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Abstract

A number of biological systems can be modeled by Markov chains. Recently, there has
been an increasing concern about when biological systems modeled by Markov chains will
perform a dynamic phenomenon called overshoot. In this article, we found that the steady-
state behavior of the system will have a great effect on the occurrence of overshoot. We
showed that overshoot in general cannot occur in systems which will finally approach an
equilibrium steady state. We further classified overshoot into two types, named as simple
overshoot and oscillating overshoot. We showed that except for extreme cases, oscillating
overshoot will occur if the system is far from equilibrium. All these results clearly show
that overshoot is a nonequilibrium dynamic phenomenon with energy consumption. In ad-
dition, the main result in this article is validated with real experimental data.
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Introduction

Recent advances in single-cell and single-molecule experiments have shown that biological
systems in living cells are inherently stochastic [1–8]. It is widely observed that a number of
biological systems can transition stochastically among multiple states. These systems are of-
ten mathematically characterized by the stochastic model of Markov chains, or in the language
of physics, master equations. Typical examples of Markov chain systems include enzyme ki-
netics with the Michaelis-Menten mechanism [9] or the general modifier mechanism of Botts
and Morales [10], phosphorylation-dephosphorylation kinetics of proteins [11], conformational
changes of receptors [12], and stochastic state transitions of cell populations [13].

In recently years, scientists have become increasingly concerned about a kind of dynamic
phenomenon in biological systems which is known as overshoot or biochemical adaptation [14–
19]. Overshoot of a biological system refers to the dynamic phenomenon that the output, which
is usually the average of an observable, of the system varies with time in a non-monotonic way
and exceeds both its initial and steady-state values over a certain period of time. An intuitive
description of overshoot is depicted in Figure 1, where the output of the system first rises to a
peak and then declines to a lower plateau.

Overshoot is widely observed in numerous biological systems. Typical examples of over-
shoot include the chemotaxis of bacteria [20, 21], the osmotic sensing in yeast [22], the calcium
dose response of the inositol trisphosphate receptors [23, 24] and the ryanodine receptors [25–
27], and the hormone dose response of the hormone receptors [28]. Overshoot is an important
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Figure 1. Overshoot in biological systems. Overshoot refers to the dynamic phenomenon that the output
of the system varies with time in a non-monotonic way and exceeds both its initial and steady-state values
over a certain period of time.

biological function possessed by many living systems. It allows the system to detect environ-
mental changes more accurately, enables the system to respond to environmental fluctuations
more rapidly, and protects the system from irreversible damages caused by unfavorable condi-
tions.

To better understand how overshoot is achieved in biochemical feedback networks, several
research groups studied the relationship between overshoot and the network topology [16–18].
Tang and his coworkers [18] searched all possible three-node network topologies and found
that overshoot is most likely to occur in two types of networks: the negative feedback loop and
the incoherent feedforward loop. Tu and his coworkers [19] studied the stochastic dynamics
of the negative feedback loop in detail and found that the negative feedback mechanism breaks
detailed balance, and thus always operates out of equilibrium with energy dissipation. These
two works give us a hint that overshoot may tend to occur in biological systems which are far
from equilibrium. To avoid misinterpretation, we point out here that the word ‘equilibrium’
appearing in this article is referred to as the concept of equilibrium steady state in statistical
physics, where the steady state of a system is called equilibrium (nonequilibrium) if the detailed
balance condition is satisfied (broken).

In fact, the concept of overshoot has long been suggested and studied in control theory
[29, 30], electronics [31], and signal processing. In these disciplines, overshoot was studied
in various deterministic systems composed of several ordinary differential equations and some
overshoot conditions were provided. However, the traditional study of overshoot under the
framework of deterministic systems does not capture the physical essence of overshoot. Many
important topics about overshoot, such as its relation to the breakdown of detailed balance and
to energy dissipation, can only be clearly seen in stochastic systems. Up till now, there is still
a lack of a general analysis of overshoot, which captures its physical essence, in biological
systems which are inherently stochastic.

