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Abstract

In a high dimensional linear regression model, we propose a new procedure for

testing statistical significance of a subset of regression coefficients. Specifically,

we employ the partial covariances between the response variable and the tested

covariates to obtain a test statistic. The resulting test is applicable even if the

predictor dimension is much larger than the sample size. Under the null hypoth-

esis, together with boundedness and moment conditions on the predictors, we

show that the proposed test statistic is asymptotically standard normal, which is

further supported by Monte Carlo experiments. A similar test can be extended

to generalized linear models. The practical usefulness of the test is illustrated

via an empirical example on paid search advertising.

KEY WORDS: Generalized Linear Model; High Dimensional Data; Hypothe-

ses Testing; Paid Search Advertising; Partial Covariance; Partial F-Test

†The research of Wang and Lan were supported in part by National Natural Science Foundation of
China (NSFC, 11131002, 11271032), Fox Ying Tong Education Foundation, the Business Intelligence
Research Center at Peking University, and the Center for Statistical Science at Peking University. The
authors are grateful to the Editor, the AE, and two referees for their helpful comments and advices.

1



Electronic copy available at: http://ssrn.com/abstract=2260820

1. INTRODUCTION

Linear regression is arguably one of the mostly important and widely used statistical

techniques (Draper and Smith, 1998; Seber and Lee, 2003; Weisberg, 2005). A good

summary of various applications can be found in Yandel (1997), Milliken and Johnson

(2009), and Vittinghoff et al. (2010), among others. One of the major goals of regression

analysis is to model a linear relationship between a response and a set of predictors.

To this end, under the assumption that the predictor’s dimension (p) is smaller than

the sample size (n), we estimate unknown regression coefficients and then test their

significances (Lehmann, 1998; Shao, 2003). In addition, we are able to employ the F-

test to assess the utility of a model, which allows one to determine whether a significant

relationship exists between the dependent variable and the set of all the independent

ones (i.e., the full model).

Although the F-test is useful, it cannot be directly applied to testing a subset of

variables. Hence, when two competing models are nested, one generally employs the

partial F-test (Ravishanker and Dey, 2001; Chatterjee and Hadi, 2006) to check the sig-

nificance of the additional variables present only under the larger model. This test has

been widely used across various fields (e.g., biology, economics, engineering, medicine,

psychology, and sociology), and is straightforward to calculate in many software pack-

ages (e.g., SAS, SPSS, Minitab, and R). In high-dimensional situations (n < p), howev-

er, the partial F-test is not applicable. This is because the usual ordinary least squares

(OLS) estimator no longer exists, and the OLS estimator is needed for the computation

of the classical partial F-test statistics. To solve the problem, Zhong and Chen (2011)

proposed a novel test based on a diverging factor model (Bai and Saranadasa, 1996).

Their method is useful for linear regression models augmented with a factorial design.

Because extending their method to the situation with a general random design matrix
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is not straightforward, this motivates us to develop a new test to fulfill this theoretical

gap.

In this paper, we follow the spirit of the partial F-test (i.e., the partial covariance) to

develop a new test statistic. The resulting test enjoys a simple and elegant asymptotic

null distribution, namely the standard normal distribution. Accordingly, the proposed

test can be easily implemented in practice with a standard normal table. Adopting

similar techniques used for linear regression, we also extend the test to generalized

linear models with canonical link functions. The rest of this article is organized as

follows. Section 2 introduces the model, notation, and technical conditions. Section 3

develops the test statistic and then obtains its asymptotic property. Section 4 presents

Monte Carlo studies and an empirical example. Section 5 concludes the article by

extending the proposed test to generalized linear models. All technical details are left

to the Appendix.

2. MODEL STRUCTURE AND CONDITIONS

2.1. Models and Notations

Let (Yi, Xi) be the observation collected from the ith subject, where Yi ∈ R1 is the

response variable and Xi ∈ Rp is the associated predictor for 1 ≤ i ≤ n. We assume

that Xi can be decomposed as Xi = (X⊤
ia, X

⊤
ib )

⊤ with Xia = (Xi1, · · · , Xiq)
⊤ ∈ Rq and

Xib = (Xi(q+1), · · · , Xip)
⊤ ∈ Rp−q, where q is smaller than the sample size n, and p is

much larger than n. For the sake of simplicity, we also assume that E(Xi) = 0. To

establish the relationship between Yi and Xi, we consider the following standard linear

regression model,

Yi = X⊤
i β + εi = X⊤

iaβa +X⊤
ibβb + εi, (1)
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where β = (β⊤
a , β

⊤
b )

⊤ ∈ Rp, βa ∈ Rq, and βb ∈ Rp−q are unknown regression coefficient

vectors. In addition, we assume that εi in (1) is random noise with E(εi) = 0, var(εi) =

σ2, and E(ε4i ) = (3 + ∆)σ4 for some finite constant ∆ > −3.

For the sake of convenience, let Y = (Y1, · · · , Yn)
⊤ ∈ Rn be the response vector, and

let Xa = (X1a, · · · , Xna)
⊤ ∈ Rn×q and Xb = (X1b, · · · , Xnb)

⊤ ∈ Rn×(p−q) be the matrices

associated with the Xia’s and Xib’s, respectively. Let X = (Xa,Xb) = (X1, · · · , Xn)
⊤ ∈

Rn×p be the matrix including all predictive variables and E = (ε1, · · · , εn)⊤ ∈ Rn be

the noise vector. Then model (1) can be re-expressed as follows.

Y = Xβ + E = Xaβa + Xbβb + E . (2)

In practice, Xa often contains a small set of relevant predictors via prior knowledge

or preliminary analysis. In contrast, Xb collects a large number of predictors, whose

statistical significance is still not clear and thus needs to be investigated. Accordingly,

we consider the following statistical hypotheses,

H0 : βb = 0 vs. H1 : βb ̸= 0. (3)

When Xa is a null vector, equation (3) is equivalent to test H0 : β = 0 vs. H1 : β ̸= 0.

It is noteworthy that, under H0, model (2) reduces to

Y = Xaβa + E , (4)

where we slightly abuse notation by using E to represent the random error vector in

both the full and reduced models. In the rest of this paper, we will use it to stand for

the random error in the reduced model only.
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When n > p, one commonly uses the conventional partial F-test given below to test

the null hypothesis in (3).

F =
Y⊤X̃b(X̃⊤

b X̃b)
−1X̃⊤

b Y/(p− q)

Y⊤{In − X(X⊤X)−1X⊤}Y/(n− p)
,

where In ∈ Rn×n stands for a n × n identity matrix, X̃b = (In − Ha)Xb, Ha =

Xa(X⊤
a Xa)

−1X⊤
a . Under n < p, however, neither X⊤X nor X̃⊤

b X̃b is invertible and hence

this test is not applicable to high dimensional data. It is noteworthy that, under H0,

the contribution of Xb in explaining the variation of Y should be 0 after controlling for

the effect of Xa. As a result, we should have that E{(Y−Xaβa)
⊤Xb} = E{E⊤Xb} = 0.

This motivates the new testing procedure presented in this paper.

2.2. Boundedness and Moment Conditions

Before presenting the detailed procedure, we need to investigate a number of impor-

tant and reasonable technical conditions. To this end, define Σb|a = E{cov(Xib|Xia)} =

(σ∗
j1j2

) ∈ R(p−q)×(p−q). Without loss of generality, we also assume that σ∗
jj = 1 for any

j ∈ S = {q + 1, · · · , p}. Then, we introduce the following boundedness condition.

(C1) Boundedness Condition. Assume that there exist two positive constants τmin and

τmax such that τmin < λmin(Σb|a) ≤ λmax(Σb|a) < τmax, where λmin(A) and λmax(A)

represent the smallest and largest eigenvalues of an arbitrary semi-positive defi-

nite matrix A, respectively.

