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Abstract. Orthogonal array based-Latin hypercubes, also called U designs, have popularly

been adopted for designing a computer experiment. The relationship between the averaged

squared discrepancy of all U designs generated from a given orthogonal array and the general-

ized wordtype pattern of the orthogonal array is established. Motivated by the relationship,

we define a weighted wordtype pattern and a minimum weighted aberration criterion to

compare orthogonal arrays of the same parameters. U designs generated from an orthogonal

array with less weighted aberration are shown to have low discrepancies on average. Then,

an algorithm to construct uniform U designs is proposed. It begins with a minimum weight-

ed aberration orthogonal array and its advantage is illustrated by comparing with another

two methods.
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1 Introduction

Latin hypercubes (LHs), proposed by McKay, Beckman and Conover (1979), have been

widely adopted in the design of computer experiments with quantitative factors because they

spread the points uniformly in any one-dimensional projection.

To improve the space-filling property of LHs in two- and more-dimensional projections,

Tang (1993) constructed LHs based on an orthogonal array (OA) as follows. Let D be an

OA of strength t, N runs and n factors with its i-th factor taking si levels from Rsi =

{0, . . . , si−1}. For each column of D, randomize its symbols and replace the Ns−1
i positions

of entry j by a random permutation of {jNs−1
i , jNs−1

i + 1, . . . , (j + 1)Ns−1
i − 1}, for all

j ∈ Rsi . After the procedure is done for all columns of D, the resulting matrix, denoted

by LD, is a D-based LH. It is also called a U design by Tang (1993). Though LD achieves

stratification in all t-dimensional margins when an OA of strength t is employed, it may not

be guaranteed to be uniform over the experimental domain.

For comparing the uniformity of designs, various discrepancies have been proposed. A-

mong them, the centered L2-discrepancy (CD) [Hickernell (1998a)] and wrap-around L2-

discrepancy (WD) [Hickernell (1998b)] are popularly applied. Under the CD and WD, Jiang

and Ai (2012) introduce a stochastic algorithm to construct uniform designs without repli-

cations. Since there are some unreasonable phenomena associated with the CD and WD,

the mixture discrepancy (MD) is proposed by Zhou et al. (2013). A U design is said to be

uniform under a discrepancy if it has the smallest discrepancy value among all U designs of

the same size.

In this paper, we show that the averaged squared discrepancy of all U designs generated

from an OA is a linear combination of the generalized wordtype pattern [Ai and He (2006)]

of the OA. Enlightened by this expression, the weighted wordtype pattern is proposed and

the corresponding minimum weighted aberration (MWA) criterion is defined to sequentially

minimize the components of the weighted wordtype pattern of an OA. U designs generated

from an OA with less weighted aberration are shown to have lower discrepancies on average.

The rest of the article is organized as follows. Section 2 introduces the definitions of
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generalized wordtype pattern and discrepancies. Section 3 develops the relationship between

averaged squared discrepancy of all U designs generated from an OA and the generalized

wordtype pattern of the OA. Section 4 proposes an algorithm to construct uniform U designs.

Comparisons with another two methods are given in Section 5. Section 6 concludes this

article with some remarks.

2 Generalized wordtype pattern and discrepancies

Let Rs = {0, . . . , s− 1} be the integer ring with modulus s. An orthogonal array (OA),

denoted byOA(N, sn1
1 · · · sng

g , t), withN runs, n =
∑g

i=1 ni factors and strength t (n ≥ t ≥ 1),

is an N ×n matrix in which the first n1 columns have s1 levels from a set of s1 elements, say

Rs1 , the next n2 columns have s2 levels from a set of s2 elements, say Rs2 , and so on, such

that every N × t submatrix contains all possible level combinations as rows with the same

frequency. When s1 = · · · = sg = s, in particular, this special case is called a symmetric OA

and denoted by OA(N, sn, t); otherwise, it is an asymmetric OA. Typically, an OA(N,Nn, 1)

is called a Latin hypercube (LH).

For an OA(N, sn1
1 · · · sng

g , t) D with n =
∑g

i=1 ni, let {χ(i)
ui , ui ∈ Rsi} be the orthonormal

contrast coefficients for the si-level factors, that is,

∑
xi∈Rsi

χ(i)
ui
(xi)χ

(i)
vi (xi) = siδui,vi , for any ui, vi ∈ Rsi , (1)

where χ
(i)
vi (xi) is the complex conjugate of χ

(i)
vi (xi), δu,v equals 1 if u = v and 0 otherwise.

Let χ
(i)
0 (xi) = 1, for any xi ∈ Rsi . Let R = Rn1

s1
× · · · ×R

ng
sg . Then we consider the following

contrast coefficients defined by tensor products:

χu(x) =
n∏

i=1

χ(i)
ui
(xi), for u = (u1, . . . , un) ∈ R, and x = (x1, . . . , xn) ∈ R. (2)

It can be verified that
∑

x∈R χu(x)χv(x) =
∏g

i=1 s
ni
i δu,v for any u,v ∈ R. So {χu,u ∈ R}
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are the orthonormal contrast coefficients.