In this article, we presented a general analysis of overshoot in biological systems which can
be modeled by Markov chains with two, three, or multiple states. We found that the steady-state
behavior of the system will have a great effect on the occurrence of overshoot. We made it clear
that overshoot in general can not occur in systems which will finally approach an equilibrium
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steady state. This explains why overshoot can only be observed in systems with three or more
states and cannot be observed in systems with only two states. We further classified overshoot
into two types, named as simple overshoot and oscillating overshoot. We found that except
for extreme cases, oscillating overshoot will occur in systems far from equilibrium. All the
above results clearly show that overshoot is a nonequilibrium dynamic phenomenon and thus
sustained energy consumption is required for the system to perform this important biological
function. In addition, we used the experimental data of SUM159 human breast cancer cell line
to validate the main theoretical result in this article.

Model

In this article, we consider biological systems that can be mathematically modeled as
continuous-time Markov chains with multiple states. The characteristic property of the Markov
chain is that it retains no memory of where it has been in the past. This means that where the
system will go next only depends on its current state, but not depends on its prior states. We
assume that the Markov chain system can be found in N states, 1, 2, · · · , N , and thus the sys-
tem can transition stochastically among these states. The specific meaning of these states varies
from systems to systems. Each state can represent a binding state of an enzyme molecule [10], a
conformational state of a receptor molecule [14, 15, 25–27], a cellular state of a cell population
[13], and etc. We further assume that the system has an observable f . If the system is in state
i, the observation of the system will be fi. The output φ(t) of the system at time t is then the
weighted average of the observations of all states:

φ(t) =

N∑
i=1

pi(t)fi, (1)

where pi(t) is the probability of the system being in state i at time t.
We denote by πi the initial probability of state i, that is, the probability of the system

being in state i at time t = 0, and denote by µi the steady-state probability of state i, that is,
the probability of the system being in state i when time t is sufficiently large. Then φ(0) =∑N

i=1 πifi is the initial output of the system and φ(∞) =
∑N

i=1 µifi is the steady-state output
of the system. According to Figure 1, the system performs overshoot if and only if there exists
a time t such that φ(t) is larger than both φ(0) and φ(∞).

Next, we shall use three specific examples to help the readers understand the Markov chain
model discussed above.

Example 1. We consider the well-known Michaelis-Menten enzyme kinetics:

E + S
k−1

GGGGGGGBFGGGGGGG

k1
ES

k2
GGGGGGA E + P, (2)

where E is an enzyme involved in converting the substrate S into the product P . If there is
only one enzyme molecule, it may convert between two states: the free enzyme E and the
enzyme-substrate complex ES. Then from the perspective of a single enzyme molecule, the
Michaelis-Menten kinetics can be represented by the catalytic cycle illustrated in Figure 2(c).
We denote by E0 = [E] + [ES] the total enzyme concentration. Then pE(t) = [E]/E0 and
pES(t) = [ES]/E0 represent the probability of a single enzyme molecule being in state E and
state ES at time t, respectively.
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Figure 2. Markov chain systems with two, three, or multiple states. (a) Markov chain systems with
two states. (b) Markov chain systems with three states. (c-e) Examples of biological systems that can be
modeled by Markov chains. (c) The catalytic cycle of the Michaelis-Menten enzyme mechanism, where
E is the enzyme, S is the substrate, ES is the enzyme-substrate complex, and [S] is the concentration
of the substrate. (d) Cell-state dynamics of human breast cancer cells. An individual breast cancer cell
can transition stochastically among three differentiation states: stem-like (S), basal (B), and luminal
(L) states. The transition rates between states are estimated from the data set of the SUM 159 human
breast cancer cell line [13]. The transition rates are shown per cell division. (e) The Monod-Wyman-
Changeux (MWC) allosteric model which describes the conformational changes of receptors with n− 1
identical subunits. Each receptor can bind to an attractant (red symbol). If the attractant binding site
is occupied, all subunits will switch together from the inactivated configuration (blue square) to the
activated configuration (blue circle). In addition, each subunit can bind to a ligand (yellow symbol).
According to whether all subunits are activated or inactivated and the number of subunits which have
bound to the ligand, each receptor may convert among 2n possible states. The upper n states are activated
states and the lower n states are inactivated states.

