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Abstract

Spatial autocorrelation is a parameter of importance for network data analysis. To estimate
spatial autocorrelation, maximum likelihood has been popularly used. However, its rigorous
implementation requires the whole network to be observed. This is practically infeasible if net-
work size is huge (e.g., Facebook, Twitter, Weibo, WeChat, etc). In that case, one has to rely
on sampled network data to infer about spatial autocorrelation. By doing so, network relation-
ships (i.e., edges) involving unsampled nodes are overlooked. This leads to distorted network
structure and underestimated spatial autocorrelation. To solve the problem, we propose here
a novel solution. By temporarily assuming that the spatial autocorrelation is small, we are
able to approximate the likelihood function by its first order Taylor’s expansion. This leads
to the method of approximate maximum likelihood estimator (AMLE), which further inspires
the development of paired maximum likelihood estimator (PMLE). Compared with AMLE,
PMLE is computationally superior and thus is particularly useful for large scale network data
analysis. Under appropriate regularity conditions (without assuming a small spatial autocorre-
lation), we show theoretically that PMLE is consistent and asymptotically normal. Numerical
studies based on both simulated and real datasets are presented for illustration purpose.

KEY WORDS: Approximate Maximum Likelihood Estimator; Network Data Analysis; Paired
Maximum Likelihood Estimator; Spatial Autocorrelation;
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1. INTRODUCTION

In the past few decades, there has been a surge of interest in analysis of network data. This is

witnessed by a number of published book volumes including, for example, Scott (1992), Wasser-

man and Faust (1994), Cohendet et al. (1998), LeSage and Pace (2009), and research papers such

as Case (1991), Brock and Durlauf (2001), Calvó-Armengol et al. (2009), Lee et al. (2013) among

others. Social network analysis has produced a set of methods to analyze social structure. Prac-

titioners are particularly interested in spatial autocorrelation, which plays an important role in

characterizing spatial correlation between different nodes. Once spatial autocorrelation is esti-

mated and the network structure is fixed, one can predict a node’s behavior by inferring about its

friends. This allows practitioners to (for example) evaluate an applicant’s credibility by the credit

history of its connected network friends. This makes fast, accurate, and large scale online credit

scoring practically feasible. See also Lee et al. (2013) and Bronnenberg and Mahajan (2001) for

some other interesting economics and marketing applications. To estimate spatial autocorrelation,

a spatial autoregression model has been proposed and the method of maximum likelihood has been

popularly used (Ord, 1975; Anselin, 1980; Lee et al., 2013).

Despite its popularity, the practical implementation of the spatial autoregression model and the

corresponding maximum likelihood estimation are problematic. The main problem is that the pop-

ularly used spatial autoregression model is assumed for the network of the entire population, while

statistical analysis is conducted based on sampled data. Inevitably, social interactions generated

between the sampled and unsampled units are ignored. To fix the problem, one might want to

assume that the whole network data is available. Unfortunately, this is seldom true in real world.

Consider for example, the Facebook contains more than 700 million active users. Except the Face-

book itself, nobody else can depict the entire network structure easily. Even for the Facebook,

computing the whole network data for every research project is not wise, because the cost is to

be significant. As a popular remedy, one might want to collect a sample with a practical size.
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Subsequently, it is assumed that the intended network model holds for the sampled data. This is

also problematic, because the autocorrelation between the sampled and unsampled units are over-

looked. As a consequence, the true spatial autocorrelation would be underestimated, if the method

of maximum likelihood is incorrectly applied (Chen et al., 2013). Then, how to conduct a cor-

rect maximum likelihood estimation for spatial autocorrelation based on sampled network data

becomes a problem of interest.

Following Chen et al. (2013) and Lee et al. (2013), we assume a normal disturbance. This

enables us to rigorously spell out the marginal likelihood function for the sampled data. Unfortu-

nately, the resulting likelihood function involves both the observed and unobserved social network

structure, which cannot be practically optimized. To solve the problem, we propose a novel solu-

tion. To fix the idea, we temporarily assume that the spatial autocorrelation is small. As a result, we

are able to approximate the actual log likelihood function by its first order Taylor’s expansion with

respect to spatial autocorrelation. Surprisingly, we find that the resulting approximation involves

mainly the observed network structure and the degree (i.e., the number of followers or followees)

of each unit. Fortunately, degree numbers are summarized for each unit by most popular social

network websites. See for example Facebook, Twitter, Sina Weibo, and others. Thus, they can be

easily obtained, and the approximated log likelihood function can be practically optimized. This

leads to an approximate maximum likelihood estimator (AMLE). Unreported numerical studies

demonstrate that the AMLE is consistent and asymptotically normal when spatial autocorrelation

is reasonably small.

Despite its theoretical attractiveness, AMLE is not cheap computationally. Letn be the sample

size. The computation of AMLE involves an× n matrix, whose determinant needs to be evaluated

and thus results in expensive computation. As a result, AMLE cannot be our final solution for

large scale network data analysis. Instead, it can only serve as an intermediate step. However,

this intermediate step inspires the following novel solution. Specifically, for a total ofn sampled
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units, we form them into different pairs and each pair contains two different nodes, denoted byi

and j. This leads to a total ofn(n− 1)/2 pairs. By treating{i, j} as a small sample and following

the idea of AMLE, the first order approximation of their log likelihood function can be obtained.