Condition (C1) assures the model identifiability. Specifically, (C1) indicates that, con-

ditional on Xia, none of the predictors in Xib (or S) can be linearly represented by

other predictors in S. A similar condition has been widely used in the literature; see,
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for example, Fan et al. (2008), Zhang and Huang (2008), Wang (2009), and many

others. However, Condition (C1) is typically insufficient for establishing the asymp-

totic normality of test statistics. Hence, we next introduce moment conditions on the

conditional predictor,

X∗
ib = Xib −BXia, (5)

where X∗
ib ∈ Rp−q is the residual vector obtained by regressing Xib on Xia and B =

cov(Xib, Xia)cov
−1(Xia) ∈ R(p−q)×q. By our previous assumptions, we immediately

have that E(X∗
ib) = 0 and cov(X∗

ib) = Σb|a. Define a collective set of X∗
ib as X∗

b =

(X∗
1b, · · · , X∗

nb)
⊤ ∈ Rn×(p−q). We then request the following moment conditions, which

are driven by the diverging number of predictors (i.e., p → ∞).

(C2) Moment Conditions. Assume that q/p → 0, and, for any 1 ≤ i ≤ n and 1 ≤ i1 ̸=

i2 ≤ n, the following moment conditions are satisfied.

(C2.a) E(p−1
∑

j∈S X
∗2
ij − 1)4 = O(p−2),

(C2.b) E(p−1
∑

j∈S X
∗
i1j
X∗

i2j
)4 = O(p−2).

By condition (C2.a) and Cauchy’s inequality, we obtain that

var(p−1
∑
j∈S

X∗2
ij ) = p−2

∑
j1,j2∈S

{E(X∗2
ij1
X∗2

ij2
)− 1} = O(1/p). (6)

Furthermore, by condition (C2.b), we have that

p2E(p−1
∑
j

X∗
i1j
X∗

i2j
)4

= p−2E{
∑

j1,j2,j3,j4

(X∗
i1j1

X∗
i1j2

X∗
i1j3

X∗
i1j4

)(X∗
i2j1

X∗
i2j2

X∗
i2j3

X∗
i2j4

)g}
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= p−2{
∑

j1,j2,j3,j4

E(X∗
i1j1

X∗
i1j2

X∗
i1j3

X∗
i1j4

)E(X∗
i2j1

X∗
i2j2

X∗
i2j3

X∗
i2j4

)}

= p−2
∑

j1,j2,j3,j4

{E(X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
)}2 = O(1). (7)

Both (6) and (7) will be used in technical appendices.

If the X∗
ijs are mutually independent for a fixed i, then both p−1

∑
j X

∗2
ij − 1 and

p−1
∑

j X
∗
i1j
X∗

i2j
are of the order Op(p

−1/2). Accordingly, the fourth moment condition

(C2) holds. In practice, however, we cannot expect the X∗
ijs to be independent of each

other. Hence, two known assumptions, namely a multivariate normal distribution and

a diverging factor model (Bai and Saranadasa, 1996) have often been considered in the

literature. Under the boundedness condition (C1), we are able to demonstrate that

both the multivariate normal distribution and the diverging factor model lead to (C2);

see the following two propositions.

Proposition 1. Assume that X∗
ib follows a multivariate normal distribution with mean

0 and covariance matrix Σb|a. In addition, assume that Σb|a satisfies condition (C1).

Then, condition (C2) must hold.

The proof is given in Appendix B. We next consider the diverging factor model, which

assumes that X∗
ib can be written as X∗

ib = ΓZi, where Γ = (γjk) ∈ R(p−q)×m for some

m ≥ p − q, Zi = (Zi1, · · · , Zim)
⊤ ∈ Rm, E(Zij) = 0, var(Zij) = 1, E(Z4

ij) = 3 + ∆z

for some finite constant ∆z, and E(Z8
ij) < ∞. In addition, it is also required that

E(Zs1
ij1
Zs2

ij2
· · ·Zsr

ijr
) = E(Zs1

ij1
) · · ·E(Zsr

ijr
) for any integers sv ≥ 0 with

∑r
v=1 sv ≤ 8 and

for different indices j1, j2, · · · , jr ∈ {1, 2, · · · ,m}.

Proposition 2. Assume that X∗
ib follows a diverging factor model structure and its

covariance matrix satisfies condition (C1). Then, (C2) holds.

The proof is given in Appendix B. Propositions 1 and 2 indicate that the conditions
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(C2.a) and (C2.b) are rather mild.

3. METHODOLOGY DEVELOPMENT

3.1. An Initial Test Statistic

After introducing the two regularity conditions (C1) and (C2), we propose a test

statistic for testing the hypotheses (3). To this end, we first estimate βa under

H0. Since we assume that the dimension of Xia is low, the unknown regression co-

efficient can be estimated via the OLS approach. The resulting estimator is β̂a =

(n−1X⊤
a Xa)

−1(n−1X⊤
a Y). Subsequently, the residual calculated through (4) is Ê = Y−

Xaβ̂a. If the sample size is large, one naturally expects that n−1Ê⊤Xb ≈ n−1E{E⊤Xb} =

0. This leads to the following test statistic

T1 = n−1∥X⊤
b Ê∥2 = n−1Ê⊤XbX⊤

b Ê = n−1
∑
j∈S

Ê⊤XjX⊤
j Ê = n−1

∑
j∈S

Ỹ⊤X̃jX̃⊤
j Ỹ,

where Xj = (X1j, X2j, · · · , Xnj)
⊤ ∈ Rn, X̃j = (In − Ha)Xj = (X̃1j, · · · , X̃nj)

⊤ ∈ Rn,

and Ỹ = (In − Ha)Y. It is of note that Ỹ⊤X̃jX̃⊤
j Ỹ/n is the partial covariance of Y

and Xj, for j ∈ S, after controlling for Xa. Hence, T1 is the sum of partial covariances

across the explanatory variables being tested. In general, one naturally rejects the null

hypothesis when T1 is sufficiently large.

Theorem 1. Assume the null hypothesis of (3), and conditions (C1) and (C2). If

min{n, p} → ∞, qn−1/4 → 0, and n/p → 0, then we have

p−1σ−2E∗(T1) →p 1 and np−2σ−4var∗(T1) ≤ 2 + |∆| (8)

with probability tending to 1, where E∗(·) = E(·|X) and var∗(·) = var(·|X).
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The proof is given in Appendix C. By Theorem 1, we have that E∗(T1)/var
1/2
∗ (T1) →p

∞. This implies that, under the null hypothesis of (3) and conditional on X, the

normalized test statistic T1/var
1/2
∗ (T1) cannot be asymptotically distributed as any

non-degenerate distribution. As a result, we modify T1 by using its conditionally bias-

corrected estimator.

3.2. The Bias-Corrected Test Statistic

Under the null hypothesis in (3) and the fact that (In − Ha)Xb = (In − Ha)X∗
b ,

we know that the conditional bias of T1 from (8) is E∗(T1) = σ2(n−1tr{X∗
bX∗

b
⊤} −

n−1tr{X∗
b
⊤HaX∗

b}) = σ2n−1(p − q)tr(MQ), where M = (p − q)−1
∑

j∈S X̃jX̃⊤
j and

Q = In −Ha. Conditional on X, both quantities M and Q are known. This motivates

us to correct the bias of T1 by replacing σ2 in E∗(T1) with its unbiased estimator,

σ̂2 = (n− q)−1Ê⊤Ê , which yields the following bias-corrected test statistic

T2 = T1 − σ̂2n−1(p− q)tr(MQ). (9)

It can easily be seen that E∗(T2) = 0, which immediately implies that E(T2) = 0.

