和**B**的 张量积定义为

$$\boldsymbol{A} \otimes \boldsymbol{B} = \begin{bmatrix} A_{11}\boldsymbol{B} & A_{12}\boldsymbol{B} & \cdots & A_{1n}\boldsymbol{B} \\ A_{21}\boldsymbol{B} & A_{22}\boldsymbol{B} & \cdots & A_{2n}\boldsymbol{B} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1}\boldsymbol{B} & A_{m2}\boldsymbol{B} & \cdots & A_{mn}\boldsymbol{B} \end{bmatrix}.$$
 (8)

其中: A_{ij} 为**A**的元素, A_{ij} **B**为 $p \times q$ 子矩阵.

2.3 多比特量子系统和多比特量子旋转门

一般地, 对于n比特量子系统, 有 2^n 个形如 $|x_1x_2\cdots x_n\rangle$ 的基态, 类似于单比特量子系统, n比 特量子系统也可以处于 2^n 个基态的线性叠加态, 即

$$\begin{aligned} |\phi_1 \phi_2 \cdots \phi_n\rangle &= \\ \sum_{x_1=0}^1 \sum_{x_2=0}^1 \cdots \sum_{x_n=0}^1 a_{x_1 x_2 \cdots x_n} |x_1 x_2 \cdots x_n\rangle &= \\ [a_{00 \cdots 0} \ a_{00 \cdots 1} \ \cdots \ a_{11 \cdots 1}]^{\mathrm{T}}, \end{aligned}$$

其中 $a_{x_1x_2\cdots x_n}$ 称为基态 $|x_1x_2\cdots x_n\rangle$ 的概率幅,且满足

$$\sum_{x_1=0}^{1} \sum_{x_2=0}^{1} \cdots \sum_{x_n=0}^{1} |a_{x_1 x_2 \cdots x_n}|^2 = 1.$$
(10)

 $i |\phi_i\rangle = \cos \theta_i |0\rangle + \sin \theta_i |1\rangle$,根据量子计算原理, $|\phi_1 \phi_2 \cdots \phi_n\rangle$ 可用张量积表示为

$$|\phi_{1}\phi_{2}\cdots\phi_{n}\rangle = |\phi_{1}\rangle \otimes |\phi_{2}\rangle \otimes \cdots |\phi_{n}\rangle = [\cos\theta_{1} \ \sin\theta_{1}]^{\mathrm{T}} \otimes \cdots \otimes [\cos\theta_{n} \ \sin\theta_{n}]^{\mathrm{T}} = \begin{bmatrix} \cos\theta_{1} \ \cos\theta_{2} \ \cdots \ \cos\theta_{n} \\ \cos\theta_{1} \ \cos\theta_{2} \ \cdots \ \sin\theta_{n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ \sin\theta_{1} \ \sin\theta_{2} \ \cdots \ \sin\theta_{n} \end{bmatrix}.$$
(11)

式(11)表明,在*n*比特量子系统中,任何一个基态的概率幅均为*n*个量子比特相位($\theta_1 \theta_2 \cdots \theta_n$)的函数,换言之,在*n*个量子比特相位中,更新任何一个 θ_i ,均可更新所有2^{*n*}个基态的概率幅.基态概率幅的更新可采用*n*比特量子旋转门实现,其中*n*比特量子旋转门为*n*个单比特量子旋转门**R**($\Delta \theta_i$)的张量积,即

$$\mathbf{R}_{n}(\Delta\theta_{1}\Delta\theta_{2}\cdots\Delta\theta_{n}) =$$
$$\mathbf{R}(\Delta\theta_{1})\otimes\mathbf{R}(\Delta\theta_{2})\otimes\cdots\otimes\mathbf{R}(\Delta\theta_{n}).$$
(12)

其中

$$\boldsymbol{R}(\Delta\theta_i) = \begin{bmatrix} \cos\Delta\theta_i & -\sin\Delta\theta_i \\ \sin\Delta\theta_i & \cos\Delta\theta_i \end{bmatrix},$$
$$i = 1, 2, \cdots, n.$$

 $\boldsymbol{R}(\Delta\theta_1\Delta\theta_2) =$

$$\begin{bmatrix} \cos \Delta \theta_1 \cos \Delta \theta_2 & -\cos \Delta \theta_1 \sin \Delta \theta_2 \\ \cos \Delta \theta_1 \sin \Delta \theta_2 & \cos \Delta \theta_1 \cos \Delta \theta_2 \\ \sin \Delta \theta_1 \cos \Delta \theta_2 & -\sin \Delta \theta_1 \sin \Delta \theta_2 \\ \sin \Delta \theta_1 \sin \Delta \theta_2 & \sin \Delta \theta_1 \cos \Delta \theta_2 \end{bmatrix} \cdot (13)$$

$$\leftarrow \begin{bmatrix} -\sin \Delta \theta_1 \cos \Delta \theta_2 & -\sin \Delta \theta_1 \cos \Delta \theta_2 \\ -\sin \Delta \theta_1 \sin \Delta \theta_2 & -\sin \Delta \theta_1 \cos \Delta \theta_2 \\ \cos \Delta \theta_1 \cos \Delta \theta_2 & -\cos \Delta \theta_1 \sin \Delta \theta_2 \\ \cos \Delta \theta_1 \sin \Delta \theta_2 & \cos \Delta \theta_1 \cos \Delta \theta_2 \end{bmatrix}$$