Ai and He (2006) introduced the generalized wordtype pattern for comparing general

factorial designs with multiple groups of factors. For any u ∈ R, split u into g parts, i.e.,

u = (u1, . . . ,ug), where ui ∈ Rni
si
. For 0 ≤ j1 ≤ n1, . . . , 0 ≤ jg ≤ ng, define

Bj1,...,jg(D) = N−2
∑

wt(u1)=j1

· · ·
∑

wt(ug)=jg

|χu(D)|2. (3)

where χu(D) =
∑

x∈D χu(x) and wt(u) is the number of nonzero elements of u. Clearly,

B0,...,0(D) = 1. The Bj1,...,jg(D)’s are called the generalized wordtype pattern of the design

D. For j = 0, . . . , n, let

Aj(D) =
∑

j1+···+jg=j

Bj1,...,jg(D). (4)

Ai and He (2006) further verified that the vector A(D) = (A1(D), . . . , An(D)) is exactly the

so called generalized wordlength pattern of design D in Xu and Wu (2001). The generalized

minimum aberration (GMA) criterion is to sequentially minimize the components of A(D).

On the other hand, different types of discrepancies have been defined to measure the

unifromity of a design. Hickernell (1998a,b) showed that the most widely used discrepancies

can be defined by reproducing kernels with the form

K(x,y) =
n∏

i=1

f(xi, yi), (5)

where x = (x1, . . . , xn), y = (y1, . . . , yn) and f(x, y) is defined on [0, 1]2. For example,

f(x, y) = 1 + (|x − 0.5| + |y − 0.5| − |x − y|)/2 for CD, f(x, y) = 1.5 − |x − y| + |x − y|2

for WD and f(x, y) = 1.875 − (|x − 0.5| + |y − 0.5| + 3|x − y| − 2|x − y|2)/4 for MD. For

a U design L = (lij) of N runs and n factors, its squared discrepancy defined by the kernel

K(x, y) can be expressed as

Disc2(L,K) = cn0 −
2

N

N∑
i=1

n∏
k=1

f1(xik) +
1

N2

N∑
i,j=1

n∏
k=1

f(xik, xjk), (6)
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where xik = (lik + 0.5)/N , f1(x) =
∫ 1

0
f(x, y)dy and c0 =

∫
[0,1]2

f(x, y)dxdy.

Hickernell and Liu (2002) defined the projection discrepancy pattern to evaluate the low-

dimensional projection uniformity of a design. Let v be any subset of {1, . . . , n}, xv be the

elements of the vector x indexed by the elements of v, Lv be the projection of the design L.

Let f̂(·, ·) = f(·, ·) − 1. Define K̂v(xv,yv) =
∏

j∈v f̂(xj, yj) and K̂∅ = 1 by convention. For

the kernels of form (5), we express

K(x,y) =
n∏

i=1

f(xi, yi) =
∑

∅⊆v⊆Rs

K̂v(xv,yv) (7)

and

Disc2(L,K) =
∑

∅⊆v⊆Rs

Disc2(Lv, K̂v) =
n∑

j=0

Disc2(j)(L,K), (8)

where Disc2(j)(L,K) =
∑

#v=j Disc2(Lv, K̂v) and #v is the cardinality of v. Since K̂∅ = 1,

it follows that Disc2(0)(L,K) = 0. Then the projection discrepancy pattern was given by

Hickernell and Liu (2002) as follows

PD(L,K) = (Disc2(1)(L,K), . . . , Disc2(n)(L,K)).

For any two U designs L1 and L2, L1 has smaller projection discrepancy pattern than L2,

or equivalently PD(L1,K) < PD(L2,K), if and only if the first, from the left, nonzero

component of PD(L1,K)− PD(L2,K) is negative. Throughout, Disc2(j)(L,K) is called the

squared j-dimensional projection discrepancy of the design L.

3 Relationships between generalized wordtype pattern

and discrepancies

Tang, Xu and Lin (2012) derived an expression of averaged CD2 in terms of generalized

wordlength pattern for three-level designs. Later, Tang and Xu (2013) and Zhou and Xu

(2014) generalized their result to symmetric designs. Here we establish the relationship
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between averaged squared discrepancy of all U designs generated from an OA D and the

generalized wordtype pattern of D.

Suppose D is an OA(N, sn1
1 · · · sng

g , t) with n =
∑g

k=1 nk and K(x,y) =
∏n

i=1 f(xi, yi).

Let LD be the collection of all U designs generated from D. Let

Disc2(LD,K) =

g∏
k=1

[((N/sk)!)
sk sk!]

−nk
∑
L∈LD

Disc2(L,K) (9)

be the averaged squared discrepancy of all U designs generated from D. Let

c1(s) =
∑

l1,l2∈Rs,l1 ̸=l2

∑
z1∈Tl1,s

,z2∈Tl2,s

f

(
z1 + 0.5

N
,
z2 + 0.5

N

)
(10)

and

c2(s) = N(s− 1)(N − s)−1 (c1(s))
−1
∑
l∈Rs

∑
z1,z2∈Tl,s,z1 ̸=z2

f

(
z1 + 0.5

N
,
z2 + 0.5

N

)
, (11)

where s is a divisor of N and Tl,s = {lN/s, lN/s + 1, · · · , (l + 1)N/s− 1}. Then we obtain

the following theorem which shows that the averaged squared discrepancy of all U designs

generated from D can be linearly expressed in terms of the generalized wordtype pattern of