To obtain a standardized test statistic, we next compute the variance of T2 without

conditioning on X.

Theorem 2. Under the same conditions and assumptions as those in Theorem 1, we

have var(T2) = 2σ4tr(Σ2
b|a){1 + o(1)}.

The proof is given in Appendix D. By Theorem 2, the asymptotic variance of T2 is

given by 2σ4tr(Σ2
b|a). Accordingly, we can construct a test statistic,

Z = T2/{2σ4tr(Σ2
b|a)}1/2, (10)
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whose asymptotic null distribution is given below.

Theorem 3. Under the same conditions and assumptions as those in Theorem 1, we

have that Z →d N(0, 1).

The proof is given in Appendix E. This theorem allows us to test a subset of regression

coefficients in high dimensional data. It is noteworthy that the numerator of Z is

a bias-corrected term from T1, and a larger Z tends to reject the null hypothesis.

Accordingly, Theorem 3 indicates that, for a given significance level α, we reject the

null hypothesis if Z > z1−α, where zα stands for the αth quantile of a standard normal

distribution. Based on the above theorem, one can calibrate the size of the proposed

test by an usual standard normal distribution table.

Remark 1. To employ the proposed test statistic, we need to estimate the unknown

quantity 2σ4tr(Σ2
b|a). It seems natural to use 2σ̂4tr(Σ̂2

b|a), where Σ̂b|a = n−1X̃⊤
b X̃b.

However, as demonstrated by Srivastava (2005), tr(Σ̂2
b|a) is not a consistent estimator

of tr(Σ2
b|a) when q = 0; see their Remark 2.1 on page 253 as well as some relevant

discussions in Chen and Qin (2010) and Chen et al. (2010). To this end, we adopt the

approach of Srivastava (2005) and consider the following bias-corrected estimator

̂tr(Σ2
b|a) = n2(n+ 1− q)−1(n− q)−1{tr(Σ̂2

b|a)− tr2(Σ̂b|a)/(n− q)}.

Under the normality assumption with q = 0, Srivastava (2005) show that it is ratio

consistent, i.e., ̂tr(Σ2
b|a)/tr(Σ

2
b|a) →p 1. For the case of non-normal data with q > 0,

our simulation experiences indicate that this estimator also performs fairly well; see

Examples 3.1 and 3.2 in the next section.

Remark 2. For the sake of simplicity, we assumed that E(Xij) = αj = 0 for every j.

In practice, this assumption may not be valid, i.e., αj ̸= 0 for some j. To resolve this
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problem, we can simply include an intercept term in Xia to redefine Xia := (1, X⊤
ia)

⊤.

Accordingly, (In −Ha)1 = 0, where 1 = (1, 1, · · · , 1)⊤ ∈ Rn. This leads to X̃j = (In −

Ha)Xj = (In −Ha)X+
j , where X+

j = (X1j − αj, · · · , Xnj − αj)
⊤ ∈ Rn is the centralized

predictor. Because our test statistic is based on X̃j, it makes no difference to use Xj

(non-centralized predictor) or X+
j (centralized predictor), as long as the intercept is

included in Xia. Consequently, the asymptotic theory given in Theorem 3 (established

for centralized design matrix) is still applicable, even though E(Xij) = αj ̸= 0. This

conclusion is further confirmed by simulation studies; see Example 3.1 in the next

section.

4. NUMERICAL STUDIES

4.1. Simulation Results

In this subsection, we present two simulation examples that evaluate the finite

sample performance of the proposed test. The first example considers weakly correlated

predictors (Tibshirani, 1996), while the second example studies the case in which a

strong relationship exists between Xa and Xb (Fan et al., 2008).

Example 3.1. We generate the data from (2), where the regression coefficients

βj for j ∈ {1, 2, · · · , q} are simulated from a standard normal distribution, and then

we set βj = 0 for j > q. In addition, the predictor vector is given by Xi = Σ1/2Z∗
i

for i = 1 · · · , n, and each component of Z∗
i is independently generated from a s-

tandard exponential distribution, exp(1). Moreover, the random error εi is inde-

pendently generated from a standard normal distribution or a mixture distribution

0.1N(0, 32) + 0.9N(0, 1). We then consider cov(Xi) = Σ = (σj1j2) ∈ Rp×p with

σj1j2 = 0.5|j1−j2| (Tibshirani, 1996; Fan and Li, 2001). Hence, Xij1 and Xij2 are approx-

imately uncorrelated when the difference |j1 − j2| is sufficiently large. It is noteworthy
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that E(Xi) ̸= 0, which violates our model assumption of E(Xi) = 0. According to

Remark 2, we add an intercept term into Xia to adjust for non-central predictors, and

then redefine Xia := (1, X⊤
ia)

⊤.

We consider two different sample sizes (n=100, 200), three dimensions of predictors

in the full model (p=200, 500, 1000), and three dimensions of predictors in the reduced

model (q=0, 8, and 15). For each fixed parameter setting (i.e., n, p, and q), a total of

1,000 realizations are conducted with a nominal level of 5%. Table 1 presents the size

of the bias-corrected test. For the sake of comparison, the test proposed by Zhong and

Chen (2011) is also included, and we name it the ZC-test. A well-behaved test should

have an empirical size around 0.05. Table 1 indicates that both methods perform quite

well.

We next study the power of the bias-corrected test. To this end, we follow the set-

tings of Zhong and Chen (2011) and consider two different types of alternative hypothe-

ses. The first type is a non-sparse alternative, where βb = κ(βb1, βb2, · · · , βb(p−q))
⊤ ∈

Rp−q, the βbjs are simulated from a standard normal distribution, and κ is selected so

that the signal strength β⊤
b Σb|aβb ranges from 0 to 1.5. The second type is a sparse

alternative, where βbj (1 ≤ j ≤ 5) are generated from a standard normal distribution

with βbj being set to be 0 for every j > 5. In addition, the signal strengths are the same

as those of the first type. For the sake of illustration, we consider only the situation

where the random error is normally distributed with q = 0, n = 100, and p = 200.

Figure 1 depicts the empirical powers of the bias-corrected test and ZC-test, which

indicates they steadily increase towards 100% as the signal strength gets larger. In

sum, both tests perform satisfactorily and comparably in both sparse alternative and

non-sparse alternative scenarios.

Example 3.2. We consider a case in which Xia and Xib are heavily correlated.
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More specifically, we generate the data according to the factor model (5), where the

variables Xij with 1 ≤ j ≤ q and εi are randomly generated from the standard normal

distribution. In addition,we have the variables Xib = BXia + X∗
ib for 1 ≤ i ≤ n,

where each element of the factor loading B ∈ R(p−q)×q is simulated from a standard

normal distribution. Moreover, X∗
ib ∈ Rp−q is generated from a multivariate normal

distribution with mean 0 and covariance matrix Σb|a = (σ∗
j1j2

) ∈ R(p−q)×(p−q) with

σ∗
j1j2

= 0.5|j1−j2|. The regression coefficients, sample sizes, full model sizes, and reduced

model sizes, as well as the number of realizations, are the same as those in Example

3.1. It can be verified that the technical conditions (C1) and (C2) imposed on Σb|a

(instead of Σ) are satisfied. Hence, the results presented in Table 2 indicate that the

bias-corrected test performs reasonably well and is qualitatively similar to that in the

previous example. Because the condition for the ZC-test is invalid under this simulation

setting, it is not surprising that ZC-test does not perform well. Specifically, one can

show that tr(Σ4) = tr(BB⊤)4{1+o(1)} = tr(B⊤B)4{1+o(1)} = p4tr(Iq){1+op(1)} =

qp4{1+o(1)} and tr(Σ2) = qp2{1+o(1)}. As a result, tr(Σ4)/tr2(Σ2) → q−1 ̸= 0 if q is

fixed; this violates condition (2.8) in Zhong and Chen (2011). Finally, Figure 2 depicts

the empirical power of the bias-corrected test. It is not surprising that the non-sparse

alternative performs better than the sparse alternative, and their overall performances

are qualitatively similar to those of Figure 1.

