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Abstract

This paper defines a new procedure to efficiently estimate nonparametric simultaneous e-
quations models that have been explored by Newey et al (1999) and Su and Ullah (2008).
The proposed estimation procedure exploits the additive structure and achieves oracle efficiency
without the knowledge of unobserved error terms. Further, simulation results show that our
new estimator outperforms that of Su and Ullah (2008) in terms of Mean Squared Error.
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1 Introduction

Nonparametric structural models draw a lot of attention in recent years. However, simultaneous

equations models considered so far impose different dependence structural relationship between the

error terms and the instruments. One line of research, which can estimate the unknown structural

up to a constant term, starts from Newey, Powell and Vella (1999). Recently, Su and Ullah (2008)

proposed a three-step estimator that is more efficient than those of Pinkse (2000) and Newey and

Powell (2003).

The papers cited earlier all share the additive structure of the simultaneous equation models.

Additive models are widely used in both theoretical economics and in econometric data analysis.

See Linton (1997, 2000) and references there. Within the framework of the single parameter linear

exponential family, Linton (2000) exploits the additive structure of the nonparametric model and

derive an estimator that can achieve oracle efficiency.

In this paper, we exploit the procedure proposed in Su and Ullah (2008) one step further

by exhausting the information contained in the additive structure of the simultaneous equation

models. We follow a similar argument as in Linton (2000) to take the advantage of the additive

structure. Thus we improve the estimator in Su and Ullah (2008) by first consistently estimating
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the nonparametric error term and then applying a local polynomial regression to consistently, and

more importantly, efficiently estimate the nonparametric structure and its derivatives. The derived

estimator achieves oracle efficiency as that in Linton (2000). Monte Carlo results show that our

estimator is efficient compared to that in Su and Ullah (2008).

The organization of this paper is as follows. Section 2 introduces our local polynomial estimator

and proves its asymptotic properties. In section 3, we report Monte Carlo simulation results.

Section 4 concludes.

2 Local Polynomial Estimator

We consider the regression model of Newey, Powell and Vella (1999) and Su and Ullah (2008):{
Y = g(X,Z1) + ε, Z = (Z ′1, Z

′
2)
′,

X = h(Z) + U, E(U |Z) = 0, E[ε|Z,U ] = E[ε|U ],
(1)

where Y is an observable scalar random variable, g denotes the true, unknown structural function

of interest, X is dx × 1 vector of explanatory variables, Z1 and Z2 are d1 × 1 and d2 × 1 vectors of

instrumental variables, h ≡ (h1, . . . , hdx)′ is a dx × 1 vector of functions of the instruments Z, and

U and ε are disturbances. We are interested in estimating g and its derivatives consistently.

Newey, Powell and Vella (1999) employed series approximations that exploit the additive struc-

ture of the model and propose a two-stage estimator of g, which is identified up to an additive

constant if there is no functional relationship between (X,Z1) and U . They also derive consistency

and asymptotic normality results for functional of their estimator. Su and Ullah (2008) develop a

three-step kernel estimation procedure that can consistently estimate g based on local polynomial

regression and marginal integration techniques. They also establish the asymptotic distribution

of their estimator under weak data dependence conditions. In addition, they provide simulation

evidence which suggests the superior performance of their estimator compared to that proposed by

Newey et al (1999).

Following Su and Ullah (2008), our estimation procedure is based on the following observation:

E[Y |X,Z,U ] = g(X,Z1) + E[ε|U ]. (2)

Employing the law of iterated expectation gives,

m(X,Z1, U) ≡ E[Y |X,Z1, U ] = g(X,Z1) + E[ε|U ]. (3)

Since U is not observable, Su and Ullah (2008) used the estimated residual from the nonparametric

regression of X on Z and estimated g(x, z1) up to a constant by first estimating m(X,Z1, U) and

then integrating it over U .

Denote mu(U) = E[ε|U ] and note that the structure of (3) implies that

g(X,Z1) = E[Y |X,Z1, U ]− E[ε|U ]

= E[Y − E[ε|U ]|X,Z1, U ]

= E[Y −mu(U)|X,Z1, U ]

= E[Y −mu(U)|X,Z1],
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if U is observable and the functional form mu(·) is known. Nevertheless, with their consistent

estimators Û and m̂u (·), we derive an estimator of g (·, ·) that can achieve the efficiency of the

oracle estimator which requires the knowledge of both U and mu(·), following Linton (2000).

We state our estimation procedure as follows:

1. Proceed as in Su and Ullah (2008) procedure to get the estimators ĥ(Zt), Ût, m̂(x, z1, u) and

ĝQ(x, z1).

2. Average m̂(x, z1, u) over (x, z1) by a deterministic weight function Q1(x, z1) to get an estimator

of mu(u), m̂u(u), with
∫
Rdx+d1 dQ1(x, z1) = 1. We require that Q1 has a bounded density on its

support with respect to either Lebesgue measure or a counting measure in Rdx+d1 .

3. Obtain an estimator of g(x, z1) by a p-th order smoothing of Yt− m̂u(Ût) on Xt, Z1t with kernel

K and bandwidth sequence b = b(n). Denote the estimator as ĝ∗(x, z1).