D. The detailed proof is postponed to the Appendix.

Theorem 1. For an OA(N, sn1
1 · · · sng

g , t) D with n =
∑g

k=1 nk and a discrepancy kernel

K(x,y) =
∏n

i=1 f(xi, yi), if c2(sk) > 1 for k = 1, . . . , g, we have

Disc2(LD,K) = α(N,n1, . . . , ng, s1, . . . , sg)

+

g∏
k=1

(
c1(sk)(c2(sk) + sk − 1)

N2(sk − 1)

)nk n1∑
i1=0

· · ·
ng∑

ig=0

g∏
k=1

(
c2(sk)− 1

c2(sk) + sk − 1

)ik

Bi1,...,ig(D), (12)

where α(N, n1, . . . , ng, s1, . . . , sg) = cn0−2
(

1
N

∑N−1
l=0 f1

(
l+0.5
N

))n
+ 1

N

(
1
N

∑N−1
l=0 f

(
l+0.5
N

, l+0.5
N

))n
−

1
N

∏g
k=1

(
skc1(sk)c2(sk)

N2(sk−1)

)nk

, c0, f1(·), c1(·) and c2(·) are defined in (6),(10) and (11), respec-

tively.
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Note that the commonly used discrepancies such as CD, WD and MD satisfy the condition

c2(s) > 1 when s is a divisor of N . For example, for the WD, c1(s) = N2(1 − 1
s
)(4

3
− 1

6s
+

1
6s2

− 1
6N2 ) and c2(s) = (9− 2

s
+ 1

s2
− 2

N
+ 1

Ns
)/(8− 1

s
+ 1

s2
− 1

N2 ).

Now we consider the projection uniformity of U designs generated from anOA(N, sn1
1 · · · sng

g , t)

D. For j = 1, . . . , n, let

Disc2(j)(LD,K) =

g∏
k=1

[((N/sk)!)
sk sk!]

−nk
∑
L∈LD

Disc2(j)(L,K) (13)

be the averaged squared j-dimensional projection discrepancy of all U designs generated

from D. Let

ĉ1(s) =
∑

l1,l2∈Rs,l1 ̸=l2

∑
z1∈Tl1,s

,z2∈Tl2,s

f̂

(
z1 + 0.5

N
,
z2 + 0.5

N

)
(14)

and

ĉ2(s) = N(s− 1)(N − s)−1(ĉ1(s))
−1
∑
l∈Rs

∑
z1,z2∈Tl,s,z1 ̸=z2

f̂

(
z1 + 0.5

N
,
z2 + 0.5

N

)
, (15)

where f̂(x, y) = f(x, y)−1. For any v ⊆ {1, . . . , n}, let n(v)
k be the number of sk-level factors

in the projection Dv. By noting the fact that Disc2(j)(LD,K) =
∑

#v=j Disc2(LDv , K̂v), we

immediately obtain the following result from Theorem 1.

Corollary 1. For an OA(N, sn1
1 · · · sng

g , t) D with n =
∑g

i=1 ni and a discrepancy kernel

K(x,y) =
∏n

i=1 f(xi, yi), if ĉ2(sk) > 1 for k = 1, . . . , g, we have

Disc2(j)(LD,K) =
∑
#v=j

α̂(N, j, n
(v)
1 , . . . , n(v)

g , s1, . . . , sg)

+
∑
#v=j

g∏
k=1

(
ĉ1(sk)(ĉ2(sk) + sk − 1)

N2(sk − 1)

)n
(v)
k

n
(v)
1∑

i1=0

· · ·
n
(v)
g∑

ig=0

g∏
k=1

(
ĉ2(sk)− 1

ĉ2(sk) + sk − 1

)ik

Bi1,...,ig(Dv),

where j = 1, . . . , n, α̂(N, j, n
(v)
1 , . . . , n

(v)
g , s1, . . . , sg) = ĉj0 − 2

(
1
N

∑N−1
l=0 f̂1

(
l+0.5
N

))j
+ 1

N

(
1
N

∑N−1
l=0 f̂

(
l+0.5
N

, l+0.5
N

))j
− 1

N

∏g
k=1

(
sk ĉ1(sk)ĉ2(sk)

N2(sk−1)

)n(v)
k

, f̂1(x) =
∫ 1

0
f̂(x, y)dy and ĉ0 =
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∫
[0,1]2

f̂(x, y)dxdy.

Note that the commonly used discrepancies such as CD, WD and MD also satisfy the

condition ĉ2(s) > 1 when s is a divisor of N . For example, for the WD, ĉ1(s) = N2(1 −
1
s
)(1

3
− 1

6s
+ 1

6s2
− 1

6N2 ) and ĉ2(s) = (3− 2
s
+ 1

s2
− 2

N
+ 1

Ns
)/(2− 1

s
+ 1

s2
− 1

N2 ).

When D is a symmetric OA(N, sn, t), combining equation (4), Theorem 1 and Corollary

1 with the fact that
∑

#v=j Ai(Dv) =
(
n−i
j−i

)
Ai(D), we obtain the following result which shows

that the averaged squared discrepancy and averaged squared j-dimensional projection dis-

crepancy of all U designs generated from D are linearly expressed in terms of the generalized

wordlength pattern of D.