4.2. Real Data Analysis

To further demonstrate the practical usefulness of our proposed method, we consider

an empirical example using data from an online mobile phone retailer. The data set

can be obtained from the authors upon request, and will be made available for research

purposes only. The data set contains a total of n = 98 daily records. The response

is the revenue from the retailer’s online sales, and the explanatory variables are the
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advertising spending on each of p = 1, 048 different keywords that were bid for on

Baidu (www.baidu.com), the leading domestic search engine in China. In practice,

allocating the advertising spending on profitable keywords is critical for online sales.

We therefore start by ranking 1, 048 keywords according to their relative importance

measured by the coefficient of variation (CV) for each keyword. This is because a

keyword with a weaker CV is typically associated with larger spending but smaller

variability; empirical experience suggests that those keywords are more likely to be

associated with online sales. As a result, a keyword with a weak CV is more important

than one with a strong CV.

We next denote the sorted predictors as V(1), V(2), · · · , V(p). Since sales vary with

the day of the week, we introduce the 6-dimensional indicator variables W ∈ R6 to

represent Sunday to Friday. For a fixed k, we define Xa = (W,V(1), · · · , V(k)), and then

test whether the advertising spending on the rest of keywords, Xb = (V(j) : j > k),

could provide a significant contribution to online sales by controlling for the effect

of Xa. To this end, the bias-corrected test procedure is applied sequentially with

k = 1, 2, · · · , until the resulting p-value is larger than the 5% level of significance. The

testing procedure stops with k = 8; this suggests that, after controlling for advertising

spending on the first eight keywords, the others are not statistically significant to the

response.

After carefully examining those eight keywords, we find that they can be classified

into three different categories. The first category contains a single keyword, the brand

name of this particular online retailer. People generally would not search for such a

keyword if they were not already familiar with this retailer. Hence, identifying this

keyword is a highly desirable result. The second category contains a keyword that is

the name of a Chinese version of iPad (“one-person-one-book” directly translated from
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Chinese). Since it is considered to be the most important competitor for iPad in the

domestic Chinese market, targeting this keyword is also an expected result. The last

category consists of six keywords that are related to mobile phones designed specifically

for “senior people” (directly translated from Chinese). Since the percentage of seniors

in China has increased steadily in the past few years as a result of the one child policy,

it is not surprising that they play an important role in the mobile phone market.

Based on the experience of a field practitioner, the eight keywords identified by

our bias-corrected test are highly interpretable and useful. In addition, offline data

confirms that the product categories represented by those eight search keywords are

economically important; they account for more than 65% of the entire online sales. It is

worth noting that the simulation studies in Section 3.1 indicate that the bias-corrected

test performs well when n = 100, p = 1, 000, and q = 8; our empirical example is

similar to this case. In sum, our test is able to identify 8 critical keywords from the

1,048 keywords and 98 observations; this method efficiently utilizes the high volume of

data available to online retailers.

5. CONCLUDING REMARKS

To broaden the usefulness of our proposed test, we conclude this article by extending

the test statistic to generalized linear models (McCullagh and Nelder, 1989). Consider

E(Yi|Xi) = g−1(X⊤
i β) = g−1(X⊤

iaβa +X⊤
ibβb),

where g(·) is the canonical link function. The resulting log-likelihood function, after

omitting the irrelevant constants, is given by
∑

i{(Yi · X⊤
i β) − nb(X⊤

i β)} for some

smooth function b(·). By maximizing the log-likelihood function under the null hy-

pothesis of (3), we obtain the maximum likelihood estimator (MLE) of βa, which is

15



denoted β̂a. Then, with slight abuse of the notation for random errors and their cor-

responding residuals used in the linear model, we denote εi = Yi − g−1(X⊤
iaβa) and

ε̂i = Yi − g−1(X⊤
iaβ̂a). As a result, the estimator of σ2 is σ̂2 = Ê⊤Ê/(n − q), where

Ê = (ε̂1, · · · , ε̂n)⊤.

Under the null hypothesis of (3), we have E(εiX̃ij) = 0 for any j > q, where X̃ij

is the i-th element of X̃j defined in Section 3. Similarly, an initial test statistic can

be constructed as T g
1 = n−1

∑
j>q(Ê⊤X̃j)

2 = n−1Ê⊤X̃bX̃⊤
b Ê . Under the null hypothesis,

we have E∗(Ê⊤X̃bX̃⊤
b Ê) ≈ E∗(E⊤X̃bX̃⊤

b E) =
∑n

i=1 σ
2
i ωi, where σ2

i = E(ε2i ) and ωi is the

ith diagonal element of X̃bX̃⊤
b ∈ Rn×n. Accordingly, we can estimate E∗(E⊤X̃bX̃⊤

b E)

by Ê⊤ΩÊ , where Ω = diag{ω1, · · · , ωn}. This leads us to propose the following bias-

corrected test statistic T g
2 = n−1Ê⊤(X̃bX̃⊤

b − Ω)Ê . Then, employing similar techniques

as in the linear model, we are able to show that var(T g
2 ) = 2σ̄4tr(Σ2

b|a){1+o(1)}, where

σ̄2 = n−1
∑n

i=1 σ
2
i . Accordingly, we obtain a test statistic, Zg = T g

2 /{2σ̂4 ̂tr(Σ2
b|a)}1/2,

for testing the null hypothesis of (3) in generalized linear models. Our unreported

numerical results suggest that the test statistic Zg works fairly well in terms of both

size and power.

To conclude the article, we discuss two interesting topics for future research. The

first is to obtain a test statistic for testing the null hypothesis H0 : βa = 0. This is

a challenging task since the total number of unknown parameters in βb remains large

even under H0. The second is to employ the Pearson residual or deviance residual,

as proposed by an anonymous referee, to derive a test statistic for generalized linear

models. We believe these efforts would strengthen the use of hypothesis testing for

making inferences in high dimensional data analysis.
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APPENDIX

Appendix A. Technical Lemmas

Before proving four theorems, we present the following three lemmas. Lemma 1

can be found in Bendat and Piersol (1966) and Lemma 2 can be derived directly from

Bao and Ullah (2010). Accordingly, we only provide the details for Lemma 3.

Lemma 1. Let (U1, U2, U3, U4)
⊤ ∈ R4 be a 4-dimensional normal random vector with

E(Uj) = 0 and var(Uj) = 1 for 1 ≤ j ≤ 4. We then have E(U1U2U3U4) = δ12δ34 +

δ13δ24 + δ14δ23, where δij = E(UiUj).

Lemma 2. Let V = (V1, · · · , Vm)
⊤ ∈ Rm be a random vector with E(V ) = 0 and

cov(V ) = Im. We further assume that E(V g1
i1
V g2
i2

· · ·V gr
ir
) = E(V g1

i1
) · · ·E(V gr

ir
) for

indices i1, i2, · · · , ir ∈ {1, 2, · · · ,m} and for any integers gv ≥ 0 with
∑r

v=1 gv ≤ 8.

Then, for any symmetric m × m matrix A1 and any m × m positive definite matrix

A2, we have that (i.) E(V ⊤A1V )2 = tr2(A1) + 2tr(A2
1) + ∆̄tr(A⊗2

1 ), where A1 =

(aj1j2), A
⊗2
1 = (a2j1j2), and ∆̄ = E(V 4

i )− 3; (ii.) there is a finite constant C such that

E{V ⊤A2V − tr(A2)}4 ≤ Ctr2(A2
2).