Mathematically, the catalytic cycle illustrated in Figure 2(c) is nothing but a Markov chain
with two states. According to the law of mass action, the probability flux from state E to
state ES at time t is k1[S]pE(t), and the probability flux from state ES to state E at time t
is (k−1 + k2)pES(t), where we add k−1 and k2 since there are two ways of transition from
state ES to state E. Based on the expressions of the probability fluxes, we easily see that the
transition rate from state E to state ES is k1[S] and the transition rate from state ES to state
E is k−1 + k2. In the Michaelis-Menten enzyme system, the output φ(t) is often chosen as the
instantaneous rate of the product formation:

φ(t) =
d[P ]

dt
= k2[ES] = k2E0pES(t). (3)
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where the second equality is due to the law of mass action.

Example 2. Recent research shows that human breast cancer cells within individual tumors can
exist in three differentiation states that differ in functional attributes: stem-like (S), basal (B),
and luminal (L) states. An individual breast cancer cell can transition stochastically among
these three states. Mathematically, Lander and his coworkers [13] modeled the cell-state transi-
tions and dynamics in the breast cancer cell population as a three-state Markov chain depicted
in Figure 2(d). In the breast cancer cell system, the output φ(t) is often chosen as the proportion
of stem-like, basal, or luminal cells:

φ(t) = pi(t), i = S,B,L. (4)

Example 3. Structural studies show that receptors in living cells are often protein complexes
with multiple subunits. Mathematically, Monod, Wyman and Changeux modeled the allosteric
protein interactions in receptors as a Markov chain with multiple states. The Monod-Wyman-
Changeux (MWC) allosteric model assumes that each receptor consists of n− 1 identical sub-
units, each of which can switch between two configurations, an activated one and an inactivated
one. The MWC model further assumes that each receptor has an attractant binding site. Once
an attractant binds to the receptor, all subunits will switch together from being inactivated to be-
ing activated. In addition, the MWC model assumes that each subunit has a ligand binding site.
A ligand can bind to a subunit in either configuration, but the dissociation constants are differ-
ent. According to whether all subunits are activated or inactivated and the number of subunits
which have bound to the ligand, the conformational changes of each receptor can be modeled
as a Markov chain with 2n states. The transition diagram of the MWC model when n = 5 is
depicted in Figure 2(e), where each blue square represents an inactivated subunit and each blue
circle represents an activated subunit. Thus the upper n states in Figure 2(e) are activated states
and the lower n states are inactivated states. In the MWC model, the output φ(t) is often chosen
as the average activity, that is, the sum of probabilities of those activated states:

φ(t) =

n∑
i=1

pi(t). (5)

Results

General analysis and overshoot in two-state systems

We now use the theory of Markov chains to present a general analysis of overshoot. We
know that the dynamics of the probability distribution p(t) = (p1(t), · · · , pN (t)) of the Markov
chain system is governed by the master equation of the matrix form:

dp(t)

dt
= p(t)Q, (6)

where Q = (qij)N×N is the transition rate matrix of the Markov chain system and qij is the
transition rate from state i to state j. We assume without loss of generality that the transition
rate matrix Q has N linear independent eigenvectors since any matrix can be approximated by
a matrix satisfying this condition with arbitrarily high accuracy. Under this assumption, the
output φ(t) of the system is nothing but a linear combination of exponential functions

φ(t) = p(t)fT = p(0)etQfT =

N∑
i=1

cie
λit, (7)
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where f = (f1, · · · , fN ) is a vector whose components are the observations of all states,
λ1, · · · , λN are all eigenvalues of the transition rate matrix Q, and c1, · · · , cN are N con-
stants. The well-known Perron-Frobenius theorem [32] in matrix theory claims that one of the
eigenvalues of the transition rate matrix Q must be 0 and the real parts of other eigenvalues are
all negative. In the following discussion, we always assume that λ1 = 0. Thus the output φ(t)

of the system can be rewritten that

φ(t) = c1 +

N∑
i=2

cie
λit. (8)

We easily see that ci is real if λi is real, and ci and cj are conjugate complex numbers if λi and
λj are conjugate complex numbers.