Corollary 2. For an OA(N, sn, t) D and a discrepancy kernel K(x,y) =
∏n

i=1 f(xi, yi), if

ĉ2(s) > 1, we have

Disc2(LD,K) = α(N, n, s) +

(
c1(s)(c2(s) + s− 1)

N2(s− 1)

)n n∑
i=0

(
c2(s)− 1

c2(s) + s− 1

)i

Ai(D)

and

Disc2(j)(LD,K) =

(
n

j

)
α̂(N, n, s, j)

+

(
ĉ1(s)(ĉ2(s) + s− 1)

N2(s− 1)

)j j∑
i=0

(
ĉ2(s)− 1

ĉ2(s) + s− 1

)i(
n− i

j − i

)
Ai(D),

where α(N, n, s) = cn0−2
(

1
N

∑N−1
l=0 f1

(
l+0.5
N

))n
+ 1

N

(
1
N

∑N−1
l=0 f

(
l+0.5
N

, l+0.5
N

))n
− 1

N

(
sc1(s)c2(s)
N2(s−1)

)n
,

c0 and f1(·) are defined in (6), and for j = 1, . . . , n, α̂(N, n, s, j) = ĉj0−2
(

1
N

∑N−1
l=0 f̂1

(
l+0.5
N

))j
+

1
N

(
1
N

∑N−1
l=0 f̂

(
l+0.5
N

, l+0.5
N

))j
− 1

N

(
sĉ1(s)ĉ2(s)
N2(s−1)

)j
, ĉ0 and f̂1(·) are defined in Corollary 1.
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4 An algorithm for constructing uniform U designs

Suppose D is an OA(N, sn1
1 · · · sng

g , t) with n =
∑g

i=1 ni, K(x,y) =
∏n

i=1 f(xi, yi). In-

spired by Theorem 1, we define the weighted wordtype pattern as

WBj(D) =
1

Cj

∑
i1+...+ig=j

g∏
k=1

(
c2(sk)− 1

c2(sk) + sk − 1

)ik

Bi1,...,ig(D), (16)

where j = 0, . . . , n, Cj =
1
mj

∑
i1+...,ig=j

∏g
k=1

(
c2(sk)−1

c2(sk)+sk−1

)ik
,mj = #{(i1, . . . , ig) :

∑g
k=1 ik =

j, ik = 0, . . . , nk, k = 1, . . . , g}. Clearly, WB0(D) = 1. The minimum weighted aberration

(MWA) criterion is to sequentially minimize the vector WB(D) = (WB1(D), . . . ,WBn(D)).

It should be mentioned that when D is symmetric, WBj(D) = Aj(D) for j = 1, . . . , n, and

the MWA criterion reduces to the GMA criterion.

Assume that c2(sk) > 1 for k = 1, . . . , g. Then equation (12) in Theorem 1 can be

rewritten as

Disc2(LD,K) = α(N, n1, . . . , ng, s1, . . . , sg)

+

g∏
k=1

(
c1(sk)(c2(sk) + sk − 1)

N2(sk − 1)

)nk n∑
i=0

Ci ·WBi(D). (17)

The coefficient Ci of WBi(D) decreases geometrically as i increases, thus to minimize the

averaged squared discrepancy of all U designs based on an OA tends to agree with the MWA

criterion for the corresponding OA.

Example 1. Suppose the discrepancy measure CD is used. Let D0 be the OA(36, 211312, 2)

on Sloane’s website (http:// neilsloane.com) whose design matrix is given in transpose in

Table 1. Consider selecting a subarray D with parameters OA(36, 2333, 2) from D0. For

each subarray D, let CD2(LD) be the averaged CD2 values of all U designs generated from

D. There are 36300 subarrays with parameters OA(36, 2333, 2) in D0. Among the generalized

wordtype patterns corresponding to these subarrays, 674 are distinct with each other. We sort

these 674 representative subarrays based on CD2(LD), MWA and GMA, and denote the ranks
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by rCD, rWB and rA, respectively. Table 2 tabulates the values rCD, CD2(LD), rWB, rA, as

well as one representative of the columns, and part of the generalized wordtype patterns. Here

B0,1 = B1,0 = B0,2 = B1,1 = B2,0 = 0 for all subarrays. It can be seen from Table 2 that

compared with rA, the rWB’s are more consistent with rCD’s, that is, less weighted aberration

leads to lower CD2(LD) values.

Let D1 be subarray of D0 with rWB = 1 and D2 be the subarray of D0 with rWB = 600.

By randomly generating 105 U designs based on D1 and D2, respectively, two histograms of

the CD2 values of U designs in each case are obtained and shown in Figure 1. It can be

seen that U designs based on D1 tend to have lower CD2 values, which agrees with the above

conclusion.