容易证明

$$\boldsymbol{R}_{n}(\Delta\theta_{1}\Delta\theta_{2}\cdots\Delta\theta_{n})|\phi_{1}\phi_{2}\cdots\phi_{n}\rangle = |\widehat{\phi}_{1}\rangle\otimes|\widehat{\phi}_{2}\rangle\otimes\cdots\otimes|\widehat{\phi}_{n}\rangle, \tag{14}$$

 $| \underline{\xi} + | \widehat{\phi}_i \rangle = \cos(\theta_i + \Delta \theta_i) | 0 \rangle + \sin(\theta_i + \Delta \theta_i) | 1 \rangle.$

3 基于多比特概率幅的粒子编码方法

3.1 量子比特数的确定

n比特量子系统有 2^n 个概率幅,若优化空间为D维,则需使 $D \leq 2^n$.又因 2^n 个概率幅之间有平方和 为1的约束关系,所以必须使 $D < 2^n$.对于D维优化 问题,编码所需的量子比特数可按下式计算:

$$n = \lceil \log(D) \rceil + 1. \tag{15}$$

3.2 多比特概率幅粒子群编码方法

首先随机生成N个n维相位向量 θ_i ($i = 1, 2, \dots, N$),有

$$\boldsymbol{\theta}_i = [\theta_{i1}, \theta_{i2}, \cdots, \theta_{in}], \tag{16}$$

其中 $\theta_{ij} = 2\pi \times \text{rand}, \text{rand} 为 (0,1) 内均匀分布的随机数, <math>j = 1, 2, \cdots, n.$

 $记 |\phi_{ij}\rangle = \cos \theta_{ij} |0\rangle + \sin \theta_{ij} |1\rangle, 利用式(11) 得到$ $N 个量子比特系统 <math>|\phi_{11}\phi_{12}\cdots\phi_{1n}\rangle, |\phi_{21}\phi_{22}\cdots\phi_{2n}\rangle, \\
 \cdots, |\phi_{N1}\phi_{N2}\cdots\phi_{Nn}\rangle, 每个量子系统均有 2ⁿ 个基态,$ 取每个量子系统的前 D 个基态的概率幅, 即可得到N 个 D 维的粒子编码.

4 基于多比特概率幅的粒子更新方法

本文采用多比特量子旋转门实现粒子的更新. 记 全局最优粒子的相位向量为 $\theta_g = [\theta_{g1}, \theta_{g2}, \cdots, \theta_{gn}],$ 第*i*个粒子的当前位置和自身最优位置的相位向量分 别为 $\theta_i = [\theta_{i1}, \theta_{i2}, \cdots, \theta_{in}]$ 和 $\theta_{bi} = [\theta_{b1}^i, \theta_{b2}^i, \cdots, \theta_{bn}^i].$

由式(11)可知,每更新 θ_i 的一个相位,便能更新 θ_i 对应的所有概率幅,从而实现该粒子所有D维

新 θ_i 中所有相位的方法, 从而实现对该粒子的 n 次更 新. 设 $\Delta \theta_0$ 为相位更新步长, 具体更新方法如下. Step 1: 置 $j = 1, P_i(\theta) = [\cos \theta_{i1} \cos \theta_{i2} \cdots \cos \theta_{in},$ \cdots , $\sin \theta_{i1} \sin \theta_{i2} \cdots \sin \theta_{in}]^{\mathrm{T}}$. Step 2: 置 $\Delta \theta_{i1} = \Delta \theta_{i2} = \cdots = \Delta \theta_{in} = 0$. Step 3: 确定旋转角度的值, 其中 sgn 为符号函数: 1) 若 $|\theta_{bj}^i - \theta_{ij}| \leq \pi$, 则 $\Delta \theta_{ij}^b = \operatorname{sgn}(\theta_{bj}^i - \theta_{ij})\Delta \theta_0;$ 2) 若 $|\theta_{bj}^i - \theta_{ij}| > \pi$, 则 $\Delta \theta_{ij}^b = -\operatorname{sgn}(\theta_{bj}^i - \theta_{ij})\Delta \theta_0;$ 3) 若 $|\theta_{gj} - \theta_{ij}| \leq \pi$, 则 $\Delta \theta_{ij}^g = \operatorname{sgn}(\theta_{gj} - \theta_{ij})\Delta \theta_0;$ 4) 若 $|\theta_{gj} - \theta_{ij}| > \pi$, 则 $\Delta \theta_{ij}^g = -\operatorname{sgn}(\theta_{gj} - \theta_{ij})\Delta \theta_0.$ Step 4: 按下式实现粒子的更新, 其中 r_1 和 r_2 为