An interesting phenomenon widely observed in experiments is that overshoot cannot be
observed in Markov chain systems with only two states and can be observed in Markov chain
systems with three or more states [33]. We now use the previous analysis to explain this phe-
nomenon. According to Equation (8), the output of a two-state system depicted in Figure 2(a)
is given by

φ(t) = c1 + c2e
λ2t, (9)

which is obviously a monotonic function since λ2 must be a real number. This suggests that a
Markov chain system with only two states will never perform overshoot.

Equilibrium and nonequilibrium systems

We have seen from previous discussions that Markov chain systems with only two states
will never perform overshoot and overshoot can only occur in systems with three or more states.
This raises a natural question of what is the essential difference between systems with two states
and systems with three or more states.

We notice that there is an apparent difference between systems with two states and sys-
tems with three or more states. A two-state system is always an equilibrium system which will
finally approach an equilibrium steady state, whereas a system with three or more states may
be a nonequilibrium system which will finally approach a nonequilibrium steady state [34–36].
Here, we have used the concepts of equilibrium and nonequilibrium steady states in nonequi-
librium statistical physics, where the steady state of a system is called equilibrium if each pair
of states i and j of the system satisfies the detailed balance condition

µiqij = µjqji, (10)

(otherwise, the steady state of the system is called non-equilibrium), where µi is the steady-
state probability of state i and qij is the transition rate from state i to state j. In the following
discussion, a system which will finally approach an equilibrium (nonequilibrium) steady state
is referred to as an equilibrium (nonequilibrium) system. From the point of view of statistical
mechanics, an equilibrium system in the steady state is microscopic reversible and does not
consume energy, whereas a nonequilibrium system in the steady state is microscopic irreversible
and always consumes energy.

Mathematically, whether a system is a nonequilibrium system or not is linked to the net
flux the system [34]. To make the readers understand the concept of the net flux, we now limit
our discussion to three-state systems depicted in Figure 2(b). In a three-state system, we denote
by c the cycle 1→ 2→ 3→ 1 and denote by c− the reverse cycle 1→ 3→ 2→ 1. Let wc(t)
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denote the number of cycle c formed by the system up to time t. Then the flux wc of cycle c is
defined to be

wc = lim
t→∞

wc(t)

t
. (11)

We clearly see that the flux wc of cycle c represents the number of the forming of cycle c per
unit time. Similarly, we can define the flux wc− for the reverse cycle c−. The net flux J of a
three-state system is then defined to be J = wc − wc−, which represents the net number of the
forming of cycle c per unit time.

Interestingly, the net flux J of a three-state system can be represented by the steady-state
probabilities and the transition rates as

J = µ1q12 − µ2q21 = µ2q23 − µ3q32 = µ3q31 − µ1q13. (12)

This relation is a special case of the well-known circulation decomposition theorem [34] in the
Markov chain theory. From Equation (10) and Equation (12), we easily see that a three-state
system is a nonequilibrium system if and only if the net flux J fails to be zero. This shows that
the net flux J characterizes how far the system is away from equilibrium. Generally speaking,
equilibrium systems in the steady state do not consume energy, whereas nonequilibrium systems
always consume energy to maintain nonzero net fluxes.

Finally, we state a simple but important fact about equilibrium systems which will be fre-
quently used in following discussions. In an equilibrium system, one eigenvalue of the transition
rate matrix Q must be zero and all other eigenvalues must be negative real numbers. In other
words, the eigenvalues λ1 · · · , λN of the transition rate matrixQ of an equilibrium system must
satisfy

λ1 = 0, λ2, · · · , λN < 0. (13)

Simple overshoot

We have seen from previous discussions that systems with only two states will always
approach an equilibrium steady state and will never perform overshoot. However, the situation
is totally different in systems with three states. According to Equation (8), the output φ(t) of a
three-state system has the general form of

φ(t) = c1 + c2e
λ2t + c3e

λ3t. (14)

If λ2 and λ3 are negative real numbers and the signs of c2 and c3 are not the same, then φ(t) may
not be a monotonic function and the system may perform overshoot. This type of overshoot is
named as simple overshoot (Figure 3(a)).