Table 1: Design matrix of an OA(36, 211312, 2)

col Design matrix in transpose
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
3 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0
4 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0
5 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1
6 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1
7 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1
8 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1
9 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1
10 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0
11 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0
12 1 1 2 2 1 1 2 2 1 1 2 2 2 2 0 0 2 2 0 0 2 2 0 0 0 0 1 1 0 0 1 1 0 0 1 1
13 1 1 2 2 2 2 1 1 2 2 1 1 2 2 0 0 0 0 2 2 0 0 2 2 0 0 1 1 1 1 0 0 1 1 0 0
14 2 2 1 1 1 1 2 2 2 2 1 1 0 0 2 2 2 2 0 0 0 0 2 2 1 1 0 0 0 0 1 1 1 1 0 0
15 2 2 1 1 2 2 1 1 1 1 2 2 0 0 2 2 0 0 2 2 2 2 0 0 1 1 0 0 1 1 0 0 0 0 1 1
16 1 2 1 2 2 0 2 0 0 1 0 1 2 0 2 0 0 1 0 1 1 2 1 2 0 1 0 1 1 2 1 2 2 0 2 0
17 1 2 1 2 0 2 0 2 1 0 1 0 2 0 2 0 1 0 1 0 2 1 2 1 0 1 0 1 2 1 2 1 0 2 0 2
18 2 1 2 1 2 0 2 0 1 0 1 0 0 2 0 2 0 1 0 1 2 1 2 1 1 0 1 0 1 2 1 2 0 2 0 2
19 2 1 2 1 0 2 0 2 0 1 0 1 0 2 0 2 1 0 1 0 1 2 1 2 1 0 1 0 2 1 2 1 2 0 2 0
20 1 2 2 1 0 1 1 0 2 0 0 2 2 0 0 2 1 2 2 1 0 1 1 0 0 1 1 0 2 0 0 2 1 2 2 1
21 1 2 2 1 1 0 0 1 0 2 2 0 2 0 0 2 2 1 1 2 1 0 0 1 0 1 1 0 0 2 2 0 2 1 1 2
22 2 1 1 2 0 1 1 0 0 2 2 0 0 2 2 0 1 2 2 1 1 0 0 1 1 0 0 1 2 0 0 2 2 1 1 2
23 2 1 1 2 1 0 0 1 2 0 0 2 0 2 2 0 2 1 1 2 0 1 1 0 1 0 0 1 0 2 2 0 1 2 2 1
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Table 2: Comparison between MWA and GMA

rCD CD2(LD) rWB rA columns (B03, B12, B21, B30, B13, B22, B31, B23, B32, B33)
1 0.015006 1 2 1 2 4 17 18 19 0.50, 0, 0, 0.11, 1.50, 1.33, 0, 0.17, 1.33, 0.06
2 0.015032 2 1 2 4 7 16 17 20 0.13, 0.33, 0, 0.11, 1.54, 1.33, 0, 0.54, 1.00, 0.01
3 0.015079 3 3 1 2 8 12 15 20 0.13, 0.50, 0, 0.11, 0.88, 1.67, 0, 1.21, 0.50, 0.01
4 0.015101 4 7 1 2 3 13 14 15 0.50, 0.33, 0, 0.11, 0.17, 2.00, 0, 1.50, 0.33, 0.06
5 0.015108 5 11 1 2 6 12 13 14 0.50, 0.33, 0, 0.11, 0.67, 2.00, 0, 0.50, 0.67, 0.22
6 0.015115 6 10 1 2 3 12 13 14 0.50, 0.33, 0, 0.11, 0.17, 2.67, 0, 0.83, 0.33, 0.06
7 0.015119 8 9 1 7 9 12 13 16 0.13, 0.67, 0, 0.11, 1.21, 1.00, 0, 0.88, 1.00, 0.01
8 0.015129 7 12 1 2 3 12 13 15 0.50, 0.33, 0, 0.11, 0.17, 3.33, 0, 0.17, 0.33, 0.06
9 0.015130 9 13 2 4 5 12 13 20 0.13, 0.67, 0, 0.11, 1.21, 1.50, 0, 0.88, 0.50, 0.01
10 0.015130 10 14 6 7 9 15 17 21 0.13, 0.67, 0, 0.11, 1.21, 1.50, 0, 0.38, 0.83, 0.18
11 0.015130 11 15 2 4 6 12 13 20 0.13, 0.67, 0, 0.11, 0.96, 1.67, 0, 0.71, 0.67, 0.10
12 0.015133 13 4 2 4 11 12 13 20 0.13, 0.67, 0, 0.11, 0.96, 1.83, 0, 0.54, 0.50, 0.26
13 0.015133 12 5 6 8 9 15 17 21 0.13, 0.67, 0, 0.11, 1.21, 1.67, 0, 0.21, 1.00, 0.01
14 0.015137 14 6 2 5 6 12 13 20 0.13, 0.67, 0, 0.11, 0.71, 2.17, 0, 0.71, 0.50, 0.01
15 0.015147 15 8 2 6 11 12 13 20 0.13, 0.67, 0, 0.11, 0.46, 2.83, 0, 0.54, 0.17, 0.10
16 0.015155 16 19 1 2 5 17 18 19 0.50, 0.50, 0, 0.11, 1.50, 1.33, 0, 0.17, 0.83, 0.06
17 0.015156 18 21 1 2 7 12 16 20 0.88, 0.33, 0, 0.11, 0.79, 0.67, 0, 0.46, 1.67, 0.10
18 0.015169 17 22 1 2 7 12 13 14 0.50, 0.50, 0, 0.11, 0, 3.00, 0, 0.50, 0.17, 0.22
19 0.015173 20 25 2 5 7 12 13 20 0.13, 0.83, 0, 0.11, 0.79, 1.50, 0, 0.88, 0.67, 0.10
20 0.015177 19 24 1 2 4 12 16 20 0.88, 0.33, 0, 0.11, 0.79, 1.67, 0, 0.46, 0.67, 0.10
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Figure 1: Two histograms of CD2 values of U designs generated from D1 and D2.
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By using the MWA criterion, we modify the threshold accepting (TA) algorithm in Fang,