解变量的更新.为了提高搜索能力,本文采用循环更

区间(0,1)内均匀分布的随机数:

$$\Delta \theta_{ij} = r_1 \Delta \theta_{ij}^b + r_2 \Delta \theta_{ij}^g,$$

$$\overline{\boldsymbol{P}}_i(\boldsymbol{\theta}) = \boldsymbol{R}_n(\Delta \theta_{i1}, \Delta \theta_{i2}, \cdots, \Delta \theta_{in}) \boldsymbol{P}_i(\boldsymbol{\theta}).$$

Step 5: 令 $\Delta \theta_{ij} = \text{rnds}\Delta \theta_0$, rnds 为 (-1, 1) 内随机 数, $\hat{P}_i(\boldsymbol{\theta}) = \boldsymbol{R}_n(\Delta \theta_{i1}, \Delta \theta_{i2}, \cdots, \Delta \theta_{in}) \overline{\boldsymbol{P}}_i(\boldsymbol{\theta})$. 若 $\hat{\boldsymbol{P}}_i(\boldsymbol{\theta})$ 优于 $\overline{\boldsymbol{P}}_i(\boldsymbol{\theta})$, 则 $\boldsymbol{P}_i(\boldsymbol{\theta}) = \hat{\boldsymbol{P}}_i(\boldsymbol{\theta})$, 否则, $\boldsymbol{P}_i(\boldsymbol{\theta}) = \overline{\boldsymbol{P}}_i(\boldsymbol{\theta})$.

Step 6: 若 j < n, 则令 j = j + 1, 返回 Step 2, 否则 粒子 $P_i(\theta)$ 更新结束.

5 多比特概率幅编码量子衍生粒子群算法

设粒子总数为 N, 优化空间为 D 维. 以极小值优化为例, 本文提出的多比特概率幅编码量子衍生粒子群算法 (MQPAPSO) 流程可描述如下.

Step 1: 粒子群初始化.

对于每个粒子,按式(15)确定量子比特数 n,按 式(16)初始化 n 个量子比特相位,按式(11)计算 2ⁿ 个 概率幅,其中前 D 个概率幅即为该粒子的编码.记 第 *i* 个粒子的第 *j* 个概率幅为 x_{ii},编码结果为

$$\begin{cases} \boldsymbol{P}_{1} = [x_{11}, x_{12}, \cdots, x_{1D}]^{\mathrm{T}}, \\ \boldsymbol{P}_{2} = [x_{21}, x_{22}, \cdots, x_{2D}]^{\mathrm{T}}, \\ \vdots \\ \boldsymbol{P}_{N} = [x_{N1}, x_{N2}, \cdots, x_{ND}]^{\mathrm{T}}. \end{cases}$$
(17)

初始化相位步长 $\Delta \theta_0$ 、限定步数 *G*, 置当前步数 t = 1. Step 2: 计算目标函数值.

记第j维变量的取值区间为[min X_j , max X_j], 由于概率幅 $x_{ij} \in [-1, 1]$, 按下式进行解空间变换:

$$X_{ij} = \frac{1}{2} [\max X_j (1 + x_{ij}) + \min X_j (1 - x_{ij})].$$
(18)

其中: $i = 1, 2, \dots, N, j = 1, 2, \dots, D.$

利用变换后的 X_{ij} 计算所有粒子的目标函数值. 记第 i 个粒子的相位 $\theta_i = [\theta_{i1}, \theta_{i2}, \cdots, \theta_{in}]$, 目标函数 值为 f_i , 全局最优粒子的相位 $\hat{\theta}_g = [\hat{\theta}_{g1}, \hat{\theta}_{g2}, \cdots, \hat{\theta}_{gn}]$, 全局最优目标函数值为 \hat{f}_g . 记第 i 个粒子的自身最优 相位 $\hat{\theta}_i = \theta_i$, 自身最优目标函数值 $\hat{f}_i = f_i$.

Step 3: 粒子位置更新.

对于粒子群中每个粒子 P_i ,按第4节Step1~ Step6,循环更新 n 次.利用式(11)计算概率幅,利用 式(18)实施解空间变换,计算目标函数值.记更新后 的相位 $\theta_i = [\theta_{i1}, \theta_{i2}, \cdots, \theta_{in}]$,目标函数值为 f_i .若 f_i < \hat{f}_i ,则 $\hat{f}_i = f_i$, $\hat{\theta}_i = \theta_i$.

Step 4: 全局最优解更新.

记当代最优粒子相位 $\theta_g = [\theta_{g1}, \theta_{g2}, \cdots, \theta_{gn}],$ 最 优目标函数值为 f_g . 若 $f_g < \hat{f}_g$, 则 $\hat{f}_g = f_g$, $\hat{\theta}_g = \theta_g$, 否则 $f_g = \hat{f}_g$, $\theta_g = \hat{\theta}_g$.

Step 5: 判断终止条件.

若t < G,则令t = t + 1,转至Step 3,否则保存 $\hat{\theta}_{a}$ 和 \hat{f}_{a} ,流程结束.