To gain a deeper insight into simple overshoot, we consider three-state systems depicted in
Figure 2(b) starting from state 1 whose transition rate matrix has three real eigenvalues satisfy-
ing λ1 = 0 and λ2, λ3 < 0. To simplify notations, we make an additional assumption that the
transition rates of the system satisfy q21 = q31. We impose this condition onto the system for
two reasons. First, this assumption enures that the transition rate matrix has three real eigen-
values. Second, this assumption reduces the complexities of calculations and formulations to
a remarkable extent. Under this assumption, the three eigenvalues of the transition rate matrix
have explicit expressions of λ1 = 0, λ2 = −(q12 + q13 + q21), and λ3 = −(q23 + q32 + q21).
Furthermore, the output φ(t) of the system can be explicitly calculated as

φ(t) = α1 + α2e
λ2t + Jα3e

λ3t, (15)
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where J is the net flux of the system, and α1, α2, α3 are three constants with the following
expressions:

α1 = −q21λ3f1 + (q12q31 + q12q32 + q32q13)f2 + (q12q23 + q13q23 + q21q31)f3
λ2λ3

, (16)

α2 =
(q12 + q13)[(q12 − q32)(f1 − f2) + (q13 − q23)(f1 − f3)]

λ2(λ2 − λ3)
, (17)

α3 =
λ2(f2 − f3)
q21(λ2 − λ3)

. (18)

We are now in the position to consider when overshoot will occur in an equilibrium three-
state system. We recall that a three-state system is an equilibrium system if and only if the net
flux J is zero. According to Equation (15), the output of an equilibrium three-state system can
be simplified as

φ(t) = c1 + c2e
λ2t, (19)

which is obviously a monotonic function since λ2 is a real number. This shows that under mild
conditions, an equilibrium system with three states will never perform overshoot.

Oscillating overshoot

We have seen from previous discussions that a three-state system may perform simple over-
shoot if λ2 and λ3 are negative real numbers. However, more interesting is the case when λ2
and λ3 are conjugate complex numbers. If we denote them by λ2 = λ + ωi and λ3 = λ − ωi,
then the output φ(t) of the system can be rewritten as

φ(t) = c1 + 2|c2|eλt cos(ωt+ ϕ), (20)

where λ is a negative real number and ϕ is the argument of c2. This expression clearly shows
that after the output rises to a peak and returns toward its initial value, it may rise and decline
again to form a damped oscillation. This type of overshoot is named as oscillating overshoot
(Figure 3(a)).
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Figure 3. Overshoot in Markov chain systems with three states. (a) Simple overshoot and oscillating
overshoot in three-state systems. If λ2 and λ3 are negative real numbers, then the system may perform
simple overshoot. If λ2 and λ3 are conjugate complex numbers, then the system will perform oscillating
overshoot. (b) Overshoot in the SUM 159 human breast cancer cell line. The proportion of luminal
cells experiences a transient increase after isolation of stem-like cells followed by a slow decrease to its
steady-state value.
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Next, we shall present a detailed discussion of oscillating overshoot in equilibrium and
nonequilibrium three-state systems. According to Equation (13), the eigenvalues of the transi-
tion rate matrix of an equilibrium system are all real numbers. This shows that λ2 and λ3 cannot
be conjugate complex numbers and thus oscillating overshoot will never occur in equilibrium
three-state systems.

The situation is totally different if we consider three-state systems which will finally ap-
proach a steady state far from equilibrium. In other words, we consider a three-state system
with a sufficiently large net flux J , since the net flux characterizes how far the system is away
from equilibrium. We have seen that a three-state system will perform oscillating overshoot if
the transition rate matrix has a pair of conjugate complex eigenvalues. What we need to do next
is to study when the transition rate matrix has a pair of conjugate complex eigenvalues when
the net flux J is sufficiently large.