Maringer, Tang and Winker (2006) to search uniform or nearly uniform U designs. For an

OA(N, sn1
1 · · · sng

g , t) D, let ND(LD) be the neighborhood set of the U design LD. Let M be

any discrepancy measure including CD, WD and MD. Let τ be the number of iterations, and

T1, . . . , Tτ be the sequence of the thresholds. As done in Fang, Maringer, Tang and Winker

(2006), choose τ = uλ, where u, λ are positive integers. Then the sequence of the thresholds

are determined as follows: T1 = · · · = Tu, Tu+1 = · · · = T2u = γT1, T2u+1 = · · · = T3u = γ2T1,

and so on, where γ = (Tτ/T1)
1

λ−1 . The values T1 = 0.01 and Tτ = 10−6 are chosen for the

initial and terminal thresholds, respectively. The modified TA algorithm, named MWA-

based method, for construction of uniform U designs is summarized in Algorithm 1.

Algorithm 1 The MWA-based construction method of uniform U designs based on an
OA(N, sn1

1 · · · sng
g , t)

1: Initialize τ and the sequence of thresholds T1, . . . , Tτ ∈ (0, 1).
2: Use the MWA criterion to select a subarray D with parameters OA(N, sn1

1 · · · sng
g , t) from

an existing OA.
3: Randomly generate a U design LD based on D. Let Lmin

D := LD.
4: for i = 1 to τ do
5: Generate a new design L̃D ∈ ND(LD) and compute ∇M = M2(L̃D)−M2(LD).

6: if ∇M < M2(LD) · Ti, then LD = L̃D.
7: if M2(LD) < M2(Lmin

D ), then Lmin
D := LD.

8: end for

Algorithm 1 differs from the TA algorithm in Fang, Maringer, Tang and Winker (2006)

in two aspects. The first difference lies in the selection of starting designs. Instead of

randomly generating an LH, the proposed algorithm randomly chooses a U design based on

an MWA OA D to conduct the subsequential iterations. The second difference is that the

neighborhood set of the current solution, i.e., ND(LD), is defined based on D. Here, two

U designs are called neighboring based on D if they are both U designs generated from D

and one can be obtained from the other by simply exchanging two entries within the same

column. Consequently, all the solutions are U designs based on D during the iteration. This

appears to be a crucial item, as equation (17) implies that U designs generated from an OA

with less weighted aberration tend to have smaller squared discrepancies. Moreover, this

12



helps reduce the computational complexity, in spite of the restriction on the structure of the

solutions.

5 Performance analysis

If the OA(N, sn1
1 · · · sng

g , t) D in Step 2 of Algorithm 1 is generated randomly from an

existing OA instead, then Algorithm 1 becomes another construction method called non-

MWA-based method in this article. To illustrate the performance of the MWA-based method,

the comparisons of the MWA-based method with the non-MWA-based method and the TA

algorithm are performed. The calculation is done by using the Matlab program on a personal

computer with 3.20 GHz CPU processor and 4 Gb memory.

Here, we construct uniform U designs based on asymmetric OA(36, 2n−13, t)’s for n = 3–6.

Let D0 be the OA(36, 211312, 2) given in Example 1. When the discrepancy measure CD, WD

or MD is used, it can be verified that for n = 3–6, the first n−1 columns of columns labeled by

1, 2, 3, 4, 5 together with the column labeled by 12 form an MWA subarray with parameters

OA(36, 2n−13, 2). As explained earlier, we choose an MWA subarray and a random subarray

of D0 to be the initial D’s in Algorithm 1 for the MWA-based and non-MWA-based methods,

respectively.

As shown in Winker and Fang (1997), for improving the efficiency of stochastic algorithm,

the number of inner iterations u may follow in 104–105 and the number of outer iterations

λ may follow in 10–100. In Tables 3, 4 and 5, the MWA-based, non-MWA-based and TA

methods are performed with the set u = 104 and λ = 100. The detailed formula of ∇CD

can be found in Fang, Maringer, Tang and Winker (2006), and that of ∇WD or ∇MD can be

similarly derived.

For each case, each method is repeated 30 times. Let ACD2, AWD2 and AMD2 denote

the averaged CD2, WD2 and MD2, respectively, of the 30 uniform U designs searched by each

method. Tables 3, 4 and 5 tabulate the values of ACD2, AWD2 and AMD2, respectively,

and total running time in seconds for the MWA-based, non-MWA-based and TA methods.