Let V ≡ (X,Z1)
′ and d ≡ dx+d1. For the data set {Xt, Zt}nt=1, the p-th order local polynomial

regression of Yt − m̂u(Ût) on Vt can be obtained from the multivariate weighted least squared

criterion:

nb−d
n∑
t=1

K(
V t − v
b

)

Yt − m̂u(Ût)−
∑

0≤|j|≤p

θj(v) (V t − v)j

2

, (4)

where K is a nonnegative kernel function on Rd and b = b(n) is a scalar bandwidth sequence.

For other notations, we follow Masry (1996) and Su and Ullah (2008), j = (j1, . . . , jd)
′, j! =

Πd
i=1ji!, |j| =

∑d
i=1 ji, z

j = Πd
i=1z

ji
i ,
∑

0≤|j|≤p =
∑p

k=0

∑k
j1=0 · · ·

∑k
jd=0, bj(v) = 1

j!D
jg(y)|y=v,

Djg(y) =
∂jg(y)

∂y
j1
1 ···∂y

jd
d

. Minimizing (4) with respect to each θj(v) gives an estimate θ̂j(v). Note that

j!θ̂j(v) estimates Djg(v), that is, Dĵg(v) ≡ j!θ̂j(v). Therefore, θ̂0(v) is the estimator of g(x, z1)

of interest. Arrange the distinct values of the d-tuple b|j|θ̂j as a sequence in a lexicographical

order in β̂
n,i

, where i = |j|. Then collect β̂
n,i
, 0 ≤ i ≤ p, as a column vector in the form

β̂
n

=
[
β̂
n,0
, β̂

n,1
, . . . , β̂

n,p

]′
.Similarly, define β as the true value that corresponds to β̂

n
and denote

σ2(v) = var [Yt −mu(Ut)|V t = v] .

Before presenting our theorem, we introduce the following notations. Following Masry (1996),

let Nl =

[
l + d+ 1
d− 1

]
be the number of distinct d-tuples j with |j| = l. Arrange these Nl d-tuples

as a sequence in a lexicographical order (with highest priority to last position so that (0, . . . , 0, i) is

the first element in the sequence and (i, 0, . . . , 0) is the last element) and let φ−1i denote this one-

to-one map. Denote N =
∑p

l=0Nl(d). For each j with 0 ≤ j ≤ 2p, let µj(Ki) =
∫
Rdi w

jK(w)dw.

For each j with 0 ≤ |j| ≤ p, let γj(Ki) =
∫
Rd u

jK2(u)du. Define the N ×N dimensional matrices

M and Γ, and the N ×Np+1 matrix B by

M =


M0,0 M0,1 · · · M0,p

M1,0 M i
1,1 · · · M1,p

...
...

. . .
...

Mp,0 Mp,1 · · · Mpi,p

 , Γ =


Γ0,0 Γ0,1 · · · Γ0,p

Γ1,0 Γ1,1 · · · Γ1,p
...

...
. . .

...
Γp,0 Γp,1 · · · Γp,p

 , B =


M0,p+1

M1,p+1
...

Mp,p+1

 ,

where Ml,m and Γl,m are Nl × Nm dimensional matrices whole (q, r) elements are, respectively,
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µφl(q)+φm(r) and γφl(q)+φm(r). Note that the matrices M and Γ are essentially multivariate moments

of the kernels and higher order products of the kernels. In addition, mp+1 (v) collects 1
k!

(
Dkg

)
(v)

in a lexicographical order.

We state the following asymptotic normality result for β̂
n
.

Theorem Under Assumptions of Su and Ullah (2008) and b = O(n−1/(d+2p+2), we have(
nbd
)1/2 (

β̂
n
− β − bp+1M−1Bmp+1(v)

)
d→ N

(
0, σ2(v)M−1ΓM−1/f(v)

)
at continuity points v of

{
σ2, f

}
whenever f(v) > 0, where f(v) is the density function of v = (x, z1).

Proof: See appendix.

Remark: Note that the term σ2(v) = var [Yt −mu(Ut)|V t = v] in the asymptotic variance depends

on the knowledge of the unobserved error term mu(Ut). And note that the variance of an estimator

that minimizes (4) with knowledge of Ut has the same variance as our proposed estimator β̂
n
. Thus,

our estimator is oracle efficient in the sense of Linton (2000).

3 Monte Carlo Simulation

In this section, we perform Monte Carlo simulation to examine the properties of the estimator we

proposed. We assume E(ε) = 0 and compare it with the estimators in Su and Ullah (2008), with

data generating processes (DGPs) similar to theirs:

DGP1 :

{
Yt = 2Φ (Xt) + εt,
Xt = Zt − 0.2Z2

t + Ut.
DGP2 :

{
Yt = log (Xt) + εt,
Xt = 10 + exp (0.1Zt) + Ut.

where Φ (·) is the cumulative distribution function of standard normal random variable. The error

terms εt and Ut, and the instrument Zt are generated according to

εt = θwt + 0.3vYt , Ut = 0.5wt + 0.2vXt , Zt = 1 + 0.5Zt−1 + 0.5vZt , (5)

in which vYt , vXt , vZt , wt are i.i.d. sum of 48 independent random variables each uniformly dis-

tributed on [−0.25, 0.25]. Note that vYt , vXt , vZt , wt have bounded support [−12, 12] and central

limit theorem implies that these variables are nearly normally distributed. As seen in (5), cor-

relation between εt and Xt is characterized by the parameter θ, and we consider the following

specification values: θ = 0.2, 0.5, 0.8.The correlation between εt and Xt increases as θ increases and

the problem of simultaneity is further magnified.