Interestingly, we find that the resulting objective function is free of spatial autocorrelation, unless

the two samplesi and j are connected with each other, by either one or two edges. This suggests

that the disconnected pairs should carry little information about spatial autocorrelation and can be

ignored for parameter estimation. The consequence is that a tremendous amount of computation

can be saved, because the dominating portion of the paired samples are disconnected. We sum the

approximated log likelihood functions over all the connected pairs and then maximize the sum-

mation with respect to spatial autocorrelation. The resulting estimator enjoys an elegant analytical

solution and is referred to as a paired maximum likelihood estimator (PMLE).

Even though PMLE is inspired by the idea of AMLE under the temporary assumption that

the spatial autocorrelation is small, the consistency and asymptotic normality of PMLE can be

rigorously established without such a stringent assumption. Instead, we make use of the fact that

most large scale social networks are extremely sparse, so that two sampled nodes can hardly be

indirectly connected through unobserved social networks. Under this assumption, we show theo-

retically that PMLE is
√

n-consistent and asymptotically normal. Compared with AMLE, PMLE

is computationally superior. Specifically, the computational complexity of PMLE is linear in the

number of observed edges. This makes PMLE particularly attractive for big data analysis and thus

can serve as our final solution.

To summarize, we provide in this work the following important contributions to the literature.

Chen et al. (2013) documented solid numerical evidence, which shows that spatial autocorrelation

can be seriously underestimated, if the method of maximum likelihood is incorrectly applied on

sampled network data. However, how to conduct a correct maximum likelihood estimation is less

well understood. We then fill the theoretical gap by the method of PMLE with well developed
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asymptotic theories. This is our first important contribution. Second, do big data have to call

for big computation? We argue that this is not always necessary. We believe that big data call

for smart computation! This is because for most big data applications the sample size is huge.

However, the computational resources available to most researchers and practitioners are limited.

It is then of great interest to develop novel method, which is efficient not only statistically but also

computationally. This is the spirit of smart computation for big data analysis, and leads to the

development of PMLE for network data analysis, which is probably one of the most typical and

important types of big data analysis. Then, the spirit of “big data but smart computation” is our

second important contribution.

The rest of the paper is organized as follows. Section 2 presents the model setup and the

approximate likelihood theory. This leads to the method of AMLE, which further inspires the

PMLE method, whose asymptotic theory is rigorously established. To demonstrate its finite sample

performances, numerical studies based on both simulated and real datasets are conducted in Section

3. Lastly, the article is concluded with a short discussion in Section 4. All technical details are left

to the Appendix.

2. THE METHODOLOGY

2.1. Model Setup

We consider a large network withN nodes. Its structure is captured by a network adjacency

matrix A = (ai j ) ∈ RN×N, whereai j = 1 if the nodei follows the nodej andai j = 0 otherwise. For

eachi, we observe a continuous responseYi. Due to the existence of spatial autocorrelation, the

responses of those connected nodes are expected to be correlated with each other. To model such

an interactive dependence structure, the following spatial autoregression model has been popularly
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used (Ord, 1975; Anselin, 1980; Bronnenberg and Mahajan, 2001; Lee et al., 2013).

Y = ρWY + ε, (2.1)

whereρ ∈ R1 is referred to as spatial autoregression parameter (Banerjee et al., 2004),Y =

(Y1, ∙ ∙ ∙ ,YN)> ∈ RN is the response vector,W = (wi j ) ∈ RN×N with wi j = ai j/di anddi =
∑N

j=1 ai j

is the normalized adjacency matrix, andε = (ε1, ∙ ∙ ∙ , εN)> ∈ RN is the residual vector with mean 0

and covarianceσ2I ∈ RN×N. HereI stands for aN × N identity matrix.

By (2.1), we know thatY = (I − ρW)−1ε, provided thatI − ρW is invertible. According to

Banerjee et al. (2004), we know that the largest singular value ofW is 1. As a result, in order to

ensure the invertibility of (I − ρW) for an arbitraryW matrix, we must require|ρ| < 1. Otherwise,

there always exits a possibility to find aW matrix such that (I − ρW) is singular. We thus follow

Banerjee et al. (2004) and assume|ρ| < 1 throughout the rest of this article. This implies thatY

follows a normal distribution with mean 0 and covariance

Σ = (σi j ) = σ
2(I − ρW)−1(I − ρW>)−1. (2.2)

ObtainingY andW need to have the whole network observed, which is practically infeasible in

most cases. Instead, one can draw a random sample of sizen from SF = {1,2, ∙ ∙ ∙ ,N}. Without

loss of generality, we assume that the firstn nodes are randomly selected fromSF and are collected

byS = {1,2, ∙ ∙ ∙ ,n}. Accordingly, the observed response vector isY1 = (Y1, ∙ ∙ ∙ ,Yn)> ∈ Rn and the

observed network adjacency matrix isA11 = (ai j : 1 ≤ i, j ≤ n) ∈ Rn×n. As we mentioned before,

we also assume that the degree number of each node is observed, that isD1 = (di : 1 ≤ i ≤ n) ∈ Rn.

Accordingly, the normalized adjacency matrixW11 = (wi j : 1 ≤ i, j ≤ n) ∈ Rn×n is observed.

DefineY2 = (Yn+1, ∙ ∙ ∙ ,YN)> ∈ RN−n, which collects the responses from those unsampled nodes.

Thus,Y = (Y>1 ,Y
>
2 )> ∈ RN. The matrixA is partitioned accordingly asA = (A11,A12; A21,A22).

Similarly, W and I can be partitioned asW = (W11,W12; W21,W22) and I = (I11,O12; O21, I22).
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Subsequently, we need to estimate the unknown parameterρ based on observed responseY1 and

observed network structureW11. It is noted thatY1, A11, andW11 are observed. In contrast,Y2,

A12, A21, A22, W12, W21, andW22 are not.