It can be seen from Tables 3, 4 and 5 that with the same number of iterations, the
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Table 3: Comparison under the CD when N = 36

MWA-based Non-MWA-based TA
n ACD2 Time(s) ACD2 Time(s) ACD2 Time(s)
3 0.000740 786.3 0.000741 767.0 0.000742 534.8
4 0.001822 760.2 0.001822 767.2 0.001824 577.8
5 0.003864 771.3 0.003886 761.1 0.003872 539.9
6 0.007453 764.1 0.007579 811.4 0.007365 602.7

Table 4: Comparison under the WD when N = 36

MWA-based Non-MWA-based TA
n AWD2 Time(s) AWD2 Time(s) AWD2 Time(s)
3 0.001830 635.81 0.001832 631.91 0.001838 532.74
4 0.004959 641.73 0.004968 636.73 0.004953 529.28
5 0.011862 640.20 0.011882 638.18 0.011856 533.49
6 0.025920 643.52 0.025926 639.87 0.025916 539.25

Table 5: Comparison under the MD when N = 36

MWA-based Non-MWA-based TA
n AMD2 Time(s) AMD2 Time(s) AMD2 Time(s)
3 0.001818 787.01 0.001819 778.96 0.001821 559.51
4 0.005802 774.64 0.005814 773.56 0.005812 559.73
5 0.016471 777.31 0.016476 775.65 0.016497 562.96
6 0.042811 797.99 0.042831 784.97 0.042734 566.63
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TA takes less running time. However, the MWA-based method tends to get the smallest

averaged squared discrepancies, especially under the CD and MD. For example, the MWA-

based method obtains the smallest ACD2 and AWD2 values in three of all four cases. For

the WD criterion, the three methods perform similarly.

When the number of outer iterations λ or the number of inner iterations u for the TA

is increased, the TA and the MWA-based methods run for similar length of time. In this

case, the TA method performs slightly better than the MWA method, as is shown in Table

6. However, the results obtained by the MWA-based method achieve stratification in two-

or more-dimensional projections, which can not be guaranteed by the TA method.

Table 6: Comparison when N = 36 and TA takes more iterations

MWA-based TA TA
λ = 100, u = 1e4 λ = 100, u = 1.4e4 λ = 140, u = 1e4

n ACD2 Time(s) ACD2 Time(s) ACD2 Time(s)
3 0.000740 786.3 0.000742 767.0 0.000743 769.1
4 0.001822 760.2 0.001821 766.0 0.001815 777.3
5 0.003864 771.3 0.003853 766.2 0.003856 773.1
6 0.007453 764.1 0.007337 767.2 0.007333 778.6

Table 7: Improvement of existing uniform LHs under the CD

N n Prev.CD2 CD2 N n Prev.CD2 CD2 N n Prev.CD2 CD2

16 3 0.003194 0.003172 20 4 0.004860 0.004804 20 18 1.519361 1.516423
16 4 0.007071 0.006770 20 5 0.009783 0.009687 24 3 0.001527 0.001512
16 5 0.013909 0.013640 20 6 0.017808 0.017723 24 4 0.003582 0.003543
16 6 0.025049 0.024809 20 7 0.030373 0.030191 24 5 0.007313 0.007225
16 7 0.042079 0.041950 20 8 0.048886 0.048647 24 6 0.013532 0.013384
16 10 0.154901 0.154838 20 9 0.076302 0.075579 24 7 0.023162 0.023063
16 11 0.225217 0.224228 20 13 0.336067 0.335083 24 8 0.037764 0.037361
16 12 0.321534 0.318356 20 14 0.464123 0.463347 24 9 0.058905 0.058083
16 13 0.450431 0.449135 20 15 0.634151 0.632837 24 10 0.089478 0.087653
16 14 0.622102 0.620562 20 16 0.857695 0.855298 24 11 0.131500 0.130771
20 3 0.002109 0.002102 20 17 1.146821 1.143971

Table 7 tabulates the best CD2 values obtained by the MWA-based method and the
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results of existing LHs on the UD website (http://www.uic.edu.hk/isci/). The columns

“Prev.CD2” indicate the CD2 values previously listed on the UD website, while the column-

s “CD2” indicate the results obtained by our code. Here, the best CD2 values are ob-

tained by using the MWA-based method with the set u = 105 and λ = 100 and the OAs

“oa.16.15.2.2.0”,“oa.20.19.2.2.toniii” and “oa.24.12.2.3” on Sloane’s website.

6 Conclusions

We show in this paper that the averaged squared discrepancy of all U designs based on

an OA is a linear combination of the generalized wordtype pattern of the OA. Based on this

expression, we define a weighted wordtype pattern and a corresponding MWA criterion to

compare OAs of the same parameters. For symmetric OAs in particular, the MWA reduces

to the GMA criterion. U designs generated from an MWA design are shown to have low

discrepancies on average. Thus, an algorithm to construct uniform U designs is proposed.

Subsequently it is possible to obtain many new uniform U designs, which have smaller

squared discrepancies than the existing LHs on the UD website.

Appendix

To prove Theorem 1, we need the following lemma.

Lemma 1. For an OA(N, sn1
1 · · · sng

g , t) D with n =
∑g

k=1 nk, denote xi = (xi1, . . . ,xig) as

its ith design point, where xik ∈ Rnk
sk

for k = 1, . . . , g. Let δijk be the number of positions

where xik and xjk take the same value. Then for any numbers z1, . . . , zg greater than 1,

N∑
i,j=1

g∏
k=1

z
δijk
k = N2

g∏
k=1

(
zk + sk − 1

sk

)nk n1∑
i1=0

· · ·
ng∑

ig=0

g∏
k=1

(
zk − 1

zk + sk − 1

)ik

Bi1,...,ig(D).