6 对比实验

实验采用标准测试函数验证 MQPAPSO 的优化 能力,并与普通粒子群优化 (PSO)^[14]、量子 Delta 势阱 粒子群优化 (QDPSO)^[15]、混合蛙跳算法 (SFLA)^[16]进 行对比.所有函数均为极小值优化, D为自变量个数, Ω 为解空间, X^* 为精确极小值点, $f(X^*)$ 为极小值.

6.1 测试函数

測试函数如下:

$$f_1(\mathbf{X}) = \sum_{i=1}^{D} x_i^2, \ \Omega = [-100, 100]^D,$$

$$\mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$$

$$f_2(\mathbf{X}) = \sum_{i=1}^{D} |x_i| + \prod_{i=1}^{D} |x_i|, \ \Omega = [-100, 100]^D,$$

$$\mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$$

$$f_3(\mathbf{X}) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} x_j\right)^2, \ \Omega = [-100, 100]^D,$$

$$\mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$$

$$f_4(\mathbf{X}) = \max_{1 \le i \le D} (|x_i|), \ \Omega = [-100, 100]^D,$$

$$\mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$$

$$f_5(\mathbf{X}) = \sum_{i=1}^{D-1} (100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2),$$

$$\Omega = [-100, 100]^D, \ \mathbf{X}^* = [1, 1, \cdots, 1], \ f(\mathbf{X}^*) = 0$$

$$f_6(\mathbf{X}) = \sum_{i=1}^{D} ix_i^4 (1 + \text{random}(0, 1)),$$

 $\Omega = [-100, 100]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$ $f_7(\mathbf{X}) = \sum_{i=1}^{D} [x_i^2 - 10\cos(2\pi x_i) + 10],$ $\Omega = [-100, 100]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$ $f_8(\boldsymbol{X}) = -20 \exp\left(-0.2 \sqrt{\left| \frac{1}{D} \sum_{i=1}^{D} x_i^2
ight)} - \right.$ $\exp\left(\frac{1}{D}\sum_{i=1}^{D}\cos(2\pi x_i)\right) + 20 + e,$ $\Omega = [-100, 100]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$ $f_9(\mathbf{X}) = \frac{1}{4\,000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1,$ $\Omega = [-500, 500]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$ $f_{10}(\boldsymbol{X}) = \frac{1}{D} \sum_{i=1}^{D} (x_i^4 - 16x_i^2 + 5x_i) + 78.332\,331\,4,$ $\Omega = [-100, 100]^D, \ x_i^* = -2.903\,534, \ f(\mathbf{X}^*) = 0.$ $f_{11}(X) =$ $\frac{D(D+4)(D-1)}{6} + \sum_{i=1}^{D} (x_i - 1)^2 - \sum_{i=1}^{D} x_i x_{i-1},$ $\Omega = [-D^2, D^2]^D, \ x_i^* = i(D+1-i), \ f(\mathbf{X}^*) = 0.$ $f_{12}(\boldsymbol{X}) = \frac{\pi}{D} \Big[10\sin^2(\pi y_1) + \sum^{D-1} (y_i - 1)^2 (1 + y_i) \Big] + \sum^{D-1} (y_i - 1)^2 (1 + y_i) \Big]$ $10\sin^2(\pi y_{i+1})) + (y_D - 1)^2 \Big] +$ $\sum_{i=1}^{D} u(x_i, 10, 100, 4);$ $u(x_i, a, k, m) = \begin{cases} k(x_i - a)^m, \ x_i > a; \\ 0, \ -a \leqslant x_i \leqslant a; \\ k(-x_i - a)^m, \ x_i < -a; \end{cases}$ $y_i = 1 + \frac{1}{4}(x_i + 1), \ \Omega = [-100, 100]^D;$ $X^* = [-1, -1, \cdots, -1], f(X^*) = 0.$ $f_{13}(\mathbf{X}) = \sum_{i=1}^{D-1} (x_i^2 + 2x_{i+1}^2 0.3\cos(3\pi x_i)\cos(4\pi x_{i+1}) + 0.3),$ $\Omega = [-100, 100]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$ $f_{14}(\boldsymbol{X}) = \sum_{i=1}^{D/4} [(x_{4i-3} + 10x_{4i-2})^2 +$ $5(x_{4i-1}-x_{4i})^2+(x_{4i-2}-2x_{4i-1})^4+$ $10(x_{4i-3}-x_{4i})^4],$ $\Omega = [-100, 100]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) = 0.$