To this end, let j1 = µ1q12, j2 = µ2q23, and j3 = µ3q31 be the clockwise probability fluxes
of the system. According to Equation (12), the transition rate matrix Q can be represented by
µ1, µ2, µ3, j1, j2, j3, and J as

Q =

−
j3+j1+J

µ1

j1
µ1

j3+J
µ1

j1+J
µ2

− j1+j2+J
µ2

j2
µ2

j3
µ3

j2+J
µ3

− j2+j3+J
µ3

 . (21)

Let pQ(λ) = det(λI − Q) be the characteristic polynomial of the transition rate matrix Q.
Straightforward calculations show that

pQ(λ) =
1

µ1µ2µ3
λ(µ1µ2µ3λ

2 +Aλ+B), (22)

where

A = (µ1µ2 + µ2µ3 + µ3µ1)J + (µ1µ2(j2 + j3) + µ2µ3(j3 + j1) + µ3µ1(j1 + j2)), (23)

and
B = J2 + (j1 + j2 + j3)J + (j1j2 + j2j3 + j3j1). (24)

We know from elementary algebra that the transition rate matrix Q has a pair of conjugate
complex eigenvalues if and only if the discriminant ∆ = A2 − 4µ1µ2µ3B < 0. We easily
calculate that

∆ = δJ2 + αJ + β, (25)

where
δ = (µ1µ2 + µ2µ3 + µ3µ1)

2 − 4µ1µ2µ3. (26)

From Equation (25), we make a crucial observation that when the net flux J is sufficiently
large, the transition rate matrix Q has a pair of conjugate complex eigenvalues if and only if δ
is negative.

The remaining question is to answer when δ is negative. We can prove that δ is a quantity
satisfying

− 1

27
≤ δ ≤ 1

16
. (27)

We can further prove that δ attains its minimum of δmin = −1/27 when µ1 = µ2 = µ3 = 1/3,
and attains its maximum of δmax = 1/16 when µ1 = µ2 = 1/2 and µ3 = 0. This clearly shows
that the more uniform the three steady-state probabilities, µ1, µ2, and µ3, the smaller the value
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of δ. Thus except for the extreme case that the three steady-state probabilities are extremely
scattered, δ is always negative and the system will perform oscillating overshoot when the net
flux J is sufficiently large. This suggests that oscillating overshoot in general will occur in
systems far from equilibrium.

Overshoot in systems with multiple states

In previous discussions, we are mainly concerned about when overshoot will occur in sys-
tems with two or three states. We have seen that a two-state system and an equilibrium three-
state system in general cannot perform overshoot. This shows that overshoot is a nonequilibri-
um dynamic phenomenon in systems with two or three states. This raises a natural question of
whether we can obtain the same conclusion in systems with multiple states.

We point out that if a Markov chain system has more than three states, the mathematical
complexity will become so high that it is almost impossible to present a complete discussion of
overshoot. Thus in this section, we only focus on an important class of multiple-state systems,
namely, the Monod-Wyman-Changeux (MWC) allosteric model depicted in Figure 2(e), which
is widely used in modeling the conformational changes of receptors in living cells.

We see from Figure 2(e) that some transition rates of the MWC model are regulated by the
attractant concentration I , which is the input of the system. Let Ii and If be two input levels
with 0 ≤ Ii < If . In experiments, we are always concerned about whether the system will
perform overshoot in response to a step increase of the input from Ii to If . Interestingly, we can
prove that if the MWC model is an equilibrium system, then it will never perform overshoot
no matter what Ii and If are chosen. For a proof of this result, please see Methods. This
result clearly shows that an equilibrium system with multiple states in general cannot perform
overshoot.

All the results in the above sections indicate that overshoot, whether in systems with two,
three, or multiple states, is a nonequilibrium dynamic phenomenon, and thus sustained energy
consumption is required for living systems to perform this important biological function.