Lemma 3. Assume that Wi = Γ̃Z̃i ∈ Rl, where Γ̃ = (γ̃jk) ∈ Rl×m, Z̃i ∈ Rm,

E(Z̃i) = 0, cov(Z̃i) = Im, and E(Z̃8
ij) < ∞ for j = 1, · · · ,m. In addition, assume that

E(Z̃ l1
ij1
Z̃ l2

ij2
· · · Z̃ lr

ijr
) = E(Z̃ l1

ij1
) · · ·E(Z̃ lr

ijr
) for indices j1, j2, · · · , jr ∈ {1, 2, · · · ,m} and

for any integers lv ≥ 0 with
∑r

v=1 lv ≤ 8. We then have that E(Wij1Wij2Wij3Wij4) =

σ̃j1j2σ̃j3j4 + σ̃j1j3σ̃j2j4 + σ̃j1j4σ̃j2j3 + ∆̃
∑m

k=1 γ̃j1kγ̃j2kγ̃j3kγ̃j4k, where cov(Wi) = (σ̃j1j2) ∈

Rl×l and ∆̃ = E(Z̃4
ij)− 3.

Proof. From Wi = Γ̃Z̃i, we have Wij =
∑m

k=1 γ̃jkZ̃ik for 1 ≤ j ≤ l. As a result, we
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obtain that

E(Wij1Wij2Wij3Wij4) =
∑

k1,k2,k3,k4

γ̃j1k1 γ̃j2k2 γ̃j3k3 γ̃j4k4E(Z̃ik1Z̃ik2Z̃ik3Z̃ik4)

= E(Z̃4
ik)

∑
k

γ̃j1kγ̃j2kγ̃j3kγ̃j4k +
∑
k1 ̸=k2

γ̃j1k1 γ̃j2k1 γ̃j3k2 γ̃j4k2

+
∑
k1 ̸=k2

γ̃j1k1 γ̃j2k2 γ̃j3k1 γ̃j4k2 +
∑
k1 ̸=k2

γ̃j1k1 γ̃j2k2 γ̃j3k2 γ̃j4k1

= {E(Z̃4
ik)− 3}

∑
k

γ̃j1kγ̃j2kγ̃j3kγ̃j4k +
∑
k1,k2

γ̃j1k1 γ̃j2k1 γ̃j3k2 γ̃j4k2

+
∑
k1,k2

γ̃j1k1 γ̃j2k2 γ̃j3k1 γ̃j4k2 +
∑
k1,k2

γ̃j1k1 γ̃j2k2 γ̃j3k2 γ̃j4k1

= σ̃12σ̃34 + σ̃13σ̃24 + σ̃14σ̃23 + ∆̃
m∑
k=1

γ̃j1kγ̃j2kγ̃j3kγ̃j4k. (11)

The last equality is due to the fact that σ̃j1j2 =
∑

k γ̃j1kγ̃j2k for any 1 ≤ j1, j2 ≤ l. This

completes the proof.

Appendix B. Proof of Proposition 1-2

The normal distribution assumed in Proposition 1 implies the diverging factor model

in Proposition 2. Hence, we only present proofs for Proposition 2, where (C2.a) and

(C2.b) are satisfied.

Proof of (C2.a). The moment condition (C2.a) can be obtained directly from Lem-

ma 2(ii); we thus omitted it.

Proof of (C2.b). Using Lemma 3, we have that E{X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
} = σ∗

j1j2
σ∗
j3j4

+

σ∗
j1j3

σ∗
j2j4

+σ∗
j1j4

σ∗
j2j3

+∆z

∑m
k=1 γj1kγj2kγj3kγj4k. This, together with Cauchy’s inequality,
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condition (C1), and Σb|a = ΓΓ⊤, implies that

p−2
∑

j1,j2,j3,j4

{E(X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
)}2

= p−2
∑

j1,j2,j3,j4

(σ∗
j1j2

σ∗
j3j4

+ σ∗
j1j3

σ∗
j2j4

+ σ∗
j1j4

σ∗
j2j3

+∆z

∑
k

γj1kγj2kγj3kγj4k)
2

≤ 2p−2
∑

j1,j2,j3,j4

(σ∗
j1j2

σ∗
j3j4

+ σ∗
j1j3

σ∗
j2j4

+ σ∗
j1j4

σ∗
j2j3

)2

+2p−2∆2
z

∑
j1,j2,j3,j4

(
∑
k

γj1kγj2kγj3kγj4k)
2

= 2p−2{3tr2(Σ2
b|a) + 6tr(Σ4

b|a)}+ 2p−2∆2
z

∑
j1,j2,j3,j4

(
∑
k

γj1kγj2kγj3kγj4k)
2

= O(1) + 2p−2∆2
z

∑
j1,j2,j3,j4

{
∑
k1,k2

(γj1k1γj2k1γj3k1γj4k1)(γj1k2γj2k2γj3k2γj4k2)}

= O(1) + 2p−2∆2
z

∑
k1,k2

{
∑

j1,j2,j3,j4

(γj1k1γj1k2)(γj2k1γj2k2)(γj3k1γj3k2)(γj4k1γj4k2)}

= O(1) + 2p−2∆2
z

∑
k1,k2

(
∑
j

γjk1γjk2)
4 ≤ O(1) + 2p−2∆2

z{
∑
k1,k2

(
∑
j

γjk1γjk2)
2}2

≤ O(1) + 2p−2∆2
ztr

2(Γ⊤Γ)2 = O(1) + 2p−2∆2
ztr

2(ΓΓ⊤)2

= O(1) + 2p−2∆2
ztr

2(Σ2
b|a) = O(1).

From (7), we complete the proof.

Appendix C. Proof of Theorem 1

To prove the theorem, we consider two steps; Step (1) shows the first part in (8)

and Step (2) demonstrates the second part.

Step (1). Under the null hypothesis of (3), we have that Ê = (In −Ha)E and

p−1σ−2E∗(T1) = n−1p−1tr{(In −Ha)XbX⊤
b (In −Ha)}

= n−1p−1tr{(In −Ha)X∗
bX∗⊤

b (In −Ha)}

= n−1p−1tr(X∗
bX∗⊤

b )− n−1p−1tr(X∗⊤
b HaX∗

b). (12)
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Define T = n−1p−1tr(X∗
bX∗⊤

b ) = n−1
∑n

i=1(p
−1

∑
j∈S X

∗2
ij ). It is obvious that E(T ) =

1 + o(1). Applying (6) and condition (C2.a), we further show that

var(T ) = n−1var(p−1
∑
j∈S

X∗2
ij ) = o(1).

Accordingly, the first term of (12) is n−1p−1tr{X∗
bX∗⊤

b } = 1 + op(1). We next demon-

strate that the order of the second term in (A.2) is op(1). Using tr(Ha) = q, then

n−1p−1tr{X∗
b
⊤HaX∗

b} ≤ n−1p−1tr(Ha)λmax(X∗
bX∗

b
⊤) = {n−1q}λmax(p

−1X∗
bX∗

b
⊤). (13)

Define H̄ = X∗
bX∗

b
⊤ − (p − q)In = (h̄i1i2) ∈ Rn×n. By Chebyshev’s inequality, for any

arbitrarily large constant t, we obtain that

P (λmax(H̄) > n3/4p1/2t) ≤ n−3p−2t−4E{λ4
max(H̄)} ≤ n−3p−2t−4E{trH̄4}. (14)

It is noteworthy that tr(H̄4) =
∑

i1,i2,i3,i4
h̄i1i2h̄i2i3h̄i3i4h̄i4i1 . Hence,

E{tr(H̄4)} = E{
∑

i1,i2,i3,i4

h̄i1i2h̄i2i3h̄i3i4h̄i4i1}

= E{
∑
A

h̄i1i2h̄i2i3h̄i3i4h̄i4i1}+ E{
∑
Ac

h̄i1i2h̄i2i3h̄i3i4h̄i4i1}, (15)

where A = {(i1, i2, i3, i4), i1 ̸= i2 ̸= i3 ̸= i4}. After algebraic simplification with
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condition (C1), the first term of (15) becomes