S

$$\begin{split} f_{15}(\mathbf{X}) &= \sum_{i=1}^{D-1} g(x_i, x_{i+1}) + g(x_D, x_1); \\ g(x, y) &= (x^2 + y^2)^{0.25} [\sin^2(50(x^2 + y^2)^{0.1}) + 1], \\ \Omega &= [-100, 100]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) &= 0. \\ f_{16}(\mathbf{X}) &= 10D + \sum_{i=1}^{D} (y_i^2 - 10\cos(2\pi y_i)), \\ y_i &= \begin{cases} x_i, \ |x_i| < 1/2; \\ \operatorname{round}(2x_i)/2, \ |x_i| \ge 1/2; \end{cases} \\ \Omega &= [-100, 100]^D, \ \mathbf{X}^* = [0, 0, \cdots, 0], \ f(\mathbf{X}^*) &= 0. \\ f_{17}(\mathbf{X}) &= \sum_{i=1}^{D} \begin{cases} \sum_{k=0}^{k\max} [a^k\cos(2\pi b^k(x_i + 0.5))] \end{bmatrix} - \\ D \sum_{k=0}^{k\max} (a^k\cos(\pi b^k)), \ a = 0.5, \ b = 0.3, \end{cases} \\ k \max = 30, \ \Omega &= [-100, 100]^D, \\ \mathbf{X}^* &= [0, 0, \cdots, 0], \ f(\mathbf{X}^*) &= 0. \\ f_{18}(\mathbf{X}) &= \sum_{i=1}^{D} x_i^2 + \left(\sum_{i=1}^{D} 0.5ix_i\right)^2 + \left(\sum_{i=1}^{D} 0.5ix_i\right)^4; \\ \Omega &= [-100, 100]^D, \ \mathbf{X}^* &= [0, 0, \cdots, 0], \ f(\mathbf{X}^*) &= 0. \\ f_{19}(\mathbf{X}) &= \\ \sum_{i=1}^{D-1} \left(0.5 + \frac{\sin^2(\sqrt{100x_i^2 + x_{i+1}^2) - 0.5}}{1 + 0.001(x_i^2 - 2x_ix_{i+1} + x_{i+1}^2)^2}\right), \\ \Omega &= [-100, 100]^D, \ \mathbf{X}^* &= [0, 0, \cdots, 0], \ f(\mathbf{X}^*) &= 0. \\ f_{20}(\mathbf{X}) &= -\sum_{i=1}^{D-1} \left[\exp\left(\frac{-(x_i^2 + x_{i+1}^2 + 0.5x_ix_{i+1})}{8}\right) + D - 1, \\ \Omega &= [-100, 100]^D, \ \mathbf{X}^* &= [0, 0, \cdots, 0], \ f(\mathbf{X}^*) &= 0. \end{cases}$$

6.2 实验方案和参数设计

所有测试函数的维数均取 $D = 50(f_{14} \Rightarrow D) = 52$)和D = 100两种情况.4种算法种群规模均取N = 50. PSO、QPSO、SFLA的限定迭代步数均取G = 100和G = 1000两种情况.MQPAPSO的限定迭代步数取G = 100.

对于 SFLA, 最大跳跃步长^[16]取 $D_{\text{max}} = 5$. 由于 蛙群分组情况与具体问题有关, 考虑多种分组情况, 并将最好结果作为对比指标. 具体而言, 蛙群分组取 $N = 1 \times 50 = 2 \times 25 = 5 \times 10 = 10 \times 5 = 25 \times 2 =$ 50×1 六种情况, 其中第1个数为组数, 第2个数为组 内蛙数. 对于每种组合分别独立优化 30 次, 记录 30 次 优化结果的平均值和单步迭代的平均时间. 在6种分 组情况中,将优化结果平均值最小者和相应单步迭代 时间作为对比指标. 对于 PSO, $w = 0.729 \, 8$, $c_1 = c_2 = 1.496 \, 18^{[14]}$. 对 于 QDPSO, 控制参数取 $\lambda = 1.2^{[15]}$. 对于 MQPAPSO, 相位更新步长取 $\Delta \theta_0 = 0.05\pi$. 这4个算法对于每个 函数均独立优化 30 次, 并取平均优化结果和单步迭 代的平均时间作为对比指标.

6.3 实验结果对比

所有实验在 Windows XP 系统、主频 3.39 GHz、 内存 3.47 GB 的 PC 机上,采用 Matlab R2009a 编程实 现. 以G = 100 为例,4 种算法单步迭代的平均时间对 比如表1所示,D = 50 和D = 100 时的平均优化结果 对比如表2 和表3 所示.