For each DGP and estimator, we consider two sample size: n = 100 and 400, with 200 repetitions

for each n. We compute the mean of the root mean squared errors (RMSEs) of our estimator of

g (x) by averaging across the realized values of X and the 200 repetitions. These mean of RMSEs

relative to those of Su and Ullah (2008) are reported in Table 1. Also, we report the median of

the RMSEs of the two estimators obtained by averaging across the realized values of X only. It is

clear from the results that the new estimation procedure gives more efficient estimator, the relative

mean of RMSEs being all smaller than 1.

[Table 1 about here]
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4 Conclusion

We propose a new estimator based on local polynomial regression and marginal integration tech-

niques in this paper. It is oracle efficient and it exhausts the information contained in the additive

structure of the model. Our simulation results show that it is more efficient than the estimator in

Su and Ullah (2008) in the sense that the MSE is much smaller.

Appendix

Proof of Theorem. Denote sn,j = 1
n

∑n
t=1

(
V t−v
b

)|j|
Kb (V t − v) .Arrange the possible values

of sn,j+k by a matrix Sn,|j|,|k| in a lexicographical order with the (l,m) element of Sn,|j|,|k| given by(
Sn,|j|,|k|

)
l,m

= sn,φj(l)+φk(m).

The matrix
(
Sn,|j|,|k|

)
is of dimension N|j| ×N|k|. Now define the N ×N matrix Sn by

Sn =


Sn,0,0 Sn,0,1 · · · Sn,0,p
Sn,1,0 Sn,1,1 · · · Sn,1,p

...
...

. . .
...

Sn,p,0 Sn,p,1 · · · Sn,p,p

 .

From the F.O.C. of the minimization criterion (4), we can derive

β̂
n
− β

n
= S−1n τ̂∗n + bp+1S−1n Bnmp+1 (v) + op

(
bp+1

)
,

where τ̂∗n = τ∗n + J̄1 + J̄2 is a compact form of

t̂∗n,j =
1

n

n∑
t=1

[
Yt − m̂u(Ût)− g(V t)

](V t − v
b3

)j
K3b3(V t − v)

=
1

n

n∑
t=1

[Yt −mu(Ut)− g(V t)]

(
V t − v
b3

)j
K3b3(V t − v)

+
1

n

n∑
t=1

[
mu(Ut)−mu(Ût)

](V t − v
b3

)j
K3b3(V t − v)

+
1

n

n∑
t=1

[
mu(Ût)− m̂u(Ût)

](V t − v
b3

)j
K3b3(V t − v)

≡ t∗n,j + J1,j + J2,j

It follows from Masry (1996) that as n→∞, Sn
M.S.→ Mf (v), Bn

M.S.→ Bf (v) and(
nbd
)
τ∗n

L→ N
(
0, σ2 (v) f (v) Γ

)
.

Thus, the asymptotic normality of β̂
n

depends properties of J1,j and J2,j . First, it is easy to show

that
(
nbd
)1/2

J1,j = op (1), using Taylor series expansion similar to Su and Ullah (2008). Second,
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(
nbd
)1/2

J2,j = op (1). To see this, note that it is straightforward to show that,

mu

(
Ût

)
− m̂u(Ût) =

1

n

n∑
s=1

[ĝ(Xs, Z1s)− g(Xs, Z1s)] +

1

n

n∑
s=1

[
m
(
Xs, Z1s, Ût

)
− m̂

(
Xs, Zst, Ût

)]
.

It follows from Su and Ullah (2008) that

ĝ(Xs, Z1s)− g(Xs, Z1s) = op (1) .

and from Masry (1996) that[
m
(
Xs, Z1s, Ût

)
− m̂

(
Xs, Zst, Ût

)]
= op (1) .

Combining these results, we have
(
nbd
)1/2

J2,j = op (1) following a similar argument as in Su

and Ullah (2008). Therefore,
(
nbd
)
τ̂∗n

L→ N
(
0, σ2 (v) f (v) Γ

)
, which completes the proof of the

theorem.�
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Table 1: Relative Root Mean Squared Errors

DGP Mean Median Mean Median Mean Median

N=100 θ = 0.2 θ = 0.5 θ = 0.8

1 0.3844 0.5150 0.2306 0.4330 0.4170 0.4064
2 0.2596 0.3908 0.3705 0.5133 0.4589 0.5756

N=400 θ = 0.2 θ = 0.5 θ = 0.8

1 0.1361 0.3327 0.2152 0.3310 0.2398 0.3181
2 0.2848 0.4433 0.3253 0.5011 0.3595 0.5672
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