Validation of main results with experimental data

As mentioned in previous discussions, human breast cancer cells within individual tumors
can transition stochastically among three differentiation states: stem-like (S), basal (B), and
luminal (L) states. Mathematically, the cell-state transitions and dynamics in the breast cancer
cell population can be modeled as a three-state Markov chain depicted in Figure 2(d). To
validate our theoretical results with real experimental data, we shall use the data set of the
SUM159 human breast cancer cell line from recent published work [13] to study overshoot in
the breast cancer cell system depicted in Figure 2(d).

From the experimental data, we estimate the transition rates between any pair of differenti-
ation states of the breast cancer cell system, as illustrated in Figure 2(d). For more details on the
data usage and calculation, please see Methods. The output φ(t) of the breast cancer cell system
is chosen to be the proportion of stem-like, basal, or luminal cells: φ(t) = pi(t), i = S,B,L.
Lander and his coworkers found that if the stem-like cells are isolated at a particular time, then
the breast cancer cell system will perform overshoot [13]. To see this, we depict the time course
of the proportions of stem-like, basal, and luminal cells in Figure 3(b), from which we see
that the proportion of the luminal cells experiences a transient increase after isolation of the
stem-like cells followed by a slow decrease to its steady-state value.
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In order to see whether overshoot in the breast cancer cell system is a nonequilibrium
dynamic phenomenon, we need to calculate the net flux of the system. From the experimental
data, the net flux of the breast cancer cell system is estimated as J = −0.0028 (see Methods),
which fails to be zero. This shows that overshoot in the SUM159 human breast cancer cell line
is indeed a nonequilibrium dynamic phenomenon, which is consistent with the main theoretical
result in this article.

Discussion

Living systems are highly dissipative, exchanging materials and energy with their envi-
ronments and consuming energy to carry out various important biological functions. If the
exchange with the environment is sustained, then the living system always approaches a steady
state far from equilibrium. Recent studies show that many important biological phenomena,
such as coherence resonance in excitable systems [35], unidirectional movement of molecular
motors [37], and switching behavior of the general modifier mechanism of Botts and morales
[10], fail to occur in systems which will finally approach an equilibrium steady state. This
suggests that sustained energy consumption is required for living systems to perform these im-
portant biological functions.

In this article, we presented a general discussion of the dynamic phenomenon of overshoot
in biological systems modeled by Markov chains (master equations). We found that the steady-
state behavior of the system will have a great effect on the occurrence of overshoot. We made it
clear that overshoot in general can not occur in systems which will finally approach an equilib-
rium steady state. We validated this result by showing that a two-state system, an equilibrium
three-state system, and an equilibrium MWC model will never perform overshoot. We further
classified overshoot into two types, named as simple overshoot and oscillating overshoot. We
found that oscillating overshoot in general will occur in systems far from equilibrium. All the
above results clearly show that overshoot is a nonequilibrium dynamic phenomenon and thus
sustained energy consumption is required for the system to perform this important biological
function.

Further analysis is expected for deeper insights into the physical mechanisms of overshoot
in biological systems.

Methods

Overshoot in the equilibrium MWC model

In this section, we shall prove that an equilibrium MWC model cannot perform overshoot.
Readers who are not interested in the mathematical derivation can skip this part.

We note that when the input level is elevated from Ii to If , the system is driven from one
steady state to another steady state. Let Qi and Qf = (qij)2n×2n be the transition rate matrices
of the MWC model under input levels Ii and If , respectively. Let π = (π1 · · · , π2n) denote the
initial distribution of the system and let µ = (µ1 · · · , µ2n) denote the final distribution of the
system. Then π and µ are respectively the steady-state distributions of the system under input
levels Ii and If .