Proof. The multiple distance distribution of D is defined by

B′
l1,...,lg

(D) = N−1#{(xi,xj) : dH(xik,xjk) = lk, for k = 1, . . . , g.},

16



where for k = 1, . . . , g, lk ∈ {0, . . . , nk} and dH(xik,xjk) = nk−δijk is the Hamming distance

of xik and xjk. Sloane and Stufken (1996) showed that the generalized wordtype pattern

Bj1,...,jg(D) equals the MacWilliams transforms of the multiple distance distribution, that is,

Bj1,...,jg(D) = N−1

n1∑
i1=0

· · ·
ng∑

ig=0

B′
i1,...,ig

(D)

g∏
k=1

Pjk(ik;nk, sk), (18)

where ji ∈ {0, . . . , ni} for i = 1, . . . , g, Pj(k;n, s) =
∑j

i=0(−1)i(s − 1)j−i
(
k
i

)(
n−k
j−i

)
are the

Krawtchouk polynomials. By the orthogonality of the Krawtchouk polynomials, it is easy

to show that

B′
j1,...,jg

(D) = N

(
n∏

k=1

s−nk
k

)
n1∑

i1=0

· · ·
ng∑

ig=0

Bi1,...,ig(D)

g∏
k=1

Pjk(ik;nk, sk),

for ji ∈ {0, . . . , ni}, i = 1, . . . , g. According to the definition of distance distribution and

Lemma A.1 in Tang, Xu and Lin (2012), we have

N∑
i,j=1

g∏
k=1

z
δijk
k = N

n1∑
j1=0

· · ·
ng∑

jg=0

B′
j1,...,jg

(D)

g∏
k=1

znk−jk
k

= N2

g∏
k=1

(
zks

−1
k

)nk

n1∑
j1=0

· · ·
ng∑

jg=0

n1∑
i1=0

· · ·
ng∑

ig=0

Bi1,...,ig(D)

g∏
k=1

Pjk(ik;nk, sk)z
−jk
k

= N2

g∏
k=1

(
zks

−1
k

)nk

n1∑
i1=0

· · ·
ng∑

ig=0

Bi1,...,ig(D)

g∏
k=1

[(
1 +

sk − 1

zk

)nk−ik
(
1− 1

zk

)ik
]

= N2

g∏
k=1

(
zk + sk − 1

sk

)nk n1∑
i1=0

· · ·
ng∑

ig=0

Bi1,...,ig(D)

g∏
k=1

(
zk − 1

zk + sk − 1

)ik

.

Proof of Theorem 1. For any OA(N, sn1
1 · · · sng

g , t) D with n =
∑g

i=1 ni and any L ∈ LD,

17



let xik and lik denote their (i, k)-th entries, respectively. First,

∑
L∈LD

N∑
i=1

n∏
k=1

f1

(
lik + 0.5

N

)
=

N∑
i=1

∑
L∈LD

n∏
k=1

f1

(
lik + 0.5

N

)

= N

[
N−1∑
l=0

f1

(
l + 0.5

N

)]n g∏
k=1

[(
N

sk
!

)sk−1(
N

sk
− 1

)
!(sk − 1)!

]nk

(19)

only depends on N,n1, . . . , ng and s1, . . . , sg. Similarly, we obtain

∑
L∈LD

N∑
i=1

n∏
k=1

f

(
lik + 0.5

N
,
lik + 0.5

N

)

= N

[
N−1∑
l=0

f

(
l + 0.5

N
,
l + 0.5

N

)]n n∏
k=1

[(
N

sk
!

)sk−1(
N

sk
− 1

)
!(sk − 1)!

]nk

. (20)

At last,

∑
L∈LD

N∑
i,j=1,i ̸=j

n∏
k=1

f

(
lik + 0.5

N
,
ljk + 0.5

N

)

=
N∑

i,j=1,i ̸=j

∑
L∈LD

 ∏
k:xik=xjk

f

(
lik + 0.5

N
,
ljk + 0.5

N

) ∏
k:xik ̸=xjk

f

(
lik + 0.5

N
,
ljk + 0.5

N

)
=

N∑
i,j=1,i ̸=j

g∏
k=1

ak1(sk − 1)!
∑
l∈Rsk

bk,l,l

δijk
ak2(sk − 2)!

∑
l1 ̸=l2∈Rsk

bk,l1,l2

nk−δijk

=

g∏
k=1

[ak2(sk − 2)!c1(sk)]
nk

N∑
i,j=1

g∏
k=1

c2(sk)
δijk −N

g∏
k=1

[ak2(sk − 2)!c1(sk)c2(sk)]
nk , (21)

where for k = 1, . . . , g, ak1 =
(

N
sk
!
)sk−1 (

N
sk

− 2
)
!, ak2 =

(
N
sk
!
)sk−2 (

N
sk

− 1
)
!
(

N
sk

− 1
)
!,

bk,l1,l2 =
∑

z1∈Tl1,sk
,z2∈Tl2,sk

,z1 ̸=z2
f( z1+0.5

N
, z2+0.5

N
), Tl,s = {lN/s, lN/s+ 1, · · · , (l + 1)N/s− 1},

c1(·) and c2(·) are defined in (10) and (11), respectively. Combining equations (19), (20),

(21) with Lemma 1, the desired result follows.
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