As pointed out by Wall (2004), the interpretation aboutρ is not immediately straightforward.

By (2.2) we know that the actual spatial covariance (i.e.,σi j ) depends on bothρ andW. As a result,

ρ cannot be easily interpreted unless the network structureW is fixed. This immediately suggests

that comparingρ across different networks is not desirable. With a fixedW and assuming|ρ| < 1,

the following Taylor’s expansion can be justified

Σ = (σi j ) = σ
2
( ∞∑

k=0

ρkWk
){ ∞∑

k=0

ρk(W>)k
}
= σ2

∞∑

m=0

ρm
{ k1,k2≥0∑

k1+k2=m

Wk1(W>)k2
}
.

Note that all the components involved inW (and alsoW>) are nonnegative. This suggests thatσi j

(for two arbitrary nodesi , j) should be a monotonically increasing function inρ, if the network

structureW is fixed andρ is nonnegative. Consequently,ρ can be more precisely interpreted if the

following three conditions are satisfied simultaneously. They are, respectively, (1) nonnegativeρ

value, (2) a fixed network structureW, and (3) a given node pair (i, j). Under these three conditions,

larger size inρ does lead to larger spatial covariance. Otherwise, the interpretation could be much

more complicated. See for example Figure 5 on page 320 (Wall, 2004) for some counterintuitive

but illuminating discussion.

2.2. Approximate Maximum Likelihood

By model (2.1) and (2.2), we can defineΩ = Σ−1 = σ−2(I−ρW>)(I−ρW) = σ−2(Ω11,Ω12;Ω21,Ω22),
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where

Ω11 = I11− ρ(W11 + W>
11) + ρ

2(W11W
>
11 + W21W

>
21),

Ω12 = −ρ(W>
21 + W12) + ρ

2(W12W
>
11 + W22W

>
21),

Ω21 = −ρ(W21 + W>
12) + ρ

2(W11W
>
12 + W21W

>
22),

Ω22 = I22− ρ(W22 + W>
22) + ρ

2(W12W
>
12 + W22W

>
22).

Note that cov(Y1) = Σ11, which is the firstn × n diagonal block matrix ofΣ. We then have

Σ−1
11 = σ−2(Ω11−Ω12Ω

−1
22Ω21). Unfortunately,Σ11 is not practically computable, because it involves

Ω22, which is an unobserved and huge sized matrix with dimensionN−n. In the meanwhile,Σ−1
11 is a

function ofρ. Under the model assumption|ρ| < 1, one can verify thatΣ−1
11 has a Taylor’s expansion

asΣ−1
11 =

∑∞
k=0 ρ

kΣ
(k)
11 ≈

∑K
k=0 ρ

kΣ
(k)
11, whereK is some pre-specified approximation order andΣ

(k)
11

is some matrix-valued derivative. Obviously, largerK leads to better approximation. However, it

also calls for substantially increased sampling efforts. Thus, practically it is appealing to consider

K = 1 as follows.

σ2Σ−1
11 = Ω11− Ω12Ω

−1
22Ω21

= I11− ρ(W11 + W>
11) + ρ

2(W11W
>
11 + W21W

>
21)

−ρ2
{
(W>

21 + W12) + ρ(W12W
>
11 + W22W

>
21)

}
Ω−1

22

{
(W21 + W>

12) + ρ(W11W
>
12 + W21W

>
22)

}

= I11− ρ(W11 + W>
11) + ρ

2(W11W
>
11 + W21W

>
21)

−ρ2(W>
21W21 + W>

21W
>
12 + W12W21 + W12W

>
12) +

∑

k>2

ρkΣ
(k)
11,

where the last equality is due to the fact thatΩ22 ≈ I22. Accordingly, we know thatΣ(1)
11 = (W11 +
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W>
11). This leads to the following first order approximation

σ2Σ−1
11 ≈ I11− ρ(W11 + W>

11). (2.3)

Note that the expression (2.3) is indeed the first order approximation of the sub-matrix of

σ2Σ−1 corresponding toY1. Surprisingly, we find that onlyW11 is involved in this approximation

(2.3) while other network structures (e.g.,W12, W21, andW22) are not. This implies that the first

order approximation ofΣ−1
11 with respect toρ is practically computable, even thoughΣ−1

11 itself is

not. Accordingly, the corresponding approximation (after negative two-times log transformation)

should be computable. It is given by

log
∣∣∣∣I11− ρ(W11 + W>

11)
∣∣∣∣ − σ−2Y>1

{
I11− ρ(W11 + W>

11)
}
Y1 − n logσ2.

Fix ρ and optimize the above objective function with respect toσ2. This leads to ˆσ2 = n−1Y>1 {I11−

ρ(W11 + W>
11)}Y1. We then replaceσ2 in (2.3) byσ̂2. This gives a profiled objective function as

log
∣∣∣∣I11− ρ(W11 + W>

11)
∣∣∣∣ − n log

[
n−1Y>1 {I11− ρ(W11 + W>

11)}Y1

]

= log
∣∣∣∣I11− ρ(W11 + W>

11)
∣∣∣∣ − n log

[
1− ρn−1σ̂−2

Y Y
>
1 (W11 + W>

11)Y1

]

≈ log
∣∣∣∣I11− ρ(W11 + W>

11)
∣∣∣∣ + ρσ̂−2

Y Y
>
1 (W11 + W>

11)Y1,

where the constants independent ofρ are omitted, ˆσ2
Y = n−1Y>1Y1, and the last approximation is

due to Taylor’s expansion and the temporary assumption thatρ is small. For a practical dataset, we

can always assume that the data have been standardized so that ˆσ2
Y = 1. This leads to the following

highly simplified objective function

`a(ρ) = log
∣∣∣∣I11− ρ(W11 + W>

11)
∣∣∣∣ + ρY>1 (W11 + W>

11)Y1. (2.4)

It is noted that̀ a(ρ) in (2.4) is not constructed based on the accurate likelihood function ofY1.
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Instead, it is obtained by its first order approximation. We thus call the resulting estimator, denoted

by ρ̂a = argmax̀a(ρ), as an approximate maximum likelihood estimator (AMLE).