E{
∑
A

h̄i1i2h̄i2i3h̄i3i4h̄i4i1}

= E{
∑

i1 ̸=i2 ̸=i3 ̸=i4

∑
j1∈S

X∗
i1j1

X∗
i2j1

∑
j2∈S

X∗
i2j2

X∗
i3j2

∑
j3∈S

X∗
i3j3

X∗
i4j3

∑
j4∈S

X∗
i1j4

X∗
i4j4

}

=
∑

i1 ̸=i2 ̸=i3 ̸=i4

∑
j1,j2,j3,j4∈S

E{X∗
i1j1

X∗
i1j4

X∗
i2j1

X∗
i2j2

X∗
i3j2

X∗
i3j3

X∗
i4j3

X∗
i4j4

}

=
∑

i1 ̸=i2 ̸=i3 ̸=i4

∑
j1,j2,j3,j4∈S

σ∗
j1j4

σ∗
j1j2

σ∗
j2j3

σ∗
j3j4

= n(n− 1)(n− 2)(n− 3)tr(Σ4
b|a) = O(n4p). (16)

Using the fact that |Ac| ≤ n3 and Cauchy’s inequality, the second term of (15) satisfies

E{
∑
Ac

h̄i1i2h̄i2i3h̄i3i4h̄i4i1} ≤ 4−1n3{E(h̄4
i1i2

) + E(h̄4
i2i3

) + E(h̄4
i3i4

) + E(h̄4
i4i1

)}. (17)

To further simplify (17), we consider two cases, i1 ̸= i2 and i1 = i2. When i1 ̸= i2,

we employ condition (C2.b) and equation (7), and then obtain that

E(h̄4
i1i2

) =
∑

j1,j2,j3,j4∈S

E{X∗
i1j1

X∗
i1j2

X∗
i1j3

X∗
i1j4

X∗
i2j1

X∗
i2j2

X∗
i2j3

X∗
i2j4

}

=
∑

j1,j2,j3,j4∈S

{E(X∗
i1j1

X∗
i1j2

X∗
i1j3

X∗
i1j4

)}2 = O(p2).

For the case with i1 = i2, the same conclusion can be established via condition (C2.a).

The above results, together with (16) and (17), imply that E{tr(H̄4)} = O(n4p) +

O(n3p2). Hence, as long as n/p tends to 0 and t is sufficiently large, we have that

n−3p−2t−4E{trH̄4} → 0. This result and (14) lead to

λmax(H̄) = Op(p
1/2n3/4). (18)
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Using (13), (18), and the assumption of qn−1/4 → 0, we thus obtain that, with prob-

ability tending to 1, the second term of (12) is n−1p−1tr{X∗
b
⊤HaX∗

b} ≤ {n−1q}{1 +

Op(n
3/4p−1/2)} = op(1). Consequently, p

−1σ−2E∗(T1) = 1+ op(1), which completes the

proof of the first part in (8).

Step (2). We next consider the conditional variance var∗(T1). After algebraic

simplification and employing Lemma 2(i), we have that

np−2var∗(T1) = n−1p−2[E∗{E⊤(In −Ha)X∗
bX∗

b
⊤(In −Ha)E}2

−{E∗{E⊤(In −Ha)X∗
bX∗

b
⊤(In −Ha)E}}2]

= 2n−1p−2σ4tr{(In −Ha)X∗
bX∗

b
⊤(In −Ha)X∗

bX∗
b
⊤(In −Ha)}

+∆n−1p−2σ4tr{(In −Ha)X∗
bX∗

b
⊤(In −Ha)}⊗2

≤ 2n−1p−2σ4tr{(In −Ha)X∗
bX∗

b
⊤(In −Ha)X∗

bX∗
b
⊤(In −Ha)}

+|∆|n−1p−2σ4tr{(In −Ha)X∗
bX∗

b
⊤(In −Ha)}2,

= (2 + ∆)n−1p−2σ4tr{(In −Ha)X∗
bX∗

b
⊤(In −Ha)X∗

bX∗
b
⊤(In −Ha)}

≤ (2 + |∆|)n−1p−2σ4tr{X∗
bX∗

b
⊤(In −Ha)X∗

bX∗
b
⊤}

≤ (2 + |∆|)n−1p−2σ4tr{(X∗
bX∗

b
⊤)2} = (2 + |∆|)n−1σ4tr{p−1(X∗

bX∗
b
⊤)2}.

Using similar techniques to those used above, we can verify that n−1p−2tr{(X∗
bX∗

b
⊤)2} →p

1. As a result, np−2σ−4var∗(T1) ≤ 2(1 + ∆) in probability. This completes the entire

proof of Theorem 1.

Appendix D. Proof of Theorem 2

To prove this theorem, we introduce the statistic, T̃2 = n−1T̄1 − (p − q)n−1E⊤E ,

where T̄1 = E⊤X∗
bX∗

b
⊤E . We then consider two steps, namely computing the variance

of T̃2 and showing that the difference between T̃2 and T2 is negligible.
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Step (1). By condition (C1), we have var(X∗
j) = σ∗

jj = 1. Under the null hypothe-

sis of (3), one can easily verify that E(T̃2) = 0. With algebraic simplification, we obtain

that n2var(T̃2) = E(T̄ 2
1 ) + (p − q)2E{E⊤E}2 − 2(p − q)E{T̄1E⊤E}. We next evaluate

the three terms on the right-hand side of this equation. Since E(ε4i ) = (3 + ∆)σ4,

E(T̄ 2
1 ) = E(E⊤X∗

bX∗
b
⊤E)2 = Eg{

∑
j∈S

(
∑
i

X∗
ijεi)

2g}2 = E(
∑
j∈S

∑
i1,i2

X∗
i1j
X∗

i2j
εi1εi2)

2

=
∑

j1,j2∈S

∑
i1,i2,i3,i4

E{εi1εi2εi3εi4X∗
i1j1

X∗
i2j1

X∗
i3j2

X∗
i4j2

}

=
∑

j1,j2∈S

n∑
i=1

E{ε4iX∗2
ij1
X∗2

ij2
}+

∑
j1,j2∈S

∑
i1 ̸=i2

E{ε2i1ε
2
i2
X∗2

i1j1
X∗2

i2j2
}

+2
∑

j1,j2∈S

∑
i1 ̸=i2

E{ε2i1ε
2
i2
X∗

i1j1
X∗

i1j2
X∗

i2j1
X∗

i2j2
}

= (3 + ∆)σ4n
∑

j1,j2∈S

E{X∗2
ij1
X∗2

ij2
}

+σ4n(n− 1)(p− q)2 + 2σ4n(n− 1)tr(Σ2
b|a). (19)

By the definition of ∆, one can demonstrate that σ−4E(E⊤E)2 = n(n + 2) + ∆n, and

then show that

σ−4E{T̄1E⊤E} = σ−4E{E⊤X∗
bX∗

b
⊤EE⊤E} = σ−4(p− q)E{E⊤E}2

= (p− q){n(n+ 2) + n∆}.