表1 4种算法的单步迭代平均时间对比

f.	MQPAPSO		QDPSO		PSO		SFLA	
Jı	D = 50	D = 100						
f_1	0.0186	0.0290	0.0011	0.0019	0.0009	0.0016	0.0014	0.0020
f_2	0.0187	0.0292	0.0012	0.0020	0.001 2	0.0016	0.0017	0.0025
f_3	0.0248	0.0428	0.0064	0.0127	0.0099	0.0227	0.0068	0.0168
f_4	0.0188	0.0296	0.0011	0.0019	0.0009	0.0016	0.0014	0.0024
f_5	0.0230	0.0397	0.0049	0.0095	0.0016	0.0025	0.0022	0.0043
f_6	0.0235	0.0387	0.0018	0.003 1	0.0028	0.0048	0.001 9	0.0032
f_7	0.0187	0.0291	0.0013	0.002 1	0.0016	0.0022	0.0014	0.0024
f_8	0.0191	0.0295	0.0015	0.0023	0.0019	0.0028	0.0024	0.0036
f_9	0.0234	0.0382	0.0016	0.0024	0.0019	0.0028	0.0017	0.0027
f_{10}	0.0193	0.0301	0.0019	0.003 1	0.0028	0.0048	0.0017	0.0028
f_{11}	0.0234	0.0383	0.0016	0.0024	0.0016	0.0025	0.0017	0.0027
f_{12}	0.0262	0.044 1	0.0096	0.0173	0.0054	0.0089	0.003 3	0.0070
f_{13}	0.0193	0.0298	0.0020	0.0030	0.0025	0.004 1	0.0017	0.0030
f_{14}	0.0233	0.0372	0.0048	0.0089	0.0028	0.0044	0.0024	0.003 3
f_{15}	0.0256	0.044 9	0.003 1	0.0057	0.005 1	0.0096	0.003 8	0.0060
f_{16}	0.0248	0.0418	0.0065	0.0124	0.0028	0.0048	0.0027	0.0043
f_{17}	0.0378	0.0706	0.0246	0.0486	0.1116	0.2192	0.0292	0.065 1
f_{18}	0.0234	0.0382	0.0017	0.0024	0.0019	0.0025	0.0022	0.0028
f_{19}	0.0206	0.0314	0.0028	0.0037	0.003 8	0.0054	0.003 3	0.004 1
f_{20}	0.0212	0.0320	0.0028	0.0039	0.004 1	0.0057	0.0043	0.005 2

表 2 4 种算法的平均优化结果对比 (D = 50)

_							
f_{i}	MQPAPSC) <u>QD</u>	PSO PSO		SFLA		
52	$G{=}100$	$G{=}100$	G = 1000	G = 100	G = 1000	G = 100	G = 1000
f_1	1.9e-08	1.5e+03	3.4e-05	3.4e+03	6.0e-05	8.5e+02	0.001 08
f_2	1.3e-04	9.4e+10	33.1953	3.8e+15	1.3e+02	2.8e+02	2.6e+02
f_3	3.7e-09	3.9e+04	1.1e+04	6.7e+04	1.6e+04	6.3e+03	2.5e+03
f_4	0.00101	36.9364	10.2029	61.9675	54.6625	12.1258	9.71406
f_5	73.2154	1.2e+08	1.3e+02	2.7e+08	2.0e+02	1.1e+07	4.8e+02
f_6	4.1e-11	7.2e+07	2.1e+02	3.7e+08	1.5e+05	1.2e+04	2.3e-09
f_7	7.9e-06	1.9e+03	2.9e+02	3.3e+03	3.7e+02	1.4e+03	1.0e+03
f_8	3.3e-05	21.1629	20.5964	21.2778	21.1744	17.0524	15.7169
f_9	4.9e-10	11.1857	0.00352	23.6757	0.03275	2.00564	0.012 09
f_{10}	18.5824	2.7e+04	10.5743	6.5e+04	23.4260	1.8e+03	12.7798
f_1	2.8e+04	1.6e+06	8.4e+04	5.1e+06	4.2e+05	9.7e+05	2.4e+04
f_{12}	2 0.181 50	2.9e+07	0.28276	6.5e+07	1.658 72	1.1e+04	17.3770
f_{13}	7.6e-07	4.2e+03	0.00231	1.0e+04	4.008 30	3.2e+03	13.9008
f_{14}	4 3.9e-11	2.9e+06	7.3e+04	3.9e+07	4.5e+07	8.1e+05	3.4e+04
f_{13}	5 0.254 13	2.3e+02	26.5175	3.0e+02	1.7e+02	1.7e+02	1.5e+02
f_{16}	2.2e-06	1.9e+03	3.5e+02	3.5e+03	3.9e+02	1.3e+03	1.0e+03
f_1	0.512 01	67.3310	47.5805	78.8131	75.8892	48.0274	33.5393
f_{18}	3 1.1e-05	8.0e+04	4.1e+04	1.2e+05	9.8e+04	8.0e+03	5.4e+03
f_{19}	• 1.5e-04	0.499 97	0.499 59	0.499 99	0.499 98	0.494 69	0.491 68
f_{20}	1.1e-06	46.2759	34.4948	47.2014	45.7578	44.0433	43.4175

表 3 4种算法的平均优化结果对比 (D = 100)