2.3. Paired Maximum Likelihood

As one can note, optimizing AMLE is not cheap. It is mainly becauseI11 − ρ(W11 + W>
11) is a

n× n matrix, whose determinant needs to be computed. This is not a problem if the sample sizen

is small or moderate. However, it could be a serious burden ifn is large. This motivates us to use

AMLE as an intermediate step to further inspire an estimator, which is computationally superior.

Specifically, we consider an extreme situation with only two nodes (denoted byi and j). In

that case, the approximation (2.3) is still valid withW11 = (0,wi j ; wji ,0) ∈ R2×2. Accordingly, the

objective function (2.4) can be used. We follow the idea of composite likelihood (Shao, 2003) and

sum together all the paired objective functions. This leads to

∑

i, j

log
{
1− ρ2(ai j/di + aji/dj)

2
}
+ 2ρ

∑

i, j

YiYj(ai j/di + aji/dj).

It is noted thatai j = aji = 0 for those disconnected pairs, and thus the corresponding quantity is

free of the spatial autocorrelationρ. As a result, those disconnected pairs can be ignored and the

above quantity can be simplified as

∑

ai j+aji>0

log
{
1− ρ2(ai j/di + aji/dj)

2
}
+ 2ρ

∑

ai j+aji>0

YiYj(ai j/di + aji/dj)

≈ −ρ2
∑

ai j+aji>0

(ai j/di + aji/dj)
2 + 2ρ

∑

ai j+aji>0

YiYj(ai j/di + aji/dj), (2.5)

where the approximation is due to Taylor’s expansion and the temporary assumption thatρ is small.

Then, it is interesting to note that the quantity in (2.5) is a quadratic function inρ, whose optimizer

enjoys an analytical solution given by

ρ̂p =
{ ∑

ai j+aji>0

(ai j/di + aji/dj)
2
}−1{ ∑

ai j+aji>0

YiYj(ai j/di + aji/dj)
}
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= (nωn)
−1

∑

(i, j)∈D

YiYjdi j ,

whereD = {(i, j) : ai j +aji > 0} collects all the connected pairs,di j = dji = ai j/di+aji/dj, andωn =

n−1 ∑
(i, j)∈D d2

i j . Because ˆρp is an estimator obtained by optimizing the paired likelihood function,

we refer to it as a paired maximum likelihood estimator (PMLE). Compared with the AMLE

ρ̂a, the PMLE ρ̂p is computationally much more efficient. This is because its computation only

involves those connected pairs. This makes PMLE particularly attractive for large scale network

data analysis.

2.4. The Asymptotic Properties

For a givenN-dimensional square matrixM = (mi1i2 : 1 ≤ i1, i2 ≤ N) ∈ RN×N, we define

‖M‖(n) =
∑

i1,i2≤n |mi1i2|. Note that, even though PMLE was inspired under the assumptionρ is

small, its consistency and asymptotic normality are free of such a stringent requirement. They can

be rigorously justified under fairly reasonable conditions as given below.

(A1) Law of Large Number. There exists a constantω > 0 such thattr(W2)/n = n−1 ∑
i j (ai j/di +

aji/dj)2 = ωn→ ω asn→ ∞.

(A2) Network Sparsity. WriteΔmax = maxk>1 ‖Wk‖(n)+maxk1,k2≥1 ‖Wk1,k2‖(n)+maxk1,k2,k3,k4≥1 ‖Wk1,k2,k3,k4‖(n),

whereWk1,k2 = Wk1(Wk2)> andWk1,k2,k3,k4 = Wk2(Wk3)>Wk4(Wk1)>. As n → ∞, we require

thatΔmax = o(n1/2).

We argue that all those conditions are quite intuitive and reasonable. The detailed explanations are

given below.

Condition (A1) is a Law of Large Number type condition. It requires that the sampled network

structure to maintain a reasonable density level. For example, every node should be involved in at
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least one edge. Otherwise, the network structure could too sparse (e.g., a network with no edge).

In that case, we should haveω = 0. Obviously, a network without enough edges (i.e., too sparse)

cannot provide sufficient information about spatial autocorrelation. As a result, condition (A1)

warrants the number of edges observed in the network also diverges to infinity asn→ ∞.

Condition (A2) basically requires that the network structureW to be sparse. To see this, con-

sider two arbitrary nodes (e.g.,i and j). If the network structure is sparse, then the likelihood for

them to be indirectly connected is small. For example, a typical indirect connection with length 2

could bei → k → j for some 1≤ k ≤ N. In this case, we should expect
∑N

k=1 aikak j to be small

on average for all possible (i, j) pairs. This suggests that‖W2‖(n) should be small as compared

with
√

n. This is typically true if the sampling fractionn/N is very small. Same argument applies

to paths with higher order lengths. Thus, we should expect maxk ‖Wk‖(n) to be well controlled.