The above results, together with condition (C2.a) and equation (6), imply that

n2σ−4var(T̃2) = n(3 + ∆)
∑

j1,j2∈S

{E(X∗2
ij1
X∗2

ij2
)− 1}+ 2n(n− 1)tr(Σ2

b|a)

= O(np) + 2n(n− 1)tr(Σ2
b|a) = 2n2tr(Σ2

b|a)(1 + o(1)), (20)

which completes the proof of Step (1).
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Step (2). After simple calculation, we have that var(T̃2) ≥ 2σ4(p−q)τ 2min{1+o(1)},

which is of order O(p) by condition (C1) and the assumption of q/p → 0. As a result,

it suffices to show that p−1/2(T2 − T̃2) = op(1) to complete the proof. Note that

p−1/2(T2 − T̃2) = p−1/2{T1 − n−1T̄1 + n−1(p− q)E⊤HaE}

−p−1/2{σ̂2n−1(p− q)tr(M̃Q)− n−1(p− q)E⊤QE}, (21)

where M̃ = (p− q)−1X∗
bX∗⊤

b ∈ Rn×n. We next demonstrate that the two terms on the

right-hand side of the above equation are of order op(1). By Ê = (In −Ha)E , we have

n{T1 − n−1T̄1 + n−1(p− q)E⊤HaE}

= E⊤(In −Ha)X∗
bX∗

b
⊤(In −Ha)E − E⊤X∗

bX∗
b
⊤E + (p− q)E⊤HaE

= E⊤HaH̄HaE − 2E⊤HaH̄E . (22)

The first term in (22) satisfies E⊤HaH̄HaE ≤ λmax(H̄)E⊤HaE . In addition, (18) in-

dicates that λmax(H̄) = Op(p
1/2n3/4). By tr(H⊗2

a ) ≤ tr(H2
a) = q, we have that

σ−4var{n−1/4E⊤HaE} = n−1/2{2q + ∆tr(H⊗2
a )} ≤ n−1/2q{2 + ∆} = o(1). This, in

conjunction with the fact that σ−2E{n−1/4E⊤HaE} = n−1/4q = o(1), yields E⊤HaE =

op(n
1/4). Hence, E⊤HaH̄HaE = op(np

1/2). Analogously, we can demonstrate that the

second term in (22), E⊤HaH̄E , is also of order op(np
1/2). Accordingly, the first term

on the right-hand side of (21) is of order op(1). Finally, applying similar techniques

as those used in the above proofs, we are able to show that the second term on the

right-hand side of (21) is also of order op(1), which completes the entire proof.

Appendix E. Proof of Theorem 3

According to the proof of Theorem 2, we only need to demonstrate that T̃2/var
1/2(T̃2) →d
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N(0, 1). To this end, denote

T̃2 = n−1
∑

1≤i1 ̸=i2≤n

∑
j∈S

εi1εi2X
∗
i1j
X∗

i2j
+ n−1

∑
i=1

∑
j∈S

ε2i (X
∗2
ij − 1)

.
= Π1 +Π2.

Then, it suffices to show that

Π2/var
1/2(T̃2) = op(1) and Π1/var

1/2(T̃2) →d N(0, 1), (23)

and the detailed proofs are given in the following two steps, respectively.

Step (1). After algebraic simplification with condition (C2.a), we obtain

n2σ−4var(Π2)

= σ−4
∑

1≤i1,i2≤n

∑
j1,j2∈S

E{ε2i1ε
2
i2
(X∗2

i1j1
− 1)(X∗2

i2j2
− 1)}

=
∑
i1 ̸=i2

∑
j1,j2∈S

E{(X∗2
i1j1

− 1)(X∗2
i2j2

− 1)}+ (3 + ∆)
n∑

i=1

∑
j1,j2∈S

E{(X∗2
ij1

− 1)(X∗2
ij2

− 1)}

= (3 + ∆)
n∑

i=1

∑
j1,j2∈S

{E(X∗2
ij1
X∗2

ij2
)− 1}

= (3 + ∆)n
∑

j1,j2∈S

{E(X∗2
ij1
X∗2

ij2
)− 1} = O(np),

where the last equality is due to (6). Therefore, var(Π2) = o(p). Recalling that

E(Π2) = 0 and var(T̃2) = 2σ4tr(Σ2
b|a){1 + o(1)} ≥ σ4pτ 2min, this completes the proof of

the first term of (23).

Step (2). Applying similar techniques used in the proof of Theorem 2, we have

that var(Π1) = 2σ4tr(Σ2
b|a){1 + o(1)}. Then, var(Π1)

−1var(T̃2) tends to 1 as n goes to

infinity. Hence, we only need to show that

Π1/var
1/2(Π1) →d N(0, 1). (24)
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To this end, define Fr = σ{εi1 , X∗
i2j
, 1 ≤ j ≤ p, 1 ≤ i1, i2 ≤ r, i1 ̸= i2}, the σ-field

generated by {εi1 , X∗
i2j
}, where 1 ≤ j ≤ p, 1 ≤ i1, i2 ≤ r for r = 1, 2, · · · , n and i1 ̸= i2.

In addition, define

Tn,r = n−1
∑

1≤i1 ̸=i2≤r

∑
j∈S

εi1εi2X
∗
i1j
X∗

i2j
.

Obviously, Tn,r ∈ Fr. Then, set ∆n,r = Tn,r − Tn,r−1 with ∆0 = 0. One can easily

verify that E(∆n,r|Fq) = 0 and E(Tr|Fq) = Tq for any q < r. This implies that, for an

arbitrary fixed n, {∆n,r, 0 ≤ r ≤ n} is a martingale difference sequence with respect to

{Fr, 0 ≤ r ≤ n} with F0 = ∅ . Accordingly, by the Martingale Central Limit Theorem

(Hall and Heyde, 1980), for the proof of (24), it suffices to show that

∑n
r=1 σ

∗2
n,r

var(Π1)
→p 1 and

∑n
r=1E(∆4

n,r)

var2(Π1)
→p 0 (25)

where σ∗2
n,r = E(∆2

n,r|Fr−1).

We begin by showing the first term of (25). After algebraic simplification, we have

that ∆n,r = 2n−1
∑

i<r

∑
j∈S X

∗
ijX

∗
rjεiεr and

n∑
r=1

σ∗2
n,r =

n∑
r=1

4n−2E(
∑
i1<r

∑
i2<r

∑
j1,j2∈S

X∗
i1j1

X∗
i2j2

X∗
rj1

X∗
rj2

εi1εi2ε
2
r|Fr−1)

= 4n−2σ2

n∑
r=1

∑
i1<r

∑
i2<r

∑
j1,j2∈S

εi1εi2X
∗
i1j1

X∗
i2j2

σ∗
j1j2

= 4n−2σ2(
n∑

r=1

∑
i1 ̸=i2<r

∑
j1,j2∈S

εi1εi2X
∗
i1j1

X∗
i2j2

σ∗
j1j2

+
n∑

r=1

∑
i<r

∑
j1,j2∈S

ε2iX
∗
ij1
X∗

ij2
σ∗
j1j2

).
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Using tr{Σ4
b|a} = O(p), we then obtain

var(
n∑

r=1

∑
i1 ̸=i2<r

∑
j1,j2∈S

εi1εi2X
∗
i1j1

X∗
i2j2

σ∗
j1j2

)

= 4E(
∑
r1,r2

∑
i1<i2<r1

∑
i3<i4<r2

∑
{j1,j2,j3,j4}∈S

εi1εi2εi3εi4X
∗
i1j1

X∗
i2j2

X∗
i3j3

X∗
i4j4

σ∗
j1j2

σ∗
j3j4

)

= 4σ4
∑
r1,r2

∑
i1<i2<min(r1,r2)

∑
{j1,j2,j3,j4}∈S

σ∗
j1j3

σ∗
j2j4

σ∗
j1j2

σ∗
j3j4

= 4σ4
∑
r1,r2

∑
i1<i2<min(r1,r2)

tr(Σ4
b|a) = O(n4p) = o(n4p2). (26)