f;	MQPAPSO) QDPSO		PSO		SFLA	
Jı	$G{=}100$	$\overline{G = 100 G = 1 000 G} = 100 \overline{G = 100 G} = 100 \overline{G} = 1$					$G = 1\ 000$
f_1	5.7e-08	2.3e+04	1.2e+02	3.9e+04	2.7e+02	3.3e+03	5.48043
f_2	6.3e-04	1.0e+20	6.0e+02	5.4e+25	1.2e+15	5.9e+02	5.7e+02
f_3	2.2e-08	1.9e+05	1.1e+05	3.0e+05	2.4e+05	2.4e+04	1.4e+04
f_4	0.001 33	67.7123	44.9334	85.5049	85.4186	15.2185	13.0471
f_5	1.3e+02	4.1e+09	5.3e+05	9.4e+09	6.5e+07	3.0e+07	1.0e+05
f_6	1.6e-09	4.0e+09	2.2e+08	1.5e+10	5.9e+08	2.4e+06	28.1635
f_7	2.5e-05	2.1e+04	1.4e+03	4.3e+04	2.5e+03	4.4e+03	3.7e+03
f_8	5.4e-05	21.2627	21.0887	21.4234	21.3745	18.4078	17.1200
f_9	1.5e-08	1.4e+02	1.42371	2.4e+02	2.741 91	18.7604	0.228 63
f_{10}	21.6660	4.7e+05	1.0e+02	9.4e+05	6.7e+03	2.6e+03	16.4156
f_{11}	2.4e+05	2.0e+08	2.1e+07	4.9e+08	1.1e+08	3.0e+08	1.8e+06
f_{12}	0.25614	1.8e+09	2.7e+03	4.2e+09	1.3e+07	7.5e+04	26.5760
f_{13}	1.6e-06	6.9e+04	7.8e+02	1.1e+05	1.0e+03	1.0e+04	58.7252
f_{14}	9.6e-11	9.3e+07	4.4e+06	1.0e+09	1.5e+09	3.8e+06	3.3e+05
f_{15}	0.67362	6.7e+02	3.5e+02	8.1e+02	5.5e+02	3.8e+02	3.4e+02
f_{16}	1.0e-05	2.2e+04	1.4e+03	4.3e+04	3.2e+03	3.9e+03	3.7e+03
f_{17}	1.069 24	1.4e+02	1.1e+02	1.7e+02	1.6e+02	1.2e+02	1.0e+02
f_{18}	1.3e-05	1.9e+05	1.4e+05	3.0e+05	2.4e+05	2.1e+04	1.9e+04
f_{19}	0.001 27	0.499 99	0.499 98	0.499 99	0.499 99	0.49774	0.498 30
f_{20}	0.002 22	96.3208	83.6293	97.0198	95.6162	92.8530	90.5664

对于函数 f_i , 令 MQPAPSO, QDPSO, PSO, SFLA 单步迭代的平均时间分别为 T_i^M 、 T_i^Q 、 T_i^P 、 T_i^S , 平均 优化结果分别为 O_i^M 、 O_i^Q 、 O_i^P 、 O_i^S . 为便于进一步对 比, 以 MQPAPSO 和 QDPSO 为例, 按如下两式定义单 步迭代平均时间比值和平均优化结果比值:

$$\frac{T^M}{T^Q} = \frac{\sum_{i=1}^{20} T^M_i / T^Q_i}{20},$$
(19)

 $\frac{O^M}{O^Q} = \frac{\sum_{i=1}^{20} O_i^M / O_i^Q}{20}.$ (20)

4种算法关于函数 $f_1 \sim f_{20}$ 的单步迭代平均时间比值 如表 4 所示,平均优化结果比值如表 5 所示.

表 4	4 种算法的单步进代平均时间比值
1.4	于作并在时手少达几千秒时间比值

D	T^M/T^Q	T^M/T^P	T^M/T^S
50	9.863 512	9.800 094	9.620418
100	9.785 713	10.039 69	9.752 004
平均	9.824 613	9.919 894	9.686 211

由表1和表4可见,就f1~f20的单步迭代平均时 间而言,基于多比特概率幅的粒子编码和多比特量 子旋转门的粒子更新机制使 MOPAPSO 的单步运行 时间为QDPSO、PSO、SFLA的将近10倍.为使对比 公平,不仅需要考察相同迭代步数下的对比,而且 必须进一步考察相同优化时间下的对比.这便是将 **ODPSO、PSO、SFLA**的迭代步数分别设置为G = 100 $和 G = 1000
 的根本原因. 就 f_1 ~ f_{20}
 的优化结果而$ 言,由表2和表3可见,当G = 100时,MQPAPSO比 其他3种算法小3~4个数量级; 当G = 1000时, MQPAPSO也比其他3种算法小1~2个数量级. 这表 明采用多比特概率幅编码和进化机制能够提高寻优 能力. 由表5可见, 在相同迭代步数下, MQPAPSO的 优化结果仅为QDPSO的千分之一;在相同优化时间 下, MQPAPSO的优化结果仅为QDPSO的百分之九. 实验表明,多比特概率幅编码方法能够显著地提高传 统粒子群算法和其他同类算法的优化能力.

表 5 4 种算法的平均优化结果比值

D	$O_{G=10}^M$	$O_{G=100}^M/O^Q$		$O_{G=100}^M/O^P$		$O_{G=100}^M/O^S$	
	$G = 10^{2}$	$G = 10^{3}$	$G = 10^{2}$	$G = 10^{3}$	$G = 10^{2}$	$G = 10^{3}$	
50	0.001 361	0.165 868	0.000 671	0.067 214	0.002 587	0.140 945	
100	0.000 623	0.012 133	0.000 510	0.000795	0.001 124	0.073 973	
平均	9.92e-04	0.089 001	5.91e-04	0.034 004	0.001 856	0.107 459	

6.4 实验结果分析

对于实验结果表现出的MQPAPSO运行时间 长、优化能力高的特性,给出如下分析:

1) 在基于多比特概率幅的个体编码方法中, 若编码的量子比特数为n, 则每步迭代, 每个粒子均被更新n次, 因此加大计算量导致运行时间延长. 但在延长运行时间的同时, 也大幅度提高了粒子更新次数, 从而有利于优化能力的提高.