Another typical indirect connection with length 2 could bei → k and j → k for some 1≤ k ≤ N.

In this case, we should have
∑N

k=1 aikajk to be small on average for all possible (i, j) pairs. This

suggests that‖W1,1‖(n) should be small. Same argument applies to paths with higher order lengths.

This leads to well bounded maxk1,k2 ‖W
k1,k2‖(n) and maxk1,k2,k3,k4 ‖W

k1,k2,k3,k4‖(n). This explains why

condition (A2) controls the network sparsity level. Intuitively, if the network is sufficiently sparse,

then the sampled edges should be mostly important for explaining the spatial autocorrelation. As

a result, if the sampled edges are used appropriately, spatial autocorrelation should be estimated

consistently.

Theorem 1. Assume (A1) and (A2), then
√

n(ρ̂p − ρ)
d
→ N(0,2/ω) as n→∞.

By Theorem 1, we find that the asymptotic variance of PMLE is analytically extremely simple and

elegant. It is noted that the asymptotic varianceω can be easily estimated byωn, which is just a

function of the observed network structureW11. This makes the practical inference simple.

3. NUMERICAL STUDIES
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3.1. Simulating Network Data

To evaluate the finite sample performance of the proposed methods, we present here a number

of simulation studies. For a fixedN, the network adjacency matrixA = (ai j ) is simulated as

follows. First, generateN independent and identically distributed random variables according to

an exponential distribution with mean 10. Denote these variables byEi with 1 ≤ i ≤ N. For each

nodei, we randomly select a sample size of [Ei] from SF = {1,2, ∙ ∙ ∙ ,n} without replacement,

where [Ei] stands for the smallest integer no less thanEi. Denote the sample bySi. Defineai j = 1

if j ∈ Si andai j = 0 otherwise. In the third step, we forceai j = aji for every i < j. In the

fourth step, we re-defineai j = di j ai j , wheredi j s are independent binary random variables with

P(di j = 1) = 0.5. Lastly, letaii = 0 for every 1≤ i ≤ N. This leads to the final adjacency

matrix A. Subsequently,W can be computed by normalizing each row ofA. Thereafter,W is fixed

throughout the rest of the simulation study. For a reliable evaluation, each experiment is randomly

replicatedM = 1000 times. For each random replication, the response is generated according to

Y = (I−ρW)−1ε, whereε ∈ RN is simulated from aN-dimensional standard normal random vector.

This leads to the whole network dataW andY.

3.2. PMLE

In this study, we fixρ = 0 or 0.2. Various combinations ofN and n are considered. For

each combination, we fix sampling proportion ofn/N to be equal to 10%. OnceW andY are

simulated, a random sample size ofn is obtained. Based on the sampled data, PMLE is computed.

Its estimated standard error (SE) is also obtained asŜE =
√

2ω−1/2
n n−1/2. Denote the estimator

obtained in themth simulation replication ( 1≤ m ≤ M.) by ρ̂(m), and the corresponding SE

estimate bŷSE
(m)

. Then the bias is evaluated as[ = ρ − ρ̄ with ρ̄ = M−1 ∑M
m=1 ρ̂, and the true

SE as SE= {M−1 ∑M
m=1(ρ̂

(m) − ρ̄)2}1/2. We also compute the averaged SE estimate (i.e.,ŜE) as

M−1 ∑M
m=1 ŜE

(m)
. With the estimated SE, the statistical significance of the spatial autocorrelation
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can be tested. Specifically, for each simulation iteration, aZ-type test statistic is constructed as

Z(m) = ρ̂(m)/ŜE
(m)

. For a given significance levelα = 5%, we reject the null hypothesis ofH0 :

ρ = 0 if |Z(m)| > z1−α/2, wherezα stands for theαth quantile of a standard normal distribution.

Accordingly, we summarize the empirical rejection probability (ERP) as ERP= M−1 ∑
I (|Z(m)| >

z1−α/2). Theoretically, ERP corresponds to the empirical size ifρ = 0 and power ifρ , 0.

Detailed results are summarized in Table 1, from where we can draw the following two con-

clusions. First, PMLE is consistent, with both bias and SE decreasing towards 0 asN → ∞ and

n→ ∞, regardless ofρ. Additionally, the estimated SE (i.e.,̂SE) approximates the true SE quite

well, because their average values are very close to each other. Secondly, the reported ERP values

are fairly close to their nominal levelα = 5% forρ = 0. This suggests that the implementedZ-type

test can control Type I error well. On the other side, the reported ERP values steadily increases

towards 100% asN→ ∞ andn→ ∞ if ρ = 0.2. This confirms that the proposedZ-type test has a

reasonable power.

3.3. Sampling Method

In this study, we compare different sampling methods and then evaluate their impact on PMLE

accuracy. Data are generated in the same way as the previous subsection but with a fixN =

100,000. By Theorem 1, the asymptotic efficiency of PMLE is fully determined by the network

structure through the quantityω ≈ ωn = n−1 ∑
(ai j/di+aji/dj)2. A largerωn value implies better es-

timation accuracy. Thus, a good sampling method should maximize the number of observed edges

(i.e., ai j andaji ). Obviously, the method of simple random sampling (SRS) without replacement

(Thompson, 2012), is unlikely to be the optimal choice. Instead, a snowball type sampling method

might be a good alternative. Here we investigate one particular type of snowball sampling method.