We know from Equation (13) that the eigenvalues λ1, · · · , λ2n of the transition rate ma-
trix Qf of an equilibrium MWC model satisfy λ1 = 0 and λ2, · · · , λ2n < 0. Let M =
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diag(µ1, · · · , µ2n) be a diagonal matrix whose diagonal elements are µ1, · · · , µ2n, respective-
ly. The detailed balance condition µiqij = µjqji indicates that the matrix

S = M
1

2QfM
− 1

2 =

(√
µiqij
√
µj

)
2n×2n

(28)

is a symmetric matrix whose eigenvalues are λ1, · · · , λ2n. According to the theory of linear al-
gebra, there exists an orthogonal matrix R = (rij)2n×2n, such that RSRT is a diagonal matrix
D = diag(λ1, · · · , λ2n). This shows that the 2n rows of the orthogonal matrixR are respective-
ly the 2n unit eigenvectors of the symmetric matrix S. We easily see that the unit eigenvector
of S corresponding to the eigenvalue λ1 = 0 is (

√
µ1, · · · ,

√
µ2n). Thus the orthogonality of

the matrix R leads to
2n∑
k=1

√
µkrmk = 0, m = 2, · · · , 2n. (29)

According to previous discussions, the probability pi(t) of state i at time t can be calculated as

pi(t) = [πetQf ]i = [πM−
1

2R−1etDRM
1

2 ]i =

2n∑
m=1

(
√
µirmi

2n∑
k=1

πk√
µk
rmk

)
e−λmt. (30)

Thus the output φ(t) of the equilibrium MWC model is

φ(t) =

n∑
i=1

pi(t) =

2n∑
m=1

αme
−λmt. (31)

where

αm =

(
n∑
i=1

√
µirmi

)(
2n∑
k=1

πk√
µk
rmk

)
. (32)

Note that π and µ are respectively the steady-state distributions of the system under input
levels Ii and If . According to the detailed balance condition, we easily see that there exists a
constant c > 0, such that

πk = c
Ii
If
µk, k = 1, · · · , n

πk = cµk, k = n+ 1, · · · , 2n.
(33)

This relation and the orthogonality relation (29) suggest that for m = 2, · · · , 2n,

αm = c

(
n∑
i=1

√
µirmi

)(
Ii
If

n∑
k=1

√
µkrmk +

2n∑
k=n+1

√
µkrmk

)

= c

(
Ii
If
− 1

)( n∑
i=1

√
µirmi

)2

≤ 0

(34)

Since λ1 = 0 and αm ≤ 0 for m = 2, · · · , 2n, the output φ(t) of the system is a weighted
sum of 2n−1 exponential functions with negative powers and nonpositive weights. This shows
that φ(t) must be a monotonic function. Thus an equilibrium MWC model can never perform
overshoot.

12



Estimation of the transition rates of the breast cancer cell system

In this section, we shall use the data set of the SUM159 human breast cancer cell line from
recent published work [13] to estimate the transition rates between any pair of differentiation
states of the breast cancer cell system. The data set includes the time-course measurements of
the differentiation states of all cells in the breast cancer cell system per cell division. According
to the time-course data collected after in vitro culture of 6 days, the transition probabilities
per cell division between any pair of differentiation states can be estimated as pSS = 0.58,
pSB = 0.35, pSL = 0.07, pBS = 0.01, pBB = 0.99, pBL = 0.00, pLS = 0.04, pLB = 0.49,
and pLL = 0.47.

We denote by P the transition probability matrix per cell division whose component pij
represents the transition probability from state i to state j per cell division. Mathematically, the
transition rate matrix Q of the breast cancer cell system and the transition probability matrix P
per cell division is related by

P = exp(Q) =

∞∑
n=0

Qn

n!
. (35)

The remaining question is to estimate Q from P , which is a complicated mathematical problem
called the embedding problem of Markov chains. Readers who are interested in how to estimate
Q from P may refer to [38]. Using the method provided in [38], we can estimate the transition
rates between any pair of differentiation states of the breast cancer cell system, as illustrated in
Figure 2(d).

According to the transition rates, the steady-state probabilities of the three differentiation
states can be estimated as µS = 0.023, µB = 0.971, and µL = 0.005. Combining the steady-
state probabilities and the transition rates, the net flux of the breast cancer cell system can be
estimated as J = µSqSB − µBqBS = µBqBL − µLqLB = µLqLS − µSqSL = −0.0028.
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