2) 多量子比特系统的所有基态概率幅均为量子 比特相位的 n 元函数,只需改变任何1个相位,即可导 致所有概率幅的更新.这种通过逐个调整量子比特相 位循环更新个体的方法,使得个体更新的程度更为精 细,从而也增强了算法对解空间的遍历性.

3) 在基于多比特量子旋转门的个体更新策略中, 利用多比特量子旋转门, 一次操作即可实现粒子上所 有概率幅的更新, 量子旋转门的酉性保证了量子位的 "长度"不变, 有效避免了迭代序列的发散性, 从而提 高了算法的收敛能力.

综上所述, 粒子的多比特概率幅编码和更新机 制, 是以牺牲优化时间换取优化能力大幅度提升的, 这与无免费午餐定理是一致的.

7 结 论

本文提出了一种采用多比特概率幅编码的量子 衍生粒子群算法. 该算法直接采用多比特量子系统中 明, 在相同优化时间下, 所提出算法的优化能力比传 统算法有大幅度提升, 从而揭示出多比特概率幅编码 是大幅度提高传统粒子群算法优化能力的有效途径.

参考文献(References)

- Kennedy J, Eberhart R C. Particle swarms optimization[C]. Proc of IEEE Int Conf on Neural Networks. New York: IEEE Press, 1995: 1942-1948.
- [2] Guo W Z, Chen G L, Peng S J. Hybrid particle swarm optimization algorithm for vlsi circuit partitioning[J]. J of Software, 2011, 22(5): 833-842.
- [3] 秦华,万云芳,张伟元,等. 用粒子群算法进行单个非球面透镜的球差校正[J]. 计算物理, 2012, 29(3): 426-432.
 (Qin H, Wan Y F, Zhang W Y, et al. Aberration correction of single aspheric lens with particle swarm algorithm[J]. Chinese J of Computational Physics, 2012, 29(3): 426-432.)
- [4] Cai X J, Cui Z H, Zeng J C. Dispersed particle swarm optimization[J]. Information Processing Letters, 2008, 105(6): 231-235.
- [5] Liu Y, Qin Z, Shi Z W. Center particle swarm optimization[J]. Neurocomputing, 2007, 70(4/5/6): 672-679.
- [6] 张英杰, 邵岁锋. 一种基于云模型的云变异粒子群算 法[J]. 模式识别与人工智能, 2011, 24(1): 90-96.
 (Zhang Y J, Shao S F. Cloud mutation particle swarm optimization algorithm based on cloud model[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1): 90-96.)
- [7] 方伟,孙俊,谢振平,等.量子粒子群优化算法的收敛性 分析及控制参数研究[J].物理学报,2010,59(6):3686-3694.

(Fang W, Sun J, Xie Z P, et al. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter[J]. Acta Physica Sinica, 2010, 59(6): 3686-3694.)

- [8] Sun J, Wu X J, Fang W, et al. Convergence analysis and improvements of quantum-behaved particle swarm optimization[J]. Information Sciences, 2012, 193: 81-103.
- [9] Lu T C, Yu G R. An adaptive population multiobjective quantum inspired evolutionary algorithm for multi-objective 0/1 knapsack problems[J]. Information Sciences, 2013, 243: 39-56.
- [10] Abdesslem L. A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems[J]. J of Computational and Applied Mathematics, 2013, 253: 14-25.
- [11] Gao J Q. A hybrid quantum inspired immune algorithm for multiobjective optimization[J]. Applied Mathematics and Computation, 2011, 217(9): 4754-4770.
- [12] Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J].
 IEEE Trans on Evolutionary Computation, 2002, 6(6): 580-593.
- [13] 刘显德,李盼池,杨淑云. 量子衍生差分进化算法的设计 与实现[J]. 信号处理, 2014, 30(6): 623-633.
 (Liu X D, Li P C, Yang S Y. Design and implementation of quantum-inspired differential evolution algorithm[J]. J of Signal Processing, 2014, 30(6): 623-633.)
- [14] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proc of IEEE Congress on Evolutionary Computation. New York: IEEE Press, 2000: 84-88.
- [15] 李盼池, 王海英, 宋考平. 量子势阱粒子群优化算法的改进研究[J]. 物理学报, 2012, 61(6): 060302.
 (Li P C, Wang H Y, Song K P. Research on improvement of quantum potential well-based particle swarm optimization algorithm[J]. Acta Physica Sinica, 2012, 61(6): 060302.)
- [16] 赵玉新, 刘立强. 新兴元启发式优化算法[M]. 北京: 科学出版社, 2013: 240-251.
 (Zhao Y X, Liu L Q. Emerging heuristic optimization algorithm[M]. Beijing: Science press, 2013: 240-251.)

(责任编辑:郑晓蕾)