It is an iterative method. In each iterative step, one seed node (e.g.,i) is randomly selected and all

its connected friends (i.e., everyj satisfyingai j = 1) are collected. Both the sampled seed node
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and its connected friends are accumulated. If the current accumulated sample size is still below the

targetn, the above iterative sampling process should be repeated. Otherwise, some sampled nodes

are randomly dropped so that the final sample size is exactlyn. For convenience, we refer to this

sampling method as SNOW.

With a slight abuse of notation, we use ˆρ(m) to denote PMLE obtained in themth iteration

corresponding to one particular sampling method (i.e., SRS and SNOW). We then evaluate its

estimation accuracy by mean squared error MSE= M−1 ∑M
m=1(ρ̂

(m) − ρ)2. Various choices ofn are

considered. The resulting MSE are plotted in Figure 1 in log-scale, from where we can draw the

following observations. First, regardless of the sampling method, PMLE is consistent, because the

log MSE value monotonically decreases as the sample size increases. Second, compared with SRS,

SNOW offers a significant improvement in terms of estimation accuracy. The difference exhibited

by SRS and SNOW in terms of log MSE can be as large as 1.2 approximately for examplen =

10,000. This suggests that sampling method do play an important role for spatial autocorrelation

estimation. SNOW should be a useful method for network sampling.

3.4. Sina Weibo Network Analysis

As our last numerical study, we present here a real network example about Sina Weibo (www.weibo.com),

which can be viewed as a Twitter-type social media in Chinese community. The objective of this

study is to understand how the users of Sina Weibo interact with each other in terms of their

posting activity. For illustration purpose, we start with the Weibo accounts of four major on-

line travel agencies in mainland China. They are respectively: CTRIP (www.ctrip.com), ELONG

(www.elong.com), MangoCity (wwww.mangocity.co), and QUNAR (www.qunar.com). For each

travel agency, we randomly select 5,000 nodes from their followers. Subsequently, those follow-

ers’ followers are also collected. Because condition (A2) is better satisfied by sparse network, this

motivates us to keep only those active users with relatively small degree numbers. This gives the fi-
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nal network sizeN = 557,818. Their follower-followee relationships (i.e.,A) are recorded. This is

then treated as our whole network with a total of
∑

ai j =1,496,399 edges and
∑

i< j ai j aji = 535,408

mutually connected pairs. For each node, we define the response as the number of its posted mes-

sages in log-scale. The responses are standardized so that its mean is 0 and variance is 1. With

such a large network size, obtaining the maximum likelihood estimator or its approximate (i.e.,

AMLE) is extremely difficult. However, the PMLE can be readily computed by using a personal

computer without much difficulty. It givesρ̂p = 0.154 withŜE= 1.55× 10−3. We thus conclude

that the estimated spatial autocorrelation is statistically significant at 5% level. This implies that a

Sina Weibo user’s posting activity does correlated with each other in a nontrivial way.

Given the whole network data, we next conducted a real data based simulation study to check

the effect of sampling on the subsequent inferences. The study is implemented in a similar manner

as in Section 3.2. However, the difference is that the whole network data (i.e.,W andY) are not

generated by simulation. Instead, they are directly derived from Sina Weibo. As a result, the

response values are fixed for each node across different simulation iteration. The method of SRS

is used. It is noted that the true spatial autocorrelation coefficient of this real data is unknown. We

then treat the PMLE computed based on the whole network data (given in the previous paragraph)

as if it were the true parameter. This gives usρ = 0.154. We are able to do this because the

sample size considered subsequently is considerably smaller than the network sizeN = 557,818.

The detailed results are given in Table 2. However, it should be noted that the interpretation of

SE in Table 2 should be slightly different from that of Table 1 in Section 3.2. The reason is the

following. For this real data based simulation study, the response values are fixed for each node

across different simulation iterations. The randomness due to response value regeneration was

not involved. Consequently, the randomness of PMLE is fully due to sampling. As a result, the

SE values reported in Table 2 should be interpreted as a standard error measure for ˆρ when only

sampling randomness is involved. Then, the ERP values in Table 2 should be interpreted similarly.
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By Table 2, we find that, in order to have about 95% power (i.e., ERP≈ 95%), onlyn = 20,000

nodes need to be sampled. It accounts for aboutn/N = 3.59% of the entire network size.

4. CONCLUSION

We investigate here the problem of spatial autocorrelation estimation based on sampled net-

work data. To capture spatial autocorrelation, the classical spatial autoregression model is con-

sidered. We find that the exact maximum likelihood estimator for the sampled data is practically

infeasible when the network size is large. To fix the problem, a novel approximation method was

proposed, leading to the method of AMLE, which further inspires the development of the PMLE

method. These findings are also confirmed by numerical studies. We further illustrate our methods

by a real dataset about Sina Weibo. Significant spatial autocorrelation in terms of posting activity

is detected.

To conclude the article, we discuss here a number of interesting topics for future study. First,

the spatial autoregression model (2.1) considers only those directly connected nodes for autore-

gression. Instead, empirical research provides evidence that those indirectly connected ones might

also have impact on each other. Naturally, this calls for spatial autoregression models with higher

order neighbors. Approximation of the likelihood in this general setup is a nontrivial extension

of our proposed method and deserves a separate study. Second, by our theoretical analysis, the

quantityωn determines the asymptotic efficiency and its value can be much improved by SNOW.