Furthermore, by condition (C2.b) and Cauchy’s inequality, we have

σ−4E{
n∑

r=1

∑
i<r

∑
j1,j2∈S

ε2iX
∗
ij1
X∗

ij2
σ∗
j1j2

}2

= σ−4E(
∑
r1,r2

∑
i1<r1

∑
i2<r2

∑
{j1,j2,j3,j4∈S}

ε2i1ε
2
i2
X∗

i1j1
X∗

i1j2
X∗

i2j3
X∗

i2j4
σ∗
j1j2

σ∗
j3j4

)

=
∑
r1,r2

∑
i1<r1,i2<r2,i1 ̸=i2

∑
{j1,j2,j3,j4∈S}

σ∗2
j1j2

σ∗2
j3j4

+(3 + ∆)
∑
r1,r2

∑
i<min(r1,r2)

∑
{j1,j2,j3,j4∈S}

E{X∗
ij1
X∗

ij2
X∗

ij3
Xij∗4

}σ∗
j1j2

σ∗
j3j4

≤
∑
r1,r2

∑
i1<r1,i2<r2,i1 ̸=i2

tr2(Σ2
b|a)

+2−1(3 + ∆)
∑
r1,r2

∑
i<min(r1,r2)

∑
j1,j2,j3,j4∈S

{E(X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
)}2

+2−1(3 + ∆)
∑
r1,r2

∑
i<min(r1,r2)

∑
j1,j2,j3,j4∈S

σ∗2
j1j2

σ∗2
j3j4

=
∑
r1,r2

∑
i1<r1,i2<r2

tr2(Σ2
b|a) +O(n3p2),

where the last equality is due to the fact that

∑
r1,r2

∑
i<min(r1,r2)

∑
j1,j2,j3,j4∈S

{E(X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
)}2 = O(n3p2) (27)

27



obtained via condition (C2.b) and

∑
r1,r2

∑
i<min(r1,r2)

∑
j1,j2,j3,j4∈S

σ∗2
j1j2

σ∗2
j3j4

=
∑
r1,r2

∑
i<min(r1,r2)

tr2(Σ2
b|a) = O(n3p2). (28)

This further implies that

var(
n∑

r=1

∑
i<r

∑
j1,j2∈S

ε2iX
∗
ij1
X∗

ij2
σ∗
j1j2

)

= E{
n∑

r=1

∑
i<r

∑
j1,j2∈S

ε2iX
∗
ij1
X∗

ij2
σ∗
j1j2

}2 − {E(
n∑

r=1

∑
i<r

∑
j1,j2∈S

ε2iX
∗
ij1
X∗

ij2
σ∗
ij)}2

≤ σ4
∑
r1,r2

∑
i1<r1,i2<r2

tr2(Σ2
b|a) +O(n3p2)− σ4

∑
r1,r2

∑
i1<r1,i2<r2

tr2(Σ2
b|a)

= O(n3p2) = o(n4p2). (29)

Moreover, it can easily be shown that E(
∑n

r=1 σ
∗2
n,r) = var(Π1). This, together with

the fact that var(Π1) = 2(1− n−1)σ4tr(Σ2
b|a){1 + o(1)} ≥ σ4pτ 2min, as well as (26) and

(29), yields var(
∑n

r=1 σ
∗2
n,r) = o{var2(Π1)}. This completes the proof of the first part

of (25).

We next consider the second term of (25). Since ∆n,r = 2n−1
∑

i<r

∑
j∈S X

∗
ijX

∗
rjεiεr,

we have the following

2−4n4

n∑
r=1

E(∆4
n,r)

= Eg{
n∑

r=1

∑
i1,i2,i3,i4<r

∑
j1,j2,j3,j4∈S

X∗
i1j1

X∗
i2j2

X∗
i3j3

X∗
i4j4

X∗
rj1

X∗
rj2

X∗
rj3

X∗
rj4

ε4rεi1εi2εi3εi4g}

= Eg{
n∑

r=1

∑
i<r

∑
j1,j2,j3,j4∈S

X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
X∗

rj1
X∗

rj2
X∗

rj3
X∗

rj4
ε4rε

4
i g}

+ 6Eg{
n∑

r=1

∑
i1 ̸=i2<r

∑
j1,j2,j3,j4∈S

X∗
i1j1

X∗
i1j2

X∗
i2j3

X∗
i2j4

X∗
rj1

X∗
rj2

X∗
rj3

X∗
rj4

ε4rε
2
i1
ε2i2g}. (30)
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It is noteworthy that E(ε4i ) = (3 +∆)σ4. Then, by condition (C2.b), the first term on

the right-hand side of (30) is smaller than the following quantity:

{3 + ∆}2σ8

n∑
r=1

∑
i<r

∑
j1,j2,j3,j4∈S

{E(X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
)}2 = O(n2p2). (31)

By Cauchy’s inequality, we know that 2ε2i1ε
2
i2
≤ ε4i1 + ε4i2 ; this enables us to show that

the second term on the right-hand side of (30) is less than the quantity given below.

6{3 + ∆}2σ8

n∑
r=1

∑
i1 ̸=i2<r

∑
j1,j2,j3,j4∈S

σ∗
j1j2

σ∗
j3j4

E{X∗
ij1
X∗

ij2
X∗

ij3
X∗

ij4
} = O(n3p2), (32)

where the last equality above is due to (27) and (28). Equations (30), (31), and (32)

lead to
∑n

r=1E(∆4
n,r) = O(n−1p2). This, in conjunction with the fact that var(Π1) ≥

σ4pτ 2min, shows the second part of (25); the entire proof is complete.
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Table 1: Size of the bias-corrected test and the ZC-test for Example 3.1.
Normal Mixture

q q
n p 0 8 15 0 8 15

Bias-Corrected Test

100 200 0.066 0.041 0.045 0.062 0.059 0.057
500 0.059 0.041 0.036 0.067 0.052 0.039
1000 0.065 0.047 0.041 0.064 0.056 0.044

200 200 0.061 0.050 0.048 0.062 0.062 0.059
500 0.057 0.050 0.042 0.068 0.062 0.060
1000 0.053 0.052 0.055 0.065 0.056 0.051

ZC-Test

100 200 0.045 0.035 0.024 0.052 0.049 0.034
500 0.072 0.046 0.035 0.048 0.031 0.027
1000 0.060 0.046 0.031 0.051 0.030 0.022

200 200 0.049 0.049 0.049 0.049 0.042 0.038
500 0.060 0.054 0.044 0.046 0.046 0.040
1000 0.060 0.060 0.057 0.064 0.059 0.043

Table 2: Size of the bias-corrected test and the ZC-test for Example 3.2.
Normal Mixture

q q
n p 0 8 15 0 8 15

Bias-Corrected Test

100 200 0.062 0.054 0.038 0.071 0.050 0.039
500 0.070 0.045 0.035 0.072 0.047 0.042
1000 0.062 0.040 0.035 0.057 0.056 0.035

200 200 0.070 0.055 0.057 0.066 0.053 0.051
500 0.057 0.056 0.046 0.054 0.061 0.035
1000 0.052 0.062 0.044 0.062 0.049 0.046

ZC-Test

100 200 0.053 0.144 0.216 0.072 0.146 0.217
500 0.059 0.203 0.458 0.062 0.228 0.484
1000 0.063 0.356 0.762 0.041 0.321 0.743

200 200 0.070 0.096 0.134 0.063 0.084 0.149
500 0.056 0.116 0.208 0.048 0.129 0.199
1000 0.047 0.163 0.295 0.049 0.166 0.303
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Figure 1: Power of the bias-corrected test (BC-test) and the ZC-test for Example 3.1
under the normal setting with n = 100, p = 200 and q = 0.
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Figure 2: Power of the bias-corrected test (BC-test) for Example 3.2 under the normal
setting for both sparse alternative (S) and non-sparse alternative (N) with n = 100,
p = 200 and q = 0.
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