However, how much SNOW can be further improved is not clear. Third, as in the literature of

spatial statistics and econometrics, the current model assumes that the adjacency matrix (therefore

the weight matrix) is pre-determined before the response is generated. However, in many cases the

adjacency matrix is endogeneously determined, because nodes sharing common features are more

likely to be connected. Then, how to model this endogeneous phenomenon is another important

topic deserved further investigation.
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APPENDIX

Appendix A. A Useful Lemma

To establish the asymptotic normality for PMLE, we need a Central Limit Theorem for normal

quadrature. We thus first state and prove a useful lemma in this regards.

Lemma 1. Let ε = (ε1, ∙ ∙ ∙ , εn)> ∈ Rn be a n-dimensional standard normal random vector. Let

Q = (qi j ) ∈ Rn×n be a symmetric matrix satisfying thatλmax(Q) ≤ cmax and n−1tr(Q2) > cmin

as n→ ∞, for some positive constants cmax > 0 and cmin > 0. DefineQn = ε>Qε, then{Qn −

tr(Q)}/tr1/2(2Q2)→d N(0,1) as n→ ∞.

Proof. BecauseQ ∈ Rn×n is a symmetric matrix. There exists an orthonormal matrixU ∈ Rn×n

(i.e.,U>U = UU> = I ), such thatQ = U>DU with D = diag{λ1, ∙ ∙ ∙ , λn} being a diagonal matrix.

We then haveQn = ε>Qε = Z>DZ =
∑
λiZ2

i , whereZ = (Zi) = Uε ∈ Rn andZis are independent

standard normal random variables. We know immediatelyE(Qn) =
∑
λi = tr(Q) and var(Qn) =

2
∑
λ2

i = 2tr(Q2) ≥ 2ncmin. Furthermore, we know that
∑

E(λiZ2
i − λi)4 = (

∑
λ4

i )E(Z2
i − 1)4 =

E(Z2
i −1)4tr(Q4) ≤ E(Z2

i −1)4(nc4
max). Consequently, we know that

∑
E(λiZ2

i −λi)4/{var(Qn)}2→ 0

asn → ∞. This verifies the Lyapunov condition. As a result, the Central Limit Theorem can

be established, that is{Qn − tr(Q)}/tr1/2(2Q2) →d N(0,1) asn → ∞. This proves the lemma

conclusion.

Appendi B. Proof of Theorem 1

We are going to establish the theorem in three steps. In the 1st step, we show that ˆρp is asymp-

totically unbiased. In the 2nd step, we obtain its asymptotic variance. Lastly, we establish the

asymptotic normality in Step 3.
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Step 1 (Bias). RecallY = (I − ρW)−1ε. In the meanwhile, by Banerjee et al. (2004) we know

thatλmax(W) ≤ 1. Furthermore, due to constraint|ρ| < 1, we can obtainY = (I +
∑∞

k=1 ρ
kWk)ε.

Write Wk = (w(k)
i j ). We then have

w(k)
i j =

∑

s1s2∙∙∙sk−1

(
ai1s1

di1

) (
as1s2

ds1

)

∙ ∙ ∙

(
ask−2sk−1

dsk−2

) (
ask−1 j

dsk−1

)

.

Then, for any sampled node 1≤ i ≤ n, we should haveYi = εi +
∑∞

k=1 ρ
k ∑N

j=1 w(k)
i j ε j = εi +

∑N
j=1 ε j(

∑∞
k=1 ρ

kw(k)
i j ). Consider two arbitrarily sampled nodesi and j, then

σ−2E(YiYj) =
∞∑

k=1

ρk
(
w(k)

i j + w(k)
ji

)
+

∑

s

(∑

k≥1

ρkw(k)
is

)(∑

k≥1

ρkw(k)
js

)

= ρdi j +

∞∑

k=2

ρk
(
w(k)

i j + w(k)
ji

)
+

∑

k1,k2≥1

ρk1+k2
(∑

s

w(k1)
is w(k2)

js

)
.

Therefore, we have
∑

i j E(YiYj)di j = ρ
∑

i, j≤n d2
i j + O1. HereO1 ≥ 0 is a nonnegative quantity given

by

O1 =
∑

i, j≤n

di j

∞∑

k=2

ρk
(
w(k)

i j + w(k)
ji

)
+

∑

i, j≤n

di j

∑

k1,k2≥1

ρk1+k2
(∑

s

w(k1)
is w(k2)

js

)

≤ 2
∑

i, j≤n

∞∑

k=2

ρk
(
w(k)

i j + w(k)
ji

)
+ 2

∑

i, j≤n

∑

k1,k2≥1

ρk1+k2
(∑

s

w(k1)
is w(k2)

js

)
,

becausedi j ≤ 2 and all other involved quantities are nonnegative. We can then further write the

right hand side of the above inequality as

= 2
∞∑

k=2

ρk
∑

i, j≤n

(
w(k)

i j + w(k)
ji

)
+ 2

∑

k1,k2≥1

ρk1+k2

∑

i, j≤n

(∑

s

w(k1)
is w(k2)

js

)

= 4
∑

k≥2

ρk‖Wk‖(n) + 2
∑

k1,k2≥1

ρk1+k2‖Wk1,k2‖(n).
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By (A2), the right hand side of the above equality can be further bounded by

≤ 4Δmax

∑

k≥2

ρk + 2Δmax

∑

k1,k2≥1

ρk1+k2 = 4Δmax

(
ρ2

1− ρ

)

+ 2Δmax

(∑

k≥1

ρk
)2

= 4Δmax

(
ρ2

1− ρ

)

+ 2Δmax

(
ρ

1− ρ

)2

=
(
Δmaxρ

2
)
∙O(1).

Recallρ̂p = (
∑

1≤i, j≤n di j YiYj)/(
∑

i, j d2
i, j). We thus haveE(ρ̂p) = ρ+o(n−1/2) by Conditions (A1) and

(A2).

Step 2 (Variance). WriteW = (W11 + W>
11). One can then verify that ˆρp = Y>1WY1/tr(W2).

Consequently, we know that var( ˆρp) = var(Y>1WY1)/tr2(W2). As a result, the key is to obtain

an analytically tractable formula for var(Y>1WY1). To this end, recall thatY = (I − ρW)−1ε =

∑
k≥0 ρ

kWkε. Consequently,Y1 =
∑

k≥0 ρ
k(Wk)(n)ε, where (Wk)(n) = (w(k)

i j : 1 ≤ i ≤ n,1 ≤ j ≤ N) ∈

Rn×N. We can then writeY>1WY1 = ε
>Mε, where

M =
{∑

k≥0

ρk(Wk)>(n)

}
W

{∑

k≥0

ρk(Wk)(n)

}
.

Becauseσ−1ε follows a multivariate standard normal distribution,Y>1WY1 is distributed as a

weighted chi-square and its variance is given by 2σ4tr(M2). We next computetr(M2). Direct

algebra reveals that

tr(M2) =
∑

k1,k2,k3,k4≥0

ρk1+k2+k3+k4tr
{
(Wk1)>(n)W(Wk2)(n)(W

k3)>(n)W(Wk4)(n)

}

= tr(W2) +
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4tr
{
(Wk1)>(n)W(Wk2)(n)(W

k3)>(n)W(Wk4)(n)

}
.

As a reuslt, we can writetr(M2) = tr(W2) + O2, where

O2 =
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4tr
{
(Wk1)>(n)W(Wk2)(n)(W

k3)>(n)W(Wk4)(n)

}
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Note thatW = (di j ) = (ai j/ni + aji/nj) ∈ Rn×n with 0 ≤ di j ≤ 2 for any 1≤ i, j ≤ n. On the other

side, all the components involved inWk are positive for anyk > 0. This implies that the right hand

side of the above quality can be bounded by

≤ 4
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4tr
{
(Wk1)>(n)(W

k2)(n)(W
k3)>(n)(W

k4)(n)

}

= 4
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4tr
{
(Wk2)(n)(W

k3)>(n)(W
k4)(n)(W

k1)>(n)

}
. (A.1)

Because the components involved inW are all nonnegative, we have

tr
{
(Wk2)(n)(W

k3)>(n)(W
k4)(n)(W

k1)>(n) ∈ R
n×n

}

≤ tr
{
(Wk2)(n)(W

k3)>(Wk4)(Wk1)>(n) ∈ R
n×n

}
. (A.2)

Note that (Wk2)(n)(Wk3)>(Wk4)(Wk1)>(n) ∈ R
n×n happens to be the corresponding sub-matrix ofWk1,k2,k3,k4 =

Wk2(Wk3)>Wk4(Wk1)> ∈ RN×N. Once again, because the components ofW are all nonnegative, we

have the trace in (A.2) is bounded by‖Wk1,k2,k3,k4‖(n). This suggests that the right hand side of (A.1)

can be bounded by

≤ 4
∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4‖Wk1,k2,k3,k4‖(n)

≤ 4Δmax

∑

k1+k2+k3+k4≥1

ρk1+k2+k3+k4 ≤ 4Δmax

(
1

1− ρ

)4

= o(n1/2),

by technical condition (A2). On the other hand, by (A1) we know thattr(W2) is of the ordern.

Consequently, we know thattr(M2) = tr(W2)+o(n1/2) = tr(W2){1+o(n1/2)tr−1(W2)} = tr(W2){1+

o(n−1/2)} = tr(W2){1+ o(1)}. This further implies that var( ˆρp) = tr−1(W2){1+ o(1)}.

Step 3 (Asymptotic Normality). Recall ρ̂p = Y>1WY1/tr(W2). As a result, its asymptotic

normality is fully determined byY>1WY1. One can easily verify thatλmax(W) ≤ 2λmax(W11) ≤
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2λmax(W) ≤ 2. By assumption (A1), we haven−1tr(W2) = n−1 ∑
d2

i j = ωn → ω > 0. As a result,

we have{ρ̂p − E(ρ̂p)}var−1/2(ρ̂p)
d
→ N(0,1) by Lemma 1. This completes the entire theorem proof.
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Table 1: Simulation results for PMLE withn/N = 10%

ρ = 0.2 ρ = 0
N n [ SE ŜE ERP [ SE ŜE ERP

1,000 100 0.0218 0.5391 0.5471 5.60% 0.0165 0.5357 0.54714.30%

5,000 500 0.0035 0.2452 0.238713.40% 0.0041 0.2390 0.23874.20%

10,000 1000 0.0012 0.1647 0.163921.60% 0.0011 0.1603 0.16394.20%

100,000 10,000 0.0003 0.0537 0.052195.90% 0.0002 0.0532 0.05215.40%

500,000 50,000 0.0001 0.0237 0.0232100.0% 0.0001 0.0232 0.02324.40%

Table 2: The real data simulation results for PMLE withN = 557,818 andρ = 0.154

n [ SE ŜE ERP
2,000 0.0274 0.5139 0.4728 7.5%
5,000 0.0093 0.1743 0.1727 15.8%

10,000 0.0037 0.0907 0.0853 47.6%
20,000 0.0026 0.0451 0.0426 94.1%
50,000 0.0009 0.0189 0.0170100.0%
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Figure 1: Comparing different sampling methods by MSE in log